
The Scalability of Evolved On Line Bin Packing Heuristics

E. K. Burke, M. R. Hyde, G. Kendall,J. R. Woodward

Abstract— The on line bin packing problem concerns the
packing of pieces into the least number of bins possible, as
the piecesarri ve in a sequential fashion. In previous work, we
usedgeneticprogramming to evolve heuristics for this problem,
which beat the human designed‘best fit’ algorithm. Here we
examine the performance of the evolved heuristics on larger
instancesof the problem, which contain many more piecesthan
the problem instancesused in training . In previous work, we
concludedthat we could confidently apply our heuristics to new
instancesof the sameclassof problem. Now we can make the
additional claim that we can confidently apply our heuristics
to problemsof much larger size,not only without deterioration
of solution quality, but also within a constant factor of the
performance obtained by ‘best fit’.

Inter estingly, our evolved heuristics respondto the number
of piecesin a problem instance although they have no explicit
accessto that information. We also comment on the important
point that, when solutions are explicitly constructed for single
problem instances,the sizeof the search spaceexplodes.How-
ever, when working in the spaceof algorithmic heuristics, the
distrib ution of functions representedin the search spacereaches
some limiting distrib ution and therefore the combinatorial
explosion can be controlled.

I . INTRODUCTION

Recentyearshave seenthe emergenceof a more general
typeof searchalgorithm,hyper-heuristics[1], [2], wherethe
searchspaceis a spaceof heuristics,rather than the space
of solutionsthemselves.This leadsto moregeneralsolution
methods,and we wish to examine the scalability of these
solutionsin this paper. Hyper-heuristicsareheuristicswhich
choose “betweena set of low-level heuristics,using some
learning mechanism”[3]. i.e. a hyper-heuristic managesa
fixed setof heuristics.

One of the motivationsof hyper-heuristics[1], [2] is to
“raise the level of generalityat which optimisationsystems
canoperate”,providing a searchmethodologywhich will de-
liver solutionswhich are“good-enoughsoon-enoughcheap-
enough” [2]. While this ‘of f thepeg’ approachis unlikely to
producesolutionswhich areasgoodat thoseproducedby a
‘tailormade’problemspecificmethod,thegoal is to underpin
decisionsupportsystemswhich canbe appliedto a broader
rangeof problemsthan is possibletoday.

Hyper-heuristicscanalsobe usedto producenew heuris-
tics,which arenot very dependentupontheproblemat hand.
Previous work [4], [5] demonstratedthat this is achievable.
In this paper, we show that the heuristicsproducedcan be

E. K. Burke, M. R. Hyde, G. Kendall, J. R. Woodward are with
the AutomatedScheduling,Optimisation and Planning (ASAP) research
group School of Computer Science and Information Technology, Uni-
versity of Nottingham, Jubilee Campus, Nottingham NG8 2BB, UK.
(phone: +44 (0)115 951 4206; fax: +44 (0)115 951 4249; email:
(ekb,gxk,mvh,jrw)@cs.nott.ac.uk).

applied to larger problemsthan thoseused in the training
phase,without lossof performance.

The approachdescribedin this paperis differentto many
otherevolutionaryapproachesto solvingcombinatorialprob-
lems. Typically, with conventionalapproachesa problemis
solved directly (see[6]). For example, if we were solving
an instanceof the Travelling SalesmanProblem,a candidate
solutionwould consistof a list of the cities to bevisitedand
the searchmethod(e.g. geneticalgorithms)would directly
manipulatea representationof the route (i.e. the route is
encodedin the genotype).

Our goal, in this paper, is to presenta system which
canautomaticallygenerateheuristicswhich canbe usedfor
a class of problems.The differencebetweenconventional
methodsand evolving heuristicscan be summarizedby the
proverb,

“Give a mana fish and he will eat for a day, teach a man
to fish and he will eat for a lifetime”.

One of the major advantagesof producing a general
heuristic is that it can be applied to additional problems
without the needfor further parametertuning. Secondly, if
we want to tacklea really large instanceof a problem,then
if we wereusingthe direct approachwe would have to deal
with largeencodingsof thepotentialsolutionsandthesearch
spacewould explode.However, if we aresearchingthespace
of heuristics,thenthesearchspacewill not explodeaswe are
dealingwith generalsolution methods.It is the aim of this
paperto considerhow the behaviour of evolved heuristics
scalesto larger problems.

I I . RELATED WORK

We will briefly discusssomeexamplesof previoushyper-
heuristicmethodsthat have appearedin the literature.Two
hyper-heuristicmethodshave beentestedon the onedimen-
sional bin-packingproblem,a learningclassifiersystem[7]
anda geneticalgorithm[8]. Simulatedannealingis usedasa
hyper-heuristicin [9] for theshipperrationalisationproblem.
A casebasedreasoninghyper-heuristic is usedin [10] for
both exam timetabling and university course timetabling.
Threenew hyper-heuristicarchitecturesarepresentedin [11],
which treat mutationaland hill climbing low-level heuris-
tics separately. A graph basedhyper-heuristic is presented
in [12]. In [13], a tabu searchhyper-heuristicis presentedand
evaluatedupona nurseschedulingproblemanda university
course timetabling problem. A choice function has also
beenemployed as a hyper-heuristic, to rank the low-level
heuristicsand choosethe best one [14], and a distributed
choice function hyper-heuristic is presentedin [15]. The
choice function considersthe recent effectivenessof each

heuristicand eachpair of heuristics,and also considersthe
time sincethe heuristicwas last called.

The bin packing problem is NP-Hard [16], so a
polynomial-time exact algorithm is unlikely to be found
for the generalcase[17]. Several different heuristicshave
been developed in the literature. A number of examples
of heuristicsused in the on line bin packing problem are
describedbelow:
BestFit [18]. Putsthe piecein the fullest bin that hasroom
for it. Opensa new bin if thepiecedoesnot fit in any existing
bin.
Worst Fit [17]. Puts the piece in the emptiestbin that has
room for it. Opensa new bin if the piecedoesnot fit in any
existing bin.
AlmostWorst Fit [17]. Putsthe piecein the secondemptiest
bin if that bin hasroom for it. Opensa new bin if the piece
doesnot fit in any openbin.
Next Fit [19]. Putsthe piecein the right-mostbin andopens
a new bin if thereis not enoughroom for it.
First Fit [19]. Puts the piece in the left-most bin that has
roomfor it andopensa new bin if it doesnot fit in any open
bin.

A. GP applied to problemsof different size

A numberof problemsof differentsizehave beenstudied
in the GP literature, for example the even parity problem
and the lawn mower problem [20], [21]. Typically, as the
size of the problem grows, the size of the solution grows
and, correspondingly, the time taken to find the solution
grows. Another example of a scalable problem includes
imagerecognitionproblems.For example,we couldconsider
the problemof identifying a certainimageon a certainfixed
sizedimagearray(e.g.100by 100 pixels),but this could be
generalisedto theproblemof identifying thecertainimageon
an � by � array. In factmany problemscanbeconsideredto
comefrom a moregeneralincarnation,wherethe dimension
could be size,or someother parameterwhich describesthe
problemclass.

In terms of representation,standardGP has difficulties
with problemsof different size. Teller [22] statesthat the
languageusedby standardGP is not powerful enoughto ex-
pressmany algorithms.In particular, ‘There is no mechanism
for variablelengthstringsto beshownto thefunctionandno
wayfor thefunctionto iteratean arbitrary numberof times’.
A moreexpressiverepresentationis neededif weareto tackle
generalisationsof variable size problems. There may be
otherbenefitstoo by looking at small instancesof problems
before looking at larger instances(i.e. the small problems
may containenoughinformationto generalisefrom, without
consideringlarger instancesof the problem, hence much
processortime canbe saved).

In terms of standardGP, two instancesof problemsof
different sizesare consideredas different problemsi.e. we
may evolve a solution to the even-3-parityproblem or the
even-4-parityproblem.In the former case,we would have 3
variablesin the terminal set, and in the latter case4. This
is interestingas many people would considertheseto be

instancesof thesameproblemasthenatureof theunderlying
problemis the samein bothcases(i.e. is the numberof true
bits even?).In the arenaof GP, problemvariablesare often
representedexplicitly in thesolution,a betterapproachmight
be to have the ability to addressa generalvariable(e.g. the�����

bit).
Miller et. al. [23] evolve digital designsof arithmetic

functions (addition and multiplication) and argue that ‘by
studying the evolved designof gradually increasingscale,
one might be able to discern new, efficient, and general
principles of design’. They pose the central question in
the paper, ‘Can we by evolving a seriesof subsystemsof
increasing size, extract the general principle and hence
discovernew principles?’While weagreewith thisapproach,
it may be possiblehowever, to evolve a generalalgorithm
ratherthanhaving a humanstudy the evolved designs.

Brave [24] evolvessolutionsto a planningproblemusing
automatically defined functions with a restricted form of
recursion.He shows that the effort requiredto find solutions
with automaticallydefinedfunctionsand recursionremains
constantwith the problem size. Basic GP scalesexponen-
tially and automaticallydefined functions scale linearly at
best,which is consistentwith Koza’s [21] resultsfor basicGP
andGP+automaticallydefinedfunctionson the lawn mower
problem.

We may not needor be interestedin a generalsolutionto
a problem,we may simply want a solution to a fixed size
instanceof the problem.For examplewe may be interested
in the solution of the lawn mower problem for a lawn of
size 10000 by 10000, or the even-���
	 -parity problem. In
thesecasesit would be easierto evolve a generalsolution
to the problems,rather than evolving a specific solution.
Also tackling smallerinstancesof the problemmakessense
(i.e. it is the sameunderlying problem and we can learn
the solutionto theunderlyingproblembeforetackling larger
instances).Yu [25] (page361, section6.2) includesin her
testsetall casesof even-2-parityandeven-3-parityproblems
(i.e. �
����
������� testcases),andthis is enoughto evolve a
generalsolution to the even parity problem.

B. A fundamentaldifferencein the search spaces

There is an important difference between the search
spaceassociatedwith direct methods,and the searchspace
associatedwith evolving heuristics.With direct methods,
as we tackle larger problems, the size of the genotype
will increasein direct correspondencewith the size of the
probleminstance.For example,tacklingan � -city instanceof
the travelling salesmanproblem,will involve a searchspace
containingcandidateindividuals of length � , leading to a
combinatorialexplosion.

If we are evolving a heuristicfor the problem,as we are
evolving a generalalgorithm,thesizeof theheuristicwill not
dependon � (thesizeof theproblem).Hencein this case,we
could evolve a heuristicfor a small or large instanceof the
problem,but the numberof evaluationswill be independent
of the problemsize.

TABLE I

INITIALISATION PARAMETERS OF EACH GP RUN

Populationsize 1024
Maximum generations 50
Crossover probability 0.9
Reproductionprobability 0.1
Treeinitialisation method Rampedhalf-and-half
Selectionmethod Tournamentselection,size7
Functionset �������������
Terminalset F, E

Also, anotherfundamentaldifferencebetweenthesesearch
spacesis pointedout by Langdon[26]. Langdoninvestigates
the limiting frequency with which functionsarerepresented
in varioussearchspacesconstructedfor GP. He is concerned
with the limiting distribution of functions.In somecaseshe
proves that the limiting distribution of functions does not
changeabove somethreshold,provides empirical evidence
in othercases,andmakesconjecturesfor further cases.

I I I . THE ON L INE BIN PACKING PROBLEM

Bin packingproblemsconsistof takinga numberof pieces
andpackingtheminto a numberof bins.The aim is to pack
the piecesinto as few bins as possible.The most popular
versionof the problemis the off line version,wherea setof
piecesis known in advance,andthis setcanbe packed into
the bins in any order. We tackle the on line version,where
a sequenceof piecesis to be packed. Not only must the
sequenceof piecesbepackedin theorderthey arepresented,
but we do not know the sequencebeforehand(i.e. we do
not have the ability to look ahead).In this paper, bins are
all of the samesize (150 units), and piecesizesare drawn
uniformly from a distribution of size20 to 100 units.

IV. EXPERIMENTS

In this section we explain how we apply GP to our
problem.We describehow the GP systemis set up (this is
fairly standard),how thetreesproducedby GPareappliedto
instancesof the problem,and how the fitnessis calculated
for multiple problem instances.The parametersettingsare
presentedin table I.

A. ParameterSettings

We used Sean Luke’s Java-based Evolu-
tionary Computation Research System (

������� � ! �"#"#"%$'&�()$ *
+�,-$'.)/�,0 !.)&�13254� �
687:9 .)& � () !.)& 9
) to implement

our GP system. The contribution of this paper is not a
new innovation regardingGP, but an investigationinto the
scalability of the evolved heuristicsapplied to the on line
bin packingproblem.

In a single run, a heuristic is evolved on 20 problem
instancesconsistingof 100, 250 or 500 pieces.We evolve
30 heuristics(i.e. 30 runs) for eachproblemsize, thus we
evolve 90 heuristicsall together. These90 heuristicsarethen
applied to 20 independentproblem instancesconsistingof
100000pieceseach.

The quantity we are trying to minimize is the number
of bins used to legally contain the pieces.There are two

componentsto ourfitnessfunction.A naturalmeasureis used
to assigna fitnessequalto the numberof bins, to the given
heuristic. This seeminglyobvious fitnessfunction is not a
particularly good evolutionary driver on its own, as many
heuristicscanusethesamenumberof bins,andsothereis lit-
tle evolutionarypressureto encouragefurther improvement.
Hence,we needa way of differentiatingbetweenheuristics
which producepackingconfigurationsconsistingof thesame
total numberof bins. The following fitnessfunction (shown
in equation1), doesjust this, where:� = numberof bins used, ;=< = fullnessof bin i, and > =
bin capacity.

; �?� � .)()(�@�BA
C<EDGFIH ; < >�J �� (1)

We cannow combinethesetwo fitnessfunctions.We use
the total numberof bins as our fitnessfunction, and if two
heuristicsobtain the samevalue, then we use the fitness
functiondescribedin equation1 to differentiatebetweentwo
heuristicswhich usethe samenumberof bins.

B. Applying the heuristic

An evolved heuristic is usedto choosein which bin to
placethe currentpieceunderconsideration,by scoringeach
bin and placing the piece in the bin with the maximum
score.An evolved algorithm is appliedto the currentsetof
bins. This setalways includesan empty bin. The algorithm
always has the choice of putting the current piece in the
empty bin. If a piece is placed in the empty bin, a new
empty bin is added to the set, maintaining the condition
that there is always an empty bin available. The current
pieceis placedin thebin which receivesthemaximumscore
accordingto the evolved heuristic.A heuristic can placea
piecein a bin causingthe size of its contentsto exceedits
capacity. We do allow this to occurin theevolution; however
such heuristics receive a large penalty fitness. Heuristics
which produceillegal solutionstypically die out in the first
coupleof generations,though,of course,there is always a
small probability that illegal heuristicswill form in mature
populations.

C. Noteon the terminal set

In our original work [4], we useda terminalsetconsisting
of the sizeof the currentpiece, K , the capacityof the bins,> , andthefullnessof thecurrentbin beingconsideredby the
heuristic, ; , i.e. KILM>NL�; . However, uponreflection,we came
upon the following improvement.The fullnessandcapacity
of a bin canbe combinedH >OAP;�J to give the emptiness,Q ,
of a bin, which is thespaceremainingin thebin. Whenthere
areno otherpiecesin thebin, QR��> . Thequantity H QSATK�J
would be the spaceremainingin the bin if the currentpiece
wereplacedin the bin. In a sense,the fullnessandcapacity
areirrelevant;it is only theremainingspacein thebin Q , and
the sizeof the currentpiecewhich arenecessaryto describe
thestateof a givenbin. While this setof terminalsis slightly
lessexpressive, it is still adequateto expresssolutionsto the
problem.Also, aswe have reducedthe numberof variables

Fig. 1. The horizontal axis shows the number of piecespacked. The
vertical axis shows the numberof bins that a heuristicbeats‘best fit’ by.
This is donefor heuristicsevolved on probleminstancesof threedifferent
sizes(containing100, 250 or 500 pieces).This horizontalscalegoesup to
100000pieces,which is muchlarger thanthenumberof piecescontainedin
theprobleminstancesusedin the trainingphase.Theseresultsareaveraged
over 30 heuristicsover 20 probleminstances.

from 3 to 2, this allows us to plot graphsof the heuristics’
performance,which arepresentedlater.

D. Noteon protecteddivide

Often in GP, division is includedin the functionsetwhich
can causeproblemsif the denominatoris zero. Protected
division is usedwhere 1 is returnedif the denominatoris
zero. This causesa slight problemwith this applicationas
when H QUAVKGJ is zero (i.e. the piece fits perfectly) only
a small value is returned and the piece is not likely to
be placed in that bin. To avoid this problem we set the
denominatorto 0.5. Hence, our protecteddivide function
returnsa number larger than if the denominatorwas 1 or
greater. In other words,using the standardprotecteddivide
function,asthedenominatorgetssmaller, theexpressiongets
larger, except when the denominatorhits zero and a small
valueis returned.Hence,thismethodof protectingdivision is
a little unnatural.We decidedto returndoublethenumerator
when the denominatorhits zero.

V. RESULTS

A. Performanceoutsidetraining range

Figure1 shows how heuristicsevolvedon small problems
(either 100, 250 or 500 pieces)perform on much larger
problems.The horizontal axis is the number of piecesin
the problem instance.The vertical axis is the number of
bins that the evolved heuristic beatsthe ‘best fit’ heuristic
by (e.g. at 100000pieces,heuristicsevolved on 500 pieces
beat ‘best fit’ by about 600 pieces).There are a number
of observations which can be made.Firstly, the heuristics
do scale,and thereis not somecatastrophicdeteriorationin
performanceon larger problems.Secondly, we can predict
what the number of bins will be relative to the ‘best fit’
heuristic. Thirdly, the larger the number of pieces in the
training set the heuristicwas evolved on, the more it beats
‘best fit’ by.

Fig. 2. Thehorizontalaxisshows thenumberof piecespacked.Thevertical
axisshows thenumberof binsa heuristicbeats‘bestfit’ by. This is donefor
heuristicsevolved on probleminstancesof threedifferent sizes(containing
100, 250 or 500 pieces).Note that the horizontalscalecovers the size of
the training probleminstances.

B. Statistics
Table I H100 H250 H500

100 0.427768358 0.298749035 0.140986023
1000 0.406790534 0.010006408 0.000350265

10000 0.454063071 2.57785E-07 9.65298E-12
100000 0.271828318 1.37522E-25 2.78293E-32

Table I shows statisticsfor the resultsproduced.The 30
heuristicsevolved on eachprobleminstancesize,are tested
on 20 independentproblems,andthenumberof bins usedat
100,1000,10000,100000piecesarerecorded(i.e. 20 values
for each).We thencompareeachof these20 valueswith 20
valuesobtainedwith the‘bestfit’ heuristic.Columns1, 2 and
3 show the valuesfor the threetraining setsizes.Rows 1 to
4 show the valuesfor the numberof piecesin the validation
probleminstances.We have recordedthe valuesfor the one
tailed studentt-test,which show the probability that the two
distributionscomefrom the samedistribution. Generally, as
thenumberof piecesin theinstanceincreases,ourconfidence
thatthetwo distributionsaredifferentgrows.Also, asthesize
of the training instancesgrows, our confidencethat the two
distributionsdiffer increases.

C. Performanceover training range

Figure2 hasthesameaxesasfigure1, but we arezooming
into the region of the graph which containsthe resultsfor
problemswith piecesup to 500 (i.e. the maximumrangeon
which we trained).We canmake the following observation.
For heuristicstrainedon problemsconsistingof 100 pieces,
‘best fit’ beatsthe heuristicup to around50 pieces(i.e. the
line is below the x axis). Past this point, the line recovers
from its poorinitial start,andremainspositive.For heuristics
trainedon problemsconsistingof 250 pieces,‘best fit’ out
performsthe heuristicsup to around125 pieces,but after
this point the heuristicsstartsto packpiecesmoreefficiently
and at the 250 piece stagethe heuristicsbeat ‘best fit’. A
similar patternof behaviour is observed with the heuristics
trained with problemsconsistingof 500 pieces.Until the
200 piecemark, ‘best fit’ startsby packingmoreefficiently,

Fig. 3. The horizontalaxes show the emptinessof a bin varying from 0
to 150,andthe currentpiecesizevarying from 0 to 70. The vertical axis is
the value returnedby the ‘best fit’ heuristic.The pieceis placedin the bin
which correspondsto the maximumvalue.

then the heuristicsovertake it. We can make the qualitative
observation that if a heuristic is trained on a sequenceof
pieces,typically for thefirst half of a sequence,‘bestfit’ will
out perform it, but in the secondhalf the heuristiccatches
up andovertakes’ ‘best fit’.

It is perhapsworth drawing an analogy here between
theseheuristicsandcompetitorsin a runningrace.Often the
strategy employedby athletesis to hold backinitially andin
the final stagesaccelerateandpassthe front runners.Often
the peoplewho leadfor mostof the racedo not win andare
usedby the eventualwinnersto “set the pace”.

D. BestFit

In this subsection,we explain the ‘best fit’ algorithm,
examineagraphof ‘bestfit’ (figure3), andexplain intuitively
why it is a good heuristic.The ‘best fit’ algorithm fits the
current piece under consideration,into the smallestgap in
a bin into which it will fit. It the piecedoesnot fit into a
bin, then a new bin is openedand the pieceis placedin it.
This heuristichasthe propertythat it never opensa new bin
unnecessarily. If the piececango into an existing bin, then
‘best fit’ will placeit without openinga new bin. ‘Best fit’
then,in somerespectsis a very efficient strategy.

In oursetup, theheuristic(humanor evolved)is appliedto
eachbin andthe highestscoringbin is the bin in which we
place the piece.This function is expressedalgorithmically
as > H QWA@KGJ in this framework. This function is plotted
in figure 3. The vertical scaleis essentiallyirrelevant aswe
take themaximumvalueof thefunction,somultiplying by a
factorwill make no difference.Thespaceis divided into two
by a vertical plane.Notice that when QWAXKZY[� , the plot
is negative (indicating an illegal solution). When Q@A\K is
small, the larger the value‘best fit’ assignsto that bin-piece
combination.When the heuristic is presentedwith a set of� bins anda currentpieceto be placedin the bins,eachbin
will give rise to a point on the plot, andwe choosethepoint
which correspondsto the largestfunction value,and this is
the bin in which the piece is placed.It is worth taking a

Fig. 4. This is anevolved heuristic.Note theaxesarethesameasin figure
3, but is rotatedslightly. Notice that this is very similar to the plot of the
‘best fit’ (figure 3), but differs significantly in onecornerof the plot.

minute to examinethe plot as this will be comparedto our
bestevolved heuristic.

E. BestEvolvedHeuristic

In figure4 we plot thefunctionvaluesof ourbestobserved
heuristic.We now outline this plot. It is rotatedrelative to
the ‘best fit’ plot (figure 3), but very similar featurescan
be seen.A vertical planedividesthe spaceinto two. Behind
the plane,all of the function valuesare negative. In front
of the vertical planethe functiondiminishes,very muchlike
the ‘best fit’ heuristic,except in the region whenpiecesize
is small and the emptinessis large, and the function value
curls upwards. There is also an interestingridge running
approximatelyparallelto theverticalplane.We do not know
yet if this ridge is of significanceor not.

This function is very similar to the function which ex-
presses‘best fit’, except for the casewhen a pieceis small
anda bin is empty. It will prefer to put small piecesin very
emptybins,andin a senseis doing somethingsimilar to the
“worst fit” heuristic i.e. it is placing a small piece into a
bin with a large gap.This may seemcounterintuitive when
comparedto theratherintuitive ‘bestfit’ approach.This may
be explained by the following example.We may have the
situationwherea gap of size 30 exists, and a pieceof size
20 arrives. Best fit may understandablyplace the piece in
this bin. However, if we know that we still have many more
piecesto fit, thenit is worth takingthe lessmyopicapproach
andwaiting for a piecewhich is a betterfit (e.g.betweensize
25 and30), andplacesthe pieceof size20 into a freshbin.

As this algorithmtendsto put small piecesin very empty
bins, it probablyhasa larger distribution of gapsin which
to fit future pieces.‘Best fit’ is rathergreedyin this respect.
A better long term approachwould be to build up a set of
gaps which can best accommodateincoming pieces,with
the expectationthatpieceswhich will fit the gapswill arrive
eventually. Our algorithm is essentiallyanticipating that a
betterfitting piecewill comealong beforethe last piecein
the sequencearrives.

As we showed in previous work [5], we producedheuris-

ticswhichweretunedto theproblemclassthey wereexposed
to in the training phasei.e. heuristicsevolved on problems
consistingof piecesof a given distribution performedbet-
ter on problemswhich consistedof pieceswith the same
distribution of sizes.ThusGP is reactingto the distribution
of piecesin the problem and producinga function which
containsa predictive quality. We can now also claim GP is
reactingto the numberof piecesin the problem.

VI . DISCUSSION

If we were to tackle this problemin a theoreticalframe-
work, one approachwould be to look at the expectationof
thenumberof binsgiventheprobabilitydistribution over the
piecessizesthat we are likely to pack. We are effectively
planning under uncertaintyas we do not know what the
sequencesof piecesarebeforehand.Thuswe couldonly give
probabilisticresponsesto thequestionasto the bin in which
we shouldplacethecurrentpiece.In our currentframework,
we place the piece in the bin which scores maximally
accordingto the heuristic.Evolved heuristicswhich behave
legally (i.e. do not over fill a bin), will returna setof positive
values for the potential bins. Thus (after normalizing) we
couldinterprettheoutputof theheuristicasaprobability, and
we arechoosingthe bin which hasthemaximumprobability
associatedwith it.

Thus, currently we are just placing a piece in a bin at
eachstage.If we interpret the value of the heuristic as a
probability, thenwe will also be able to make claimsabout
how certainwe are about the action of placing the current
piece in the selectedbin. While this may not be of direct
interestin the abstractversionof the bin packingproblem,
it may well be of interestin certainreal world applications.

It is clear from figure 1 that thereexist somesoft thresh-
oldsregardingthesizeof thetraininginstances.Firstly, there
appearsto be a lower thresholdbelow which we cannot
inducea heuristicalgorithmto beat‘best fit’. This is around
100 pieces, as is evident as the trace is just above the
horizontal axis. In this case,we can learn a bin packing
strategy which just beats‘best fit’. Thus,for the distribution
of piecesizesusedin this paperandthe bin capacitystated,
thereexists a lower thresholdat around100 pieces.

Secondly, aswe increasethenumberof piecesin thetrain-
ing datato 250 and500,we seean increasein performance
in the evolved heuristic.This increasein performancewill
increasewith the numberof piecesin the training sets,but
as the numberof piecesincreaseswe will start to approach
the theoreticaloptimum (i.e. the sum of the sizes of all
of the piecesdivided by the bin capacity)and we will see
little further improvementin performanceaswe increasethe
numberof pieces.

Theon line bin packingproblemhasa strict mathematical
definition,wherewearenot told in advancehow many pieces
thereare in a particularprobleminstance.In somerespects
this detail may appearnot to be important.However, aswe
seein the resultspresentedin this paper, if we arenearthe
start of the sequenceof piecesto be packed, then we can
pack piecesmore loosely as potentially betterfitting pieces

mayexist later in the sequence.If we aretowardsthe endof
the sequencethen,this signalsthat we needto startpacking
piecesmoretightly.

The evolved heuristicreturnsa valuewhenit is presented
with a piecesize K andbins with emptinessQ . It doesnot
havememory[27], andit canonly examineonebin at a time.
Hence,the value returnedby the algorithmsis independent
of the emptinessvaluesof the other bins, and independent
of what position the piece is in the sequence(i.e. it could
be the first or last piecein the sequence).However, the GP
systemseemsto have learntsomethingaboutthestateof the
bin packing system(i.e. as seenin figure 2), the heuristic
seemsto know that the last piecesare approachingwithout
having explicit accessto stateinformation (e.g. the current
pieceis the last piece).

How can our heuristic appearto do this without having
explicit accessto state information. When a set of bins
is evaluatedfor their suitability for the current piece, this
correspondsto a set of points on the surfaceof the plot in
figure 4. As the numberof bins increases,then the number
of points on the surface of the plot will increase.As the
numberof bins increases,then the “competition” between
them increases(i.e. a bin which may have won in the past
may not win now astherearemoresuitablegapsavailable).
Hence,in somerespectsthereis at leasta memoryeffect.

The main motivation of the approachpresentedis to
evolve an algorithm,which canbe reusedon future problem
instances.However, in view of theseresults,an interesting
approachto tacklinga largesingleinstanceof a problemmay
be to evolve an algorithm on a numberof small problem
instances(from the sameproblem class)and then use the
resulting algorithm to tackle the larger single instanceof
the problem.For example,given that we hada bin packing
problemwith a large numberof piecesto pack, in the long
term, it maybebetterto evolve a heuristicon problemswith
a small numberof piecesandapply the resultingheuristicto
the larger problem.

VI I . FURTHER WORK

In earlier work [4], we allowed our heuristic to examine
eachbin in turn, and it placedthe currentpiecein the first
bin with a positive valueaccordingto theevolving heuristic.
This allowedus to evolve heuristicswhoseperformancewas
comparablewith the ‘first fit’ heuristic[4]. In further work,
we allowed the heuristic to scanall of the bins and place
the piecein the bin which receives the maximumscore[5].
This allowedus to evolve heuristicswhoseperformancewas
comparablewith ‘best fit’. However, this secondapproach
(which we are also using in this paper),doesnot allow us
to expressthe first fit algorithm or the types of algorithm
foundin thefirst case.Similarly, thefirst positive scoringbin
approachdoesnot allow us to expressthe ‘bestfit’ heuristic.
It would beinterestingto constructa searchspacewhich was
capableof expressing‘first fit’ type heuristicsand ‘best fit’
type heuristics.

Typically, in real world situationsinvolving the bin pack-
ing problem,the numberof piecesfor a particularinstance

of theproblemmaynot beknown in advance.However, over
time aswe seemoreinstancesof the problem,a distribution
over the numberof pieceswill begin to emerge (i.e. we are
samplingthis distribution). This will provide an additional
sourceof information that GP will be able to make useof,
which we expanduponbelow.

If we know how many pieces there are to be packed,
we can use this information to improve our bin packing
heuristics.An outlinefor a threestageapproachis asfollows.
In the first stage,initial piecesare packed (this would be
around100pieces,asobservedearlierin the paper, which is
just enoughto inducebin packingbehaviour). In this stage,
we attempt to build up the contentsof the bins. We then
enterthesecondstagewhereadditionalpiecesarrive andare
packed,essentiallyundertheassumptionthat therearemany
morepiecesto arrive (i.e. we do not have to employ a greedy
algorithm,but canopenfreshbins which we expectwill get
better filled in the long term, rather than forcing in pieces
which fit but leave a gap). In effect, we are maintaininga
good distribution of gaps in the bins in which to receive
future pieces.In the final stage,we are nearingthe end of
the sequenceso it makessensenot to opennew bin if it can
beavoided.It would be interestingto seeif we couldevolve
analgorithmwhich learnsto switchbehaviour, dependingon
whetherthe currentpiece is at the start of the sequenceor
nearthe endof the sequence.

In this work, and previous work[4], we have generated
pieces using uniform probability distributions. ‘Best fit’
performswell when the piece size distribution is uniform,
however this may not be the case with a very rugged
distribution of pieces.One of the strengthsof using GP to
evolve heuristics is that we can now tackle more general
problemclasseswheretheprobabilitydistribution is far from
uniform.

In this work, thefitnessfunctionis basedon thenumberof
bins.It wouldbeinterestingto useamulti objectiveapproach
to plot the Paretofront of fastandnearoptimal bin packing
algorithmsallowing the investigationof the tradeoff i.e. one
axis is the numberof bins a heuristicuses,the secondaxis
is the speedat which it executes.We make the conjecture
that the Paretofront will be a convex hull.

Also, if we wereparticularly interestedin speed,thenthe
type of wrapperusedto apply the GP heuristic to the bin
packingproblemwill becomemoreimportant.For example,
if we useda first fit type wrapper(wherethe pieceis placed
in the first bin which receives a positive score), this will
typically run fasterthana ‘bestfit’ typewrapper(whereall of
the bins areexamined).A searchspacewhich includesboth
of thesetypesof wrappers,would be of particularinterestin
this case.

In our current implementation,the evolved heuristic is
applied to all of the bins. Over time, as more piecesare
placedin bins, andmorebins areopened,the heuristicwill
take longer and longer to apply. There are two things we
can do to improve the run time of the algorithm. Firstly,
full bins can be removed from the computation(a bin is

consideredfull if the emptinessis less that the size of the
smallestpiecein thedistribution).Secondly, in theportionof
thegraphwe areinterestedin (seefigure4), theprofile of the
surfaceis approximatelyunimodal (i.e. hasa single trough
runningthroughthe centre).If we canapproximatethis with
a unimodalfunction,thenthebinscanbeorderedandthebin
which scoresthe maximumvalueaccordingto the heuristic
canbefoundby bisectionratherthanconsideringeachof the
bins in turn. Of course,if we extend the wrapperwe apply
to the heuristics,it is possiblethat GP could discover this.

We are currently investigatingthe use of GP to evolve
heuristicsfor the 2D cutting and packingproblem.We are
alsoextendingour implementationof theon line bin packing
problem, to the off line bin packing problem. In these
relatedproblemdomains,we expect similar results(e.g. in
termsof humancompetitivenessandrobustperformancewith
respectto scalability).It is our intentionto developprinciples
which apply acrossproblem types, rather than developing
specialisedtechniqueswhich canonly beappliedto a narrow
category of problem.

VI I I . SUMMARY AND CONCLUSIONS

We have evolved heuristicsfor the on line bin packing
problem.We aregiven a sequenceof pieceswhich mustbe
packedin theorderthey arrive.A heuristicis appliedto each
of the bins and the currentpieceis placedin the bin which
receives the maximum scoreaccordingto the heuristic. In
earlier work [4] we producedheuristicscomparableto the
human designed‘best fit’ heuristic. In the current paper,
we examine how the evolved heuristicsscale to problem
instanceswhich containmany more piecesthan were con-
tained in the problem instancesusedin the training phase.
In general,we showed that the evolved heuristicsdo scale
as one might expect, without deteriorationin performance
and with a constantmultiplicative improvement over the
performanceobtainedusing ‘best fit’.

We alsodemonstratedaninterestingmemoryeffect.While
heuristicsdo not have accessto the number of piecesin
the sequence,or what position the current piece is in the
sequence,the heuristicsseemto learnthis anduseit to their
advantage.While the numberof piecesis not specifiedin
the generalmanifestationof the bin packing problem, this
informationwill beavailablein many industrialapplications,
andthereforeit is worth giving GP accessto this in orderto
evolve moreeffective heuristics.

Finally, we pointedout theimportanceof evolving general
heuristics,ratherthansolutionsto specificprobleminstances.
We alsohighlightedthefact that thesearchspacesassociated
with direct methodsandmethodsinvolving the evolution of
heuristics,arefundamentallydifferentandthis differencecan
be exploited to avoid (or at least reduce)the effects of the
combinatorialexplosion.

Therearesomeinterestingandhealthyconclusionswhich
canbe drawn from the observationsmadein this paper.] If a heuristicis trainedon probleminstancescontaining� pieces,it canperformbetterthan‘bestfit’ on problem

instanceswhich containmore than � pieces.

] It will performworsethan‘best fit’ on problemswhich
containpieceslessthanapproximately� � pieces] The larger the numberof piecesin the instancesin the
training set, the betterthe scalingperformance] Thereexists a lower threshold(just below 100 pieces).
below which it was not possibleto evolve behaviour
competitivewith ‘bestfit’. This thresholdwill in general
vary accordingto the distribution of piecesand their
sizesrelative to the bin capacity.] As probleminstanceswith morepiecesareusedin the
training phase,the performanceof the evolved heuris-
tic increases.Therewill exist an asymptoticthreshold
above which little gain in performancecanbe seen.

REFERENCES

[1] Ross,P.: Hyper-heuristics. In Burke, E.K., Kendall,G., eds.:Search
Methodologies:Introductory Tutorials in Optimization and Decision
SupportTechniques.Springer, Boston(2005)529–556

[2] Burke, E., Kendall,G., Newall, J., Hart, E., Ross,P., Schulenburg, S.:
Hyper-heuristics:An emerging directionin modernsearchtechnology.
In Glover, F., Kochenberger, G., eds.:Handbookof Meta-heuristics.
Kluwer (2003)457–474

[3] Soubeiga,E.: Developmentand Application of Hyperheuristicsto
PersonnelScheduling.PhD thesis,Univesity of Nottingham,School
of ComputerScience(2003)

[4] Burke,E.K., Hyde,M.R., Kendall,G.: Evolving bin packingheuristics
with geneticprogramming.In Runarsson,T.P., Beyer, H.G.,Burke, E.,
Merelo-Guervos, J.J.,Whitley, L.D., Yao, X., eds.:Parallel Problem
Solving from Nature- PPSNIX SpringerLectureNotesin Computer
Science.Volume4193of LNCS., Reykjavik, Iceland,Springer-Verlag
(2006)860–869

[5] Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.R.: Automatic
heuristicgenerationwith geneticprogramming:Evolving a jack-of-all-
tradesor amasterof one.In Lipson,H., Thierens,D., eds.:Geneticand
Evolutionary ComputationConference,GECCO 2007, Proceedings,
London,UK, July 7-11, 2007,ACM (2007)

[6] Sastry, K., Kendall,G., Goldberg, D.: Geneticalgorithms. In Burke,
E.K., Kendall,G., eds.:SearchMethodologies:IntroductoryTutorials
in Optimizationand DecisionSupportTechniques.Springer, Boston
(2005)97–125

[7] Ross, P., Schulenburg, S., Maŕın-Blázquez, J., Hart, E.: Hyper-
heuristics:Learningto combinesimpleheuristicsin bin-packingprob-
lems. In Langdon,W.B., Cant́u-Paz, E., Mathias,K., Roy, R., Davis,
D., Poli, R., Balakrishnan,K., Honavar, V., Rudolph,G., Wegener, J.,
Bull, L., Potter, M.A., Schultz,A.C., Miller, J.F., Burke, E., Jonoska,
N., eds.:GECCO2002:Proceedingsof the GeneticandEvolutionary
ComputationConference,New York, Morgan KaufmannPublishers
(2002)942–948

[8] Ross,P., Marin-Blazquez,J.G., Schulenburg, S., Hart, E.: Learning
a procedurethat can solve hard bin-packing problems:A new ga-
basedapproachto hyperheurstics.In: Proceedingsof the Geneticand
EvolutionaryComputationConference2003 (GECCO’03), Chicago,
Illinois (2003)1295–1306

[9] Dowsland, K., Soubeiga,E., Burke, E.K.: A simulatedannealing
hyper-heuristic for determiningshippersizes. EuropeanJournalof
OperationalResearch179(3) (2007)759–774

[10] Burke, E.K., Petrovic, S., Qu, R.: Case-basedheuristicselectionfor
timetablingproblems.Journalof Scheduling9(2) (2006)115–132

[11] Ozcan,E., Bilgin, B., Korkmaz,E.E.: Hill climbersand mutational
heuristicsin hyperheuristics.In Runarsson,T., Beyer, H.G., Burke,
E., J.Merelo-Guervos, J., Whitley, D., Yao, X., eds.:LectureNotesin
ComputerScience,Proceedingsof the9th InternationalConferenceon
Parallel ProblemSolving from Nature (PPSN2006). Volume 4193.,
Reykjavik, Iceland(2006)202–211

[12] Burke, E.K., McCollum, B., Petrovic, A.M.S., Qu, R.: A graph-
basedhyper heuristic for timetablingproblems.EuropeanJournalof
OperationalResearch176 (2007)177–192

[13] Burke, E.K., Kendall,G., Soubeiga,E.: A tabu-searchhyper-heuristic
for timetablingand rostering.Journalof Heuristics9(6) (2003)451–
470

[14] Cowling, P., Kendall, G., Soubeiga,E.: A hyperheuristicapproach
to schedulinga sales summit. In Burke, E.K., Erben, W., eds.:
Proceedingsof the 3rd InternationalConferenceon the Practiceand
Theory of AutomatedTimetabling (PATAT 2000), SpringerLecture
notesin ComputerScience.Volume2079.,(Konstanz,Germany)

[15] Rattadilok,P., Gaw, A., Kwan,R.: Distributedchoicefunction hyper-
heuristicsfor timetablingandscheduling.In Burke, E., M.Trick, eds.:
Practiceand Theory of AutomatedTimetabling V, SpringerLecture
notesin ComputerScience.Volume3616.(2005)51–67

[16] Garey, M.R., Johnson,D.S.: ComputersandIntractability;A Guideto
the Theory of NP-Completeness.W. H. Freeman& Co., New York,
NY, USA (1990)

[17] Coffman Jr, E.G., Galambos,G., Martello, S., Vigo, D.: Bin packing
approximationalgorithms:Combinatorialanalysis.In Du, D.Z., Parda-
los, P.M., eds.: Handbookof CombinatorialOptimization. Kluwer
(1998)

[18] Rhee,W.T., Talagrand,M.: On line bin packingwith itemsof random
size. Math. Oper. Res.18 (1993)438–445

[19] Johnson,D., Demers,A., Ullman, J., Garey, M., Graham,R.: Worst-
caseperformanceboundsfor simpleone-dimensionalpackagingalgo-
rithms. SIAM Journalon Computing3(4) (December1974)299–325

[20] Koza,J.R.: GeneticprogrammingII: automaticdiscovery of reusable
programs.MIT Press,Cambridge,MA, USA (1994)

[21] Koza,J.R.: Scalablelearningin geneticprogrammingusingautomatic
functiondefinition. In: Advancesin geneticprogramming.MIT Press,
Cambridge,MA, USA (1994)99–117

[22] Teller, A.: Turing completenessin the languageof geneticprogram-
ming with indexed memory. In: Proceedingsof the 1994IEEE World
Congresson ComputationalIntelligence.Volume1., Orlando,Florida,
USA, IEEE Press(1994)136–141

[23] Miller, J.F., Job, D., Vassilev, V.K.: Principles in the evolutionary
designof digital circuits - part i. GeneticProgrammingandEvolvable
Machines1(1/2) (2000)7–35

[24] Brave, S.: Evolving recursive programsfor tree search.In Angeline,
P.J., E., K., eds.:Advancesin GeneticProgramming2. MIT Press
(1996)

[25] Yu, T.: Hierarchicalprocessingfor evolving recursive and modular
programsusinghigher-orderfunctionsandlambdaabstraction.Genetic
ProgrammingandEvolvableMachines2(4) (2001)345–380

[26] Langdon,W.B.: Scalingof programtreefitnessspaces.Evolutionary
Computation7(4) (1999)399–428

[27] Teller, A.: The evolution of mentalmodels. In E., K., ed.: Advances
in GeneticProgramming.MIT Press(1994)199–219

