The Scalability of Evolved On Line Bin Packing Heuristics

E. K. Burke, M. R. Hyde, G. Kendall,J. R. Woodward

Abstract—The on line bin packing problem concems the
packing of piecesinto the least number of bins possible, as
the piecesarrive in a sequential fashion. In previous work, we
usedgeneticprogramming to evolve heuristics for this problem,
which beat the human designed‘best fit' algorithm. Here we
examine the performance of the evolved heuristics on larger
instancesof the problem, which contain many more piecesthan
the problem instancesused in training. In previous work, we
concludedthat we could confidently apply our heuristics to new
instancesof the same classof problem. Now we can make the
additional claim that we can confidently apply our heuristics
to problemsof much larger size,not only without deterioration
of solution quality, but also within a constant factor of the
performance obtained by ‘best fit'.

Inter estingly, our evolved heuristics respondto the number
of piecesin a problem instance although they have no explicit
accesdo that information. We also comment on the important
point that, when solutions are explicitly constructed for single
problem instances,the size of the search spaceexplodes.How-
ever, when working in the spaceof algorithmic heuristics, the
distrib ution of functions representedn the search spacereaches
some limiting distribution and therefore the combinatorial
explosion can be controlled.

|. INTRODUCTION

Recentyearshave seenthe emegenceof a more general
type of searchalgorithm,hyperheuristicg[1], [2], wherethe
searchspaceis a spaceof heuristics,ratherthan the space
of solutionsthemseles. This leadsto more generalsolution
methods,and we wish to examine the scalability of these
solutionsin this paper Hyperheuristicsare heuristicswhich
choose “betweena set of low-level heuristics,using some
learning medianism’[3]. i.e. a hyperheuristic managesa
fixed setof heuristics.

One of the motivations of hyperheuristics[1], [2] is to
“raise the level of generalityat which optimisationsystems
canoperate” providing a searchmethodologywhich will de-
liver solutionswhich are“good-enoughsoon-enouglitheap-
enough”[2]. While this ‘off the peg’ approackhis unlikely to
producesolutionswhich are asgood at thoseproducedby a
‘tailormade’ problemspecificmethod the goalis to underpin
decisionsupportsystemswhich canbe appliedto a broader
rangeof problemsthanis possibletoday

Hyperheuristicscan also be usedto producenew heuris-
tics, which arenot very dependentiponthe problemat hand.
Previous work [4], [5] demonstratedhat this is achievable.
In this paper we shav that the heuristicsproducedcan be

E. K. Burke, M. R. Hyde, G. Kendall, J. R. Woodward are with
the Automated Scheduling,Optimisation and Planning (ASAP) research
group School of Computer Science and Information Technology Uni-
versity of Nottingham, Jubilee Campus, Nottingham NG8 2BB, UK.
(phone: +44 (0)115 951 4206; fax: +44 (0)115 951 4249; email:
(ekb,gxk,mvh,jrw)@cs.nott.ac.uk).

applied to larger problemsthan thoseusedin the training
phase without loss of performance.

The approachdescribedn this paperis differentto mary
otherevolutionaryapproache$o solvingcombinatorialprob-
lems. Typically, with corventionalapproaches problemis
solved directly (see[6]). For example,if we were solving
aninstanceof the Travelling SalesmarProblem,a candidate
solutionwould consistof a list of the citiesto be visited and
the searchmethod (e.g. geneticalgorithms)would directly
manipulatea representatiorof the route (i.e. the route is
encodedn the genotype).

Our goal, in this paper is to presenta systemwhich
can automaticallygenerateheuristicswhich canbe usedfor
a classof problems.The differencebetweencorventional
methodsand evolving heuristicscan be summarizedoy the
proverb,

“Give a mana fish and he will eatfor a day, teadr a man
to fish and he will eatfor a lifetime’.

One of the major advantagesof producing a general
heuristic is that it can be applied to additional problems
without the needfor further parametertuning. Secondly if
we want to tackle a really large instanceof a problem,then
if we were usingthe direct approachwe would have to deal
with large encodingsf the potentialsolutionsandthe search
spacewould explode.However, if we aresearchinghe space
of heuristicsthenthe searchspacewill notexplodeaswe are
dealingwith generalsolution methods.lt is the aim of this
paperto considerhow the behaiour of evolved heuristics
scalesto larger problems.

Il. RELATED WORK

We will briefly discusssomeexamplesof previous hyper
heuristic methodsthat have appearedn the literature. Two
hyperheuristicmethodshave beentestedon the onedimen-
sional bin-packingproblem,a learning classifiersystem([7]
anda geneticalgorithm[8]. Simulatedannealings usedasa
hyperheuristicin [9] for the shipperrationalisatiorproblem.
A casebasedreasoninghyperheuristicis usedin [10] for
both exam timetabling and university course timetabling.
Threenew hyperheuristicarchitecturesrepresentedn [11],
which treat mutationaland hill climbing low-level heuris-
tics separatelyA graph basedhyperheuristicis presented
in [12]. In [13], atalu searchhyperheuristicis presenteénd
evaluatedupon a nurseschedulingproblemanda university
course timetabling problem. A choice function has also
beenemployed as a hyperheuristic,to rank the low-level
heuristicsand choosethe bestone [14], and a distributed
choice function hyperheuristic is presentedin [15]. The
choice function considersthe recent effectivenessof each

heuristicand eachpair of heuristics,and also considersthe
time sincethe heuristicwas last called.

The bin packing problem is NP-Hard [16], so a
polynomial-time exact algorithm is unlikely to be found
for the generalcase[17]. Several different heuristicshave
been developed in the literature. A number of examples
of heuristicsusedin the on line bin packing problem are
describedbelow:

BestFit [18]. Putsthe piecein the fullest bin that hasroom
for it. Opensa new bin if the piecedoesnotfit in ary existing
bin.

Worst Fit [17]. Putsthe piecein the emptiestbin that has
room for it. Opensa new bin if the piecedoesnot fit in any
existing bin.

AlmostWorst Fit [17]. Putsthe piecein the secondemptiest
bin if thatbin hasroom for it. Opensa new bin if the piece
doesnot fit in any openbin.

Next Fit [19]. Putsthe piecein the right-mostbin andopens
a new bin if thereis not enoughroom for it.

First Fit [19]. Putsthe piecein the left-most bin that has
roomfor it andopensa new bin if it doesnot fit in any open
bin.

A. GP appliedto problemsof different size

A numberof problemsof differentsize have beenstudied
in the GP literature, for example the even parity problem
and the lawn mower problem [20], [21]. Typically, as the
size of the problem grows, the size of the solution grows
and, correspondingly the time taken to find the solution
grows. Another example of a scalable problem includes
imagerecognitionproblems For example,we could consider
the problemof identifying a certainimageon a certainfixed
sizedimagearray (e.g.100 by 100 pixels), but this could be
generalisedo the problemof identifying the certainimageon
ann by n array In factmary problemscanbe consideredo
comefrom a moregeneralincarnationwherethe dimension
could be size,or someother parametewhich describeghe
problemclass.

In terms of representationstandardGP has difficulties
with problemsof different size. Teller [22] statesthat the
languageusedby standardGP is not powerful enoughto ex-
pressmary algorithms.In particulat ‘There is no medanism
for variablelengthstringsto be shownto thefunctionandno
way for the functionto iterate an arbitrary numberof times.
A moreexpressie representatiors neededf we areto tackle
generalisationsof variable size problems. There may be
otherbenefitstoo by looking at small instancef problems
before looking at larger instances(i.e. the small problems
may containenoughinformationto generalisérom, without
consideringlarger instancesof the problem, hence much
processotime canbe saved).

In terms of standardGP, two instancesof problems of
different sizesare consideredas different problemsi.e. we
may evolve a solution to the even-3-parityproblemor the
even-4-parityproblem.In the former case we would have 3
variablesin the terminal set, and in the latter case4. This
is interestingas mary peoplewould considertheseto be

instanceof the sameproblemasthe natureof the underlying
problemis the samein both caseq(i.e. is the numberof true
bits even?).In the arenaof GP, problemvariablesare often
representeexplicitly in the solution,a betterapproachmight
be to have the ability to addressa generalvariable (e.g.the
ith bit).

Miller et. al. [23] evolve digital designsof arithmetic
functions (addition and multiplication) and argue that ‘by
studying the evolved designof gradually increasing scale
one might be able to discern new, efficient, and genesl
principles of design: They pose the central questionin
the paper ‘Can we by evolving a seriesof subsystem®f
increasing size extract the geneal principle and hence
discover new principles?’While we agreewith thisapproach,
it may be possiblehowever, to evolve a generalalgorithm
ratherthan having a humanstudy the evolved designs.

Brave [24] evolvessolutionsto a planningproblemusing
automatically defined functions with a restricted form of
recursion.He shaws thatthe effort requiredto find solutions
with automaticallydefinedfunctions and recursionremains
constantwith the problem size. Basic GP scalesexponen-
tially and automaticallydefined functions scale linearly at
best,whichis consistentvith Koza’s[21] resultsfor basicGP
and GP+automaticallydefinedfunctionson the lawn mower
problem.

We may not needor be interestedn a generalsolutionto
a problem,we may simply want a solution to a fixed size
instanceof the problem.For examplewe may be interested
in the solution of the lawn mower problem for a lawn of
size 10000 by 10000, or the even-10%-parity problem. In
thesecasesit would be easierto evolve a generalsolution
to the problems,rather than evolving a specific solution.
Also tackling smallerinstancesf the problemmakes sense
(i.e. it is the sameunderlying problem and we can learn
the solutionto the underlyingproblembeforetackling larger
instances).Yu [25] (page361, section6.2) includesin her
testsetall casef even-2-parityandeven-3-parityproblems
(i.e. 22 + 22 = 12 testcases) andthis is enoughto evolve a
generalsolutionto the even parity problem.

B. A fundamentalifferencein the search spaces

There is an important difference between the search
spaceassociatedvith direct methods,and the searchspace
associatedwith evolving heuristics. With direct methods,
as we tackle larger problems, the size of the genotype
will increasein direct correspondencavith the size of the
probleminstanceFor example tacklingann-city instanceof
the travelling salesmarproblem,will involve a searchspace
containing candidateindividuals of length »n, leadingto a
combinatorialexplosion

If we are evolving a heuristicfor the problem,aswe are
evolving ageneraklgorithm,the sizeof the heuristicwill not
dependonn (thesizeof the problem).Hencein this casewe
could evolve a heuristicfor a small or large instanceof the
problem,but the numberof evaluationswill be independent
of the problemsize.

TABLE |
INITIALISATION PARAMETERS OF EACH GP RUN

Populationsize 1024
Maximum generations 50
Cross@er probability 0.9
Reproductionprobability 0.1

Treeinitialisation method
Selectionmethod
Functionset

Terminal set

Rampedhalf-and-half
Tournamentelection,size 7
+7 %k /

F E

Also, anothefundamentadifferencebetweerthesesearch
spacess pointedout by Langdon[26]. Langdoninvestigates
the limiting frequeng with which functionsare represented
in varioussearchspacesonstructedor GP. He is concerned
with the limiting distribution of functions.In somecaseshe
proves that the limiting distribution of functions does not
changeabove somethreshold,provides empirical evidence
in other casesand makes conjecturedor further cases.

I1l. THE ON LINE BIN PACKING PROBLEM

Bin packingproblemsconsistof takinga numberof pieces
andpackingtheminto a numberof bins. The aimis to pack
the piecesinto as few bins as possible.The most popular
versionof the problemis the off line version,wherea setof
piecesis known in advance,andthis setcanbe pacled into
the binsin ary order We tackle the on line version,where
a sequenceof piecesis to be pacled. Not only must the
sequencef piecesbe pacledin the orderthey arepresented,
but we do not know the sequencebeforehand(i.e. we do
not have the ability to look ahead).In this paper bins are
all of the samesize (150 units), and piece sizesare dravn
uniformly from a distribution of size 20 to 100 units.

IV. EXPERIMENTS

In this section we explain how we apply GP to our
problem.We describehow the GP systemis setup (this is
fairly standard)how the treesproducedby GP areappliedto
instancesof the problem,and how the fitnessis calculated
for multiple probleminstances.The parametersettingsare
presentedn tablel.

A. ParameterSettings

We used Sean Luke's Jasa-based Evolu-
tionary Computation Research System (http
/Jwww.cs.gmu.edu/eclab/projects/ecj/) to implement
our GP system. The contribution of this paperis not a
new innovation regarding GR, but an investigationinto the
scalability of the evolved heuristicsapplied to the on line
bin packingproblem.

In a single run, a heuristic is evolved on 20 problem
instancesconsistingof 100, 250 or 500 pieces.We evolve
30 heuristics(i.e. 30 runs) for eachproblemsize, thus we
evolve 90 heuristicsall together These90 heuristicsarethen
appliedto 20 independenfproblem instancesconsistingof
100000pieceseach.

The quantity we are trying to minimize is the number
of bins usedto legally contain the pieces. There are two

componentso our fithessfunction. A naturalmeasures used
to assigna fitnessequalto the numberof bins, to the given
heuristic. This seeminglyobvious fitnessfunction is not a
particularly good evolutionary driver on its own, as mary
heuristicscanusethe samenumberof bins,andsothereis lit-

tle evolutionary pressureio encouragdurther improvement.
Hence,we needa way of differentiatingbetweenheuristics
which producepackingconfigurationconsistingof the same
total numberof bins. The following fithessfunction (shown
in equationl), doesjust this, where:

n = numberof bins used, F; = fullnessof bini, andC =
bin capacity

1)

We cannow combinethesetwo fithessfunctions.We use
the total numberof bins as our fitnessfunction, and if two
heuristics obtain the same value, then we use the fitness
functiondescribedn equationl to differentiatebetweenwo
heuristicswhich usethe samenumberof bins.

n

Fitness =1— (M)

B. Applyingthe heuristic

An evolved heuristicis usedto choosein which bin to
placethe currentpieceunderconsiderationby scoringeach
bin and placing the piece in the bin with the maximum
score.An evolved algorithmis appliedto the currentset of
bins. This setalways includesan empty bin. The algorithm
always has the choice of putting the current piece in the
empty bin. If a pieceis placedin the empty bin, a new
empty bin is addedto the set, maintaining the condition
that there is always an empty bin available. The current
pieceis placedin the bin which receivesthe maximumscore
accordingto the evolved heuristic. A heuristic can place a
piecein a bin causingthe size of its contentsto exceedits
capacity We do allow this to occurin the evolution; however
such heuristicsreceve a large penalty fithess. Heuristics
which produceillegal solutionstypically die out in the first
couple of generationsthough, of course,thereis always a
small probability that illegal heuristicswill form in mature
populations.

C. Noteon the terminal set

In our original work [4], we useda terminalsetconsisting
of the size of the currentpiece, S, the capacityof the bins,
C, andthefullnessof the currentbin beingconsideredy the
heuristic,F, i.e. S, C, F'. However, uponreflection,we came
uponthe following improvement.The fullnessand capacity
of abin canbe combined(C — F') to give the emptinessk,
of abin, which is the spaceremainingin thebin. Whenthere
areno otherpiecesin thebin, E = C. The quantity (E — S)
would be the spaceremainingin the bin if the currentpiece
were placedin the bin. In a sensethe fullnessand capacity
areirrelevant;it is only theremainingspacen thebin F, and
the size of the currentpiecewhich are necessaryo describe
the stateof a givenbin. While this setof terminalsis slightly
lessexpressve, it is still adequateéo expresssolutionsto the
problem.Also, aswe have reducedthe numberof variables

Amount the heuristics beat best fit by

——evolvea on 10U

= cwolved on 250
evolved on 500

=} S0000 100000

Fig. 1. The horizontal axis shavs the number of piecespacled. The
vertical axis shavs the numberof bins that a heuristicbeats‘best fit' by.

This is donefor heuristicsevolved on probleminstancef threedifferent
sizes(containing100, 250 or 500 pieces).This horizontalscalegoesup to

100000pieceswhich is muchlargerthanthe numberof piecescontainedn

the probleminstancesisedin the training phase Theseresultsare averaged
over 30 heuristicsover 20 probleminstances.

from 3 to 2, this allows us to plot graphsof the heuristics’
performancewhich are presentedater.

D. Note on protecteddivide

Oftenin GPR division is includedin the function setwhich
can causeproblemsif the denominatoris zero. Protected
division is usedwhere 1 is returnedif the denominatoris
zero. This causesa slight problemwith this applicationas
when (E — S) is zero (i.e. the piece fits perfectly) only
a small value is returnedand the piece is not likely to
be placedin that bin. To avoid this problem we set the
denominatorto 0.5. Hence, our protecteddivide function
returnsa numberlarger than if the denominatorwas 1 or
greater In otherwords, using the standardprotecteddivide
function,asthe denominatogetssmaller the expressiorgets
larger, except when the denominatorhits zero and a small
valueis returned Hence this methodof protectingdivisionis
alittle unnatural We decidedto returndoublethe numerator
whenthe denominatotits zero.

V. RESULTS
A. Performanceoutsidetraining range

Figure 1 showvs how heuristicsevolved on small problems
(either 100, 250 or 500 pieces)perform on much larger
problems. The horizontal axis is the number of piecesin
the problem instance.The vertical axis is the number of
bins that the evolved heuristic beatsthe ‘best fit' heuristic
by (e.g. at 100000pieces,heuristicsevolved on 500 pieces
beat ‘best fit' by about 600 pieces).There are a number
of obsenations which can be made. Firstly, the heuristics
do scale,andthereis not somecatastrophialeteriorationin
performanceon larger problems.Secondly we can predict
what the number of bins will be relative to the ‘best fit’
heuristic. Thirdly, the larger the number of piecesin the
training setthe heuristicwas evolved on, the more it beats
‘bestfit’ by.

Amount the heuristics beat best fit by

Fig. 2. Thehorizontalaxisshavs the numberof piecespacled. Thevertical
axis shavs the numberof binsa heuristicheatsbestfit' by. Thisis donefor
heuristicsevolved on probleminstancef threedifferent sizes(containing
100, 250 or 500 pieces).Note that the horizontal scale covers the size of
the training probleminstances.

B. Statistics
Tablel

H100 H250 H500

100
1000
10000
100000

0.427768358
0.406790534
0.454063071
0.271828318

0.298749035
0.010006408
2.57785E-07

1.37522E-25

0.140986023
0.000350265
9.65298E-12
2.78293E-32

ableT shaws statisticsfor the resultsproduced.The 3
heuristicsevolved on eachprobleminstancesize, are tested
on 20 independenproblems andthe numberof bins usedat
100,1000,10000,100000piecesarerecorded(i.e. 20 values
for each).We thencompareeachof these20 valueswith 20
valuesobtainedwith the ‘bestfit’ heuristic.Columnsl, 2 and
3 shaw the valuesfor the threetraining setsizes.Rows 1 to
4 shaw the valuesfor the numberof piecesin the validation
probleminstancesWe have recordedthe valuesfor the one
tailed studentt-test,which shaw the probability that the two
distributions comefrom the samedistribution. Generally as
thenumberof piecesn theinstancencreasespur confidence
thatthetwo distributionsaredifferentgrows. Also, asthesize
of the training instanceggrows, our confidencethat the two
distributions differ increases.

C. Performanceover training range

Figure2 hasthe sameaxesasfigure 1, but we arezooming
into the region of the graphwhich containsthe resultsfor
problemswith piecesup to 500 (i.e. the maximumrangeon
which we trained).We can malke the following obsenation.
For heuristicstrainedon problemsconsistingof 100 pieces,
‘bestfit’ beatsthe heuristicup to around50 pieces(i.e. the
line is belowv the x axis). Past this point, the line recovers
from its poorinitial start,andremainspositive. For heuristics
trained on problemsconsistingof 250 pieces,'best fit' out
performsthe heuristicsup to around 125 pieces,but after
this point the heuristicsstartsto packpiecesmore efficiently
and at the 250 piece stagethe heuristicsbeat ‘best fit'. A
similar patternof behaiour is obsened with the heuristics
trained with problemsconsistingof 500 pieces.Until the
200 piecemark, ‘bestfit’ startsby packingmore efficiently,

Best Fit Heuristic

Fig. 3. The horizontalaxes shav the emptinessof a bin varying from 0
to 150, andthe currentpiecesize varying from 0 to 70. The vertical axis is
the valuereturnedby the ‘bestfit’ heuristic. The pieceis placedin the bin
which correspondsgo the maximumvalue.

thenthe heuristicsovertale it. We can make the qualitative
obsenation that if a heuristicis trained on a sequenceof
piecestypically for thefirst half of a sequencepestfit’ will
out performit, but in the secondhalf the heuristic catches
up and overtales’ ‘best fit'.

It is perhapsworth drawing an analogy here between
theseheuristicsand competitorsin a runningrace.Oftenthe
stratgy employed by athletesis to hold backinitially andin
the final stagesaccelerateand passthe front runners.Often
the peoplewho leadfor mostof theracedo notwin andare
usedby the eventualwinnersto “set the pace”.

D. BestFit

In this subsection,we explain the ‘best fit' algorithm,
examineagraphof ‘bestfit’ (figure 3), andexplainintuitively
why it is a good heuristic. The ‘best fit' algorithm fits the
current piece under considerationjnto the smallestgap in
a bin into which it will fit. It the piece doesnot fit into a
bin, thena new bin is openedandthe pieceis placedin it.
This heuristichasthe propertythatit never opensa new bin
unnecessarilyif the piececango into an existing bin, then
‘bestfit’ will placeit without openinga new bin. ‘Best fit’
then,in somerespectds a very efficient strateyy.

In our setup, the heuristicchumanor evolved)is appliedto
eachbin andthe highestscoringbin is the bin in which we
place the piece. This function is expressedalgorithmically
asC/(E — S) in this framework. This function is plotted
in figure 3. The vertical scaleis essentiallyirrelevant aswe
take the maximumvalueof the function, so multiplying by a
factorwill make no difference.The spaces divided into two
by a vertical plane. Notice thatwhen E — S < 0, the plot
is negative (indicating an illegal solution). When E — S is
small, the larger the value ‘bestfit' assigngo that bin-piece
combination.When the heuristicis presentedwvith a set of
n binsanda currentpieceto be placedin the bins, eachbin
will give riseto a point on the plot, andwe choosethe point
which correspondso the largestfunction value, and this is
the bin in which the pieceis placed.It is worth taking a

pieces 20 to 70

15000

10000

5000

50001

-10000-

emptiness

15000

piece size

Fig. 4. Thisis anevolved heuristic.Note the axesarethe sameasin figure
3, but is rotatedslightly. Notice that this is very similar to the plot of the
‘bestfit’ (figure 3), but differs significantlyin one cornerof the plot.

minute to examinethe plot asthis will be comparedo our
bestevolved heuristic.

E. BestEvolvedHeuristic

In figure 4 we plot thefunctionvaluesof our bestobsened
heuristic. We now outline this plot. It is rotatedrelative to
the ‘best fit'" plot (figure 3), but very similar featurescan
be seen A vertical planedividesthe spaceinto two. Behind
the plane, all of the function valuesare negative. In front
of the vertical planethe function diminishes very muchlike
the ‘bestfit’ heuristic,exceptin the region when piecesize
is small and the emptinesds large, and the function value
curls upwards. There is also an interestingridge running
approximatelyparallelto the vertical plane.We do not know
yet if this ridge is of significanceor not.

This function is very similar to the function which ex-
pressesbest fit', exceptfor the casewhena pieceis small
anda bin is empty It will preferto put small piecesin very
emptybins,andin a senses doing somethingsimilar to the
“worst fit" heuristici.e. it is placing a small pieceinto a
bin with a large gap. This may seemcounterintuitve when
comparedo the ratherintuitive ‘bestfit’ approachThis may
be explained by the following example. We may have the
situationwherea gap of size 30 exists, and a piece of size
20 arrives. Best fit may understandablplace the piecein
this bin. However, if we know that we still have mary more
piecesto fit, thenit is worth taking the lessmyopic approach
andwaiting for a piecewhich is a betterfit (e.g.betweersize
25 and 30), and placesthe pieceof size 20 into a fresh bin.

As this algorithmtendsto put small piecesin very empty
bins, it probably hasa larger distribution of gapsin which
to fit future pieces.’Bestfit’ is rathergreedyin this respect.
A betterlong term approachwould be to build up a set of
gaps which can best accommodaténcoming pieces, with
the expectationthat pieceswhich will fit the gapswill arrive
eventually Our algorithm is essentiallyanticipatingthat a
betterfitting piecewill comealong beforethe last piecein
the sequencairrives.

As we shoved in previous work [5], we producedheuris-

ticswhich weretunedto the problemclassthey wereexposed
to in the training phasei.e. heuristicsevolved on problems
consistingof piecesof a given distribution performedbet-
ter on problemswhich consistedof pieceswith the same
distribution of sizes.Thus GP is reactingto the distribution
of piecesin the problem and producinga function which
containsa predictive quality. We cannow also claim GP is
reactingto the numberof piecesin the problem.

V1. DISCUSSION

If we wereto tackle this problemin a theoreticalframe-
work, one approachwould be to look at the expectationof
the numberof bins giventhe probability distribution over the
piecessizesthat we are likely to pack. We are effectively
planning under uncertainty as we do not know what the
sequencesf piecesarebeforehandThuswe couldonly give
probabilisticresponseso the questionasto the bin in which
we shouldplacethe currentpiece.In our currentframework,
we place the piece in the bin which scores maximally
accordingto the heuristic. Evolved heuristicswhich behae
legally (i.e. donot overfill abin), will returna setof positive
valuesfor the potential bins. Thus (after normalizing) we
couldinterpretthe outputof the heuristicasa probability, and
we arechoosingthe bin which hasthe maximumprobability
associatedvith it.

Thus, currently we are just placing a piecein a bin at
eachstage.If we interpretthe value of the heuristic as a
probability, thenwe will alsobe ableto make claims about
how certainwe are aboutthe action of placing the current
piecein the selectedbin. While this may not be of direct
interestin the abstractversionof the bin packingproblem,
it may well be of interestin certainreal world applications.

It is clearfrom figure 1 that thereexist somesoft thresh-
oldsregardingthe sizeof thetraining instancesFirstly, there
appearsto be a lower threshold belov which we cannot
inducea heuristicalgorithmto beat'bestfit’. Thisis around
100 pieces, as is evident as the trace is just above the
horizontal axis. In this case,we can learn a bin packing
strat@y which just beats'bestfit’. Thus,for the distribution
of piecesizesusedin this paperandthe bin capacitystated,
thereexists a lower thresholdat around100 pieces.

Secondlyaswe increaséhe numberof piecesin thetrain-
ing datato 250 and 500, we seean increasen performance
in the evolved heuristic. This increasein performancewill
increasewith the numberof piecesin the training sets,but
asthe numberof piecesincreasesve will startto approach
the theoretical optimum (i.e. the sum of the sizes of all
of the piecesdivided by the bin capacity)and we will see
little furtherimprovementin performanceaswe increasethe
numberof pieces.

Theon line bin packingproblemhasa strict mathematical
definition,wherewe arenottold in advancehow mary pieces
therearein a particularprobleminstance.n somerespects
this detail may appeamot to be important. However, aswe
seein the resultspresentedn this paper if we are nearthe
start of the sequenceof piecesto be packed, then we can
pack piecesmore loosely as potentially betterfitting pieces

may exist laterin the sequencelf we aretowardsthe endof
the sequencehen, this signalsthat we needto startpacking
piecesmoretightly.

The evolved heuristicreturnsa valuewhenit is presented
with a piecesize S andbins with emptinesst. It doesnot
have memory[27], andit canonly examineonebin atatime.
Hence,the value returnedby the algorithmsis independent
of the emptinessvaluesof the other bins, and independent
of what position the pieceis in the sequencdi.e. it could
be the first or last piecein the sequence)However, the GP
systemseemdo have learntsomethingaboutthe stateof the
bin packing system(i.e. as seenin figure 2), the heuristic
seemsto know that the last piecesare approachingwithout
having explicit accesgo stateinformation (e.g. the current
pieceis the last piece).

How can our heuristicappearto do this without having
explicit accessto state information. When a set of bins
is evaluatedfor their suitability for the current piece, this
correspondgo a setof points on the surface of the plot in
figure 4. As the numberof bins increasesthen the number
of points on the surface of the plot will increase.As the
numberof bins increasesthen the “competition” between
themincreaseqi.e. a bin which may have won in the past
may not win nhow asthereare more suitablegapsavailable).
Hence,in somerespectghereis at leasta memoryeffect.

The main motivation of the approachpresentedis to
evolve an algorithm,which canbe reusedon future problem
instancesHowever, in view of theseresults,an interesting
approacho tacklingalarge singleinstanceof a problemmay
be to evolve an algorithm on a numberof small problem
instances(from the sameproblem class)and then use the
resulting algorithm to tackle the larger single instanceof
the problem.For example,given that we had a bin packing
problemwith a large numberof piecesto pack,in the long
term, it may be betterto evolve a heuristicon problemswith
a small numberof piecesandapply the resultingheuristicto
the larger problem.

VIl. FURTHER WORK

In earlierwork [4], we allowed our heuristicto examine
eachbin in turn, andit placedthe currentpiecein the first
bin with a positive valueaccordingto the evolving heuristic.
This allowed usto evolve heuristicswhoseperformancevas
comparablewith the “first fit' heuristic[4]. In further work,
we allowed the heuristicto scanall of the bins and place
the piecein the bin which receves the maximumscore[5].
This allowed usto evolve heuristicswhoseperformancevas
comparablewith ‘best fit'. However, this secondapproach
(which we are also using in this paper),doesnot allow us
to expressthe first fit algorithm or the types of algorithm
foundin thefirst case Similarly, thefirst positive scoringbin
approachdoesnot allow usto expressthe ‘bestfit’ heuristic.
It would beinterestingto constructa searchspacewhich was
capableof expressingfirst fit' type heuristicsand ‘best fit’
type heuristics.

Typically, in real world situationsinvolving the bin pack-
ing problem,the numberof piecesfor a particularinstance

of the problemmay not be known in advance.However, over
time aswe seemoreinstancesf the problem,a distribution
over the numberof pieceswill begin to emege (i.e. we are
samplingthis distribution). This will provide an additional
sourceof information that GP will be ableto make use of,
which we expanduponbelow.

If we know how mary piecesthere are to be pacled,
we can use this information to improve our bin packing
heuristics An outlinefor athreestageapproachs asfollows.
In the first stage,initial piecesare pacled (this would be
around100 pieces,asobsened earlierin the paper which is
just enoughto inducebin packingbehaiour). In this stage,
we attemptto build up the contentsof the bins. We then
enterthe secondstagewhereadditionalpiecesarrive andare
pacled, essentiallyjunderthe assumptiorthat thereare mary
morepiecesto arrive (i.e. we do not have to employ agreedy
algorithm, but can openfresh bins which we expectwill get
betterfilled in the long term, ratherthan forcing in pieces
which fit but leave a gap). In effect, we are maintaininga
good distribution of gapsin the bins in which to receve
future pieces.In the final stage,we are nearingthe end of
the sequenceoit makessensenot to opennew bin if it can
be avoided.It would be interestingto seeif we could evolve
analgorithmwhich learnsto switch behaiour, dependingon
whetherthe currentpieceis at the start of the sequenceor
nearthe end of the sequence.

In this work, and previous work[4], we have generated
pieces using uniform probability distributions. ‘Best fit’
performswell when the piece size distribution is uniform,
however this may not be the case with a very rugged
distribution of pieces.One of the strengthsof using GP to
evolve heuristicsis that we can now tackle more general
problemclassesvherethe probability distribution is far from
uniform.

In this work, thefitnessfunctionis basedon the numberof
bins.It would beinterestingo usea multi objective approach
to plot the Paretofront of fastand nearoptimal bin packing
algorithmsallowing the investigationof the tradeoff i.e. one
axis is the numberof bins a heuristicuses,the secondaxis
is the speedat which it executes.We make the conjecture
that the Paretofront will be a corvex hull.

Also, if we were particularlyinterestedn speedthenthe
type of wrapperusedto apply the GP heuristicto the bin
packingproblemwill becomemoreimportant.For example,
if we useda first fit type wrapper(wherethe pieceis placed
in the first bin which receves a positive score), this will
typically run fasterthana ‘bestfit’ typewrapper(whereall of
the bins are examined).A searchspacewhich includesboth
of thesetypesof wrapperswould be of particularinterestin
this case.

In our currentimplementation,the evolved heuristic is
appliedto all of the bins. Over time, as more piecesare
placedin bins, and more bins are opened the heuristicwill
take longer and longer to apply. There are two things we
can do to improve the run time of the algorithm. Firstly,
full bins can be removed from the computation(a bin is

consideredfull if the emptinesss lessthat the size of the
smallestpiecein thedistribution). Secondlyin the portion of
thegraphwe areinterestedn (seefigure 4), the profile of the
surfaceis approximatelyunimodal (i.e. hasa single trough
runningthroughthe centre).If we canapproximatethis with
aunimodalfunction,thenthebins canbe orderedandthebin
which scoresthe maximumvalue accordingto the heuristic
canbefoundby bisectionratherthanconsideringeachof the
binsin turn. Of course,if we extend the wrapperwe apply
to the heuristics,it is possiblethat GP could discover this.

We are currently investigatingthe use of GP to evolve
heuristicsfor the 2D cutting and packing problem. We are
alsoextendingour implementatiorof the on line bin packing
problem, to the off line bin packing problem. In these
related problemdomains,we expect similar results(e.g. in
termsof humancompetitvenesandrobustperformancevith
respecto scalability).It is our intentionto develop principles
which apply acrossproblem types, rather than developing
specialisedechniquesvhich canonly be appliedto a narrav
catgyory of problem.

VIII. SUMMARY AND CONCLUSIONS

We have evolved heuristicsfor the on line bin packing
problem.We are given a sequencef pieceswhich mustbe
pacledin the orderthey arrive. A heuristicis appliedto each
of the bins andthe currentpieceis placedin the bin which
recevves the maximum score accordingto the heuristic. In
earlier work [4] we producedheuristicscomparableto the
human designed‘best fit'" heuristic. In the current paper
we examine how the evolved heuristics scaleto problem
instanceswhich contain mary more piecesthan were con-
tainedin the probleminstancesusedin the training phase.
In general,we shaved that the evolved heuristicsdo scale
as one might expect, without deteriorationin performance
and with a constantmultiplicative improvement over the
performanceobtainedusing ‘best fit'.

We alsodemonstratedninterestingmemoryeffect. While
heuristicsdo not have accessto the number of piecesin
the sequencepr what position the current pieceis in the
sequencethe heuristicsseemto learnthis anduseit to their
adwantage.While the numberof piecesis not specifiedin
the generalmanifestationof the bin packing problem, this
informationwill be availablein mary industrialapplications,
andthereforeit is worth giving GP accesgo this in orderto
evolve more effective heuristics.

Finally, we pointedout the importanceof evolving general
heuristicsratherthansolutionsto specificprobleminstances.
We alsohighlightedthe factthatthe searchspacesssociated
with direct methodsand methodsinvolving the evolution of
heuristics arefundamentallydifferentandthis differencecan
be exploited to avoid (or at leastreduce)the effects of the
combinatorialexplosion.

Thereare someinterestingand healthyconclusionswhich
canbe dravn from the obsenationsmadein this paper

« If aheuristicis trainedon probleminstancesontaining

n piecesjt canperformbetterthan‘bestfit’ on problem
instanceswhich containmorethann pieces.

(1]

(2]

(3]

[4]

(3]

(6]

(71

(8]

9]

(10]

(11]

(12]

(13]

It will performworsethan‘bestfit’ on problemswhich
containpieceslessthan approximatelyn/2 pieces
The larger the numberof piecesin the instancesn the
training set, the betterthe scalingperformance
Thereexists a lower threshold(just below 100 pieces).
belonv which it was not possibleto evolve behaiour
competitve with ‘bestfit’. Thisthresholdwill in general
vary accordingto the distribution of piecesand their
sizesrelative to the bin capacity

As probleminstanceswith more piecesare usedin the
training phase the performanceof the evolved heuris-
tic increasesTherewill exist an asymptoticthreshold
above which little gainin performancecanbe seen.

REFERENCES

Ross,P.: Hyperheuristics. In Burke, E.K., Kendall,G., eds.:Search
Methodologies:Introductory Tutorials in Optimization and Decision
SupportTechniques.Springer Boston (2005) 529-556

Burke, E., Kendall,G., Newall, J.,Hart, E., Ross,P,, Schulenbrg, S.:
Hyperheuristics:An emeging directionin modernsearchtechnology
In Glover, F.,, Kochenbgger, G., eds.:Handbookof Meta-heuristics.
Kluwer (2003) 457-474

Soubeiga,E.: Developmentand Application of Hyperheuristicsto
PersonnelScheduling. PhD thesis, Univesity of Nottingham,School
of ComputerScience(2003)

Burke, E.K., Hyde,M.R., Kendall,G.: Evolving bin packingheuristics
with geneticprogramming.In RunarssonT.P, Beyer, H.G., Burke, E.,
Merelo-Gueres, J.J.,Whitley, L.D., Yao, X., eds.: Parallel Problem
Solving from Nature- PPSNIX SpringerLectureNotesin Computer
Science Volume4193of LNCS., Reykjavik, Iceland,SpringerVerlag
(2006) 860—-869

Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.R.: Automatic
heuristicgeneratiorwith geneticprogramming Evolving a jack-of-all-
tradesor amasterf one.In Lipson,H., ThierensD., eds.:Geneticand
Evolutionary ComputationConference,GECCO 2007, Proceedings,
London, UK, July 7-11, 2007, ACM (2007)

Sastry K., Kendall,G., Goldbeg, D.: Geneticalgorithms.In Burke,
E.K., Kendall,G., eds.:SearchMethodologiesintroductory Tutorials
in Optimizationand Decision SupportTechniques.Springer Boston
(2005)97-125

Ross, P, Schulenbrg, S., Marin-Blazquez, J., Hart, E.: Hyper
heuristics:Learningto combinesimpleheuristicsin bin-packingprob-
lems. In Langdon,W.B., Canfi-Paz, E., Mathias,K., Roy, R., Davis,
D., Poli, R., BalakrishnanK., Honavar, V., Rudolph,G., Wegener J.,
Bull, L., Potter M.A., Schultz,A.C., Miller, J.F, Burke, E., Jonoska,
N., eds.:GECC0O2002: Proceeding®f the Geneticand Evolutionary
ComputationConference New York, Morgan Kaufmann Publishers
(2002)942-948

Ross,P, Marin-Blazquez,J.G., Schulenhbirg, S., Hart, E.: Learning
a procedurethat can solve hard bin-packing problems: A new ga-
basedapproachto hyperheursticsin: Proceeding®f the Geneticand
Evolutionary ComputationConference2003 (GECCO'03), Chicago,
llinois (2003) 1295-1306

Dowsland, K., Soubeiga,E., Burke, E.K.: A simulated annealing
hyperheuristic for determiningshippersizes. EuropeanJournal of
OperationalResearchl793) (2007)759-774

Burke, E.K., Petrwic, S., Qu, R.: Case-basetieuristic selectionfor
timetablingproblems.Journalof Scheduling9(2) (2006) 115-132
Ozcan,E., Bilgin, B., Korkmaz,E.E.: Hill climbersand mutational
heuristicsin hyperheuristics.In Runarsson., Beyer, H.G., Burke,
E., J.Merelo-Guerss, J., Whitley, D., Yao, X., eds.:LectureNotesin
ComputerScience Proceedingsf the 9th InternationalConferenceon
Parallel Problem Solving from Nature (PPSN2006). Volume 4193.,
Reykjavik, Iceland(2006)202-211

Burke, E.K., McCollum, B., Petravic, A.M.S., Qu, R.: A graph-
basedhyper heuristicfor timetabling problems. EuropeanJournalof
OperationalResearchL76 (2007) 177-192

Burke, E.K., Kendall,G., SoubeigaE.: A tahu-searchhyperheuristic
for timetablingand rostering. Journalof Heuristics9(6) (2003) 451—
470

[14]

[15]

[16]

[17]

(18]

[29]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Cowling, P, Kendall, G., Soubeiga,E.: A hyperheuristicapproach
to schedulinga salessummit. In Burke, E.K., Erben, W., eds.:
Proceeding®f the 3rd InternationalConferenceon the Practiceand
Theory of AutomatedTimetabling (PATAT 2000), Springer Lecture
notesin ComputerScience Volume 2079.,(Konstanz,Germary)
Rattadilok,P, Gaw, A., Kwan, R.: Distributed choicefunction hyper
heuristicsfor timetablingandscheduling.In Burke, E., M. Trick, eds.:
Practiceand Theory of AutomatedTimetablingV, SpringerLecture
notesin ComputerScience Volume 3616.(2005)51-67

Garg, M.R., JohnsonD.S.: Computersand Intractability; A Guideto
the Theory of NP-CompletenessW. H. Freeman& Co., New York,
NY, USA (1990)

Coffman Jr, E.G., GalambosG., Martello, S., Vigo, D.: Bin packing
approximatioralgorithms:Combinatorialanalysis.In Du, D.Z., Parda-
los, PM., eds.: Handbookof Combinatorial Optimization. Kluwer
(1998)

Rhee W.T., TalagrandM.: Online bin packingwith itemsof random
size. Math. Oper Res.18 (1993)438-445

JohnsonD., Demers,A., Ullman, J., Garey, M., Graham,R.: Worst-
caseperformanceéboundsfor simpleone-dimensionapackagingalgo-
rithms. SIAM Journalon Computing3(4) (Decemberl974)299-325
Koza,J.R.: Geneticprogrammingll: automaticdiscovery of reusable
programs.MIT Press,Cambridge MA, USA (1994)

Koza,J.R.: Scalabldearningin geneticprogrammingusingautomatic
functiondefinition. In: Advancesin geneticprogramming.MIT Press,
Cambridge MA, USA (1994)99-117

Teller, A.: Turing completenesén the languageof geneticprogram-
ming with indexed memory In: Proceeding®f the 1994 IEEE World
Congreson Computationalntelligence.Volume 1., Orlando,Florida,
USA, |EEE Press(1994) 136-141

Miller, J.F, Job, D., Vassile, V.K.: Principlesin the evolutionary
designof digital circuits - parti. GeneticProgrammingand Evolvable
Machines1(1/2) (2000) 7-35

Brave, S.: Evolving recursve programsfor tree search.In Angeline,
PJ., E., K., eds.:Advancesin GeneticProgramming2. MIT Press
(1996)

Yu, T.: Hierarchical processingfor evolving recursve and modular
programausinghigherorderfunctionsandlambdaabstractionGenetic
Programmingand Evolvable Machines2(4) (2001) 345-380
Langdon,W.B.: Scalingof programtree fithessspaces.Evolutionary
Computation7(4) (1999) 399-428

Teller, A.: The evolution of mentalmodels.In E., K., ed.: Advances
in GeneticProgramming.MIT Press(1994)199-219

