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Abstract— We present a novel algorithm for the one-
dimension offline bin packing problem with discrete item
sizes based on the notion of matching the item-size histogram
with the bin-gap histogram. The approach is controlled by a
constructive heuristic function which decides how to prioritise
items in order to minimise the difference between histograms.
We evolve such a function using a form of linear register-based
genetic programming system. We test our evolved heuristics
and compare them with hand-designed ones, including the well-
known best fit decreasing heuristic. The evolved heuristics are
human-competitive, generally being able to outperform high-
performance human-designed heuristics.

I. INTRODUCTION

We consider the one-dimensional off-line bin packing
problem. The aim is to pack a set of items, of various sizes,
into identical bins of a given fixed capacity, such that no bin’s
contents overflows. The objective is to minimise the number
of bins used. In essence, we are partitioning the set of items
into a minimum number of subsets such that the total size of
items in each subset does not exceed the capacity of a bin.
This is one of the most studied problems in the computer
science literature and has vast industrial applications [6].

The problem of finding an optimal packing is known to
be NP-hard [3], so heuristics are used to find near optimal
solutions. In fact, “almost all the papers published on the
bin packing problem concern heuristic algorithms” [9]. A
good human-designed heuristic is First Fit Decreasing (FFD),
which first sorts items by non-increasing size and then places
them, one at a time, into the first bin in which they fit.
A variant of this, known as Best Fit Decreasing (BFD),
places items into the bin where they fit most tightly. These
are two of the fastest heuristics (see [9] for an overview).
Unfortunately, these algorithms perform poorly when the
solutions demand that most of the bins are nearly full. In
[6] a heuristic algorithm is developed which is optimal, in
the rather special cases, where the bin capacity is at least
half the total capacity required to pack all of the items or,
the optimal solution requires that most of the bins are nearly
full. It is also possible to create instances for which this
minimum bin slack heuristic [6] will spend hours before
finding a solution [5]. [5] introduce four heuristics based
on the minimum bin slack heuristic. It is all very well if
the heuristic is suited to class of problem at hand, but the
difficulty lies in designing heuristics for classes of problem
which heuristics are difficult to design by hand. The objective
of this paper is to automatically achieve this using Genetic
Programming (GP) [7], [8]. Some heuristics can be “tricked”,

Riccardo Poli is with the Department of Computer Science, University
of Essex, UK (email: rpoli@essex.ac.uk). John Woodward and Edmund
Burke are with the department of Computer Science and IT, University
of Nottingham (email: jrw, ekb@cs.nott.ac.uk).

as removing an item from the set of items should obviously
not increase the number of bins used (as there are fewer
items), however this is not the case with some heuristics [2].

An alternative to designing heuristics by hand would be
to apply a meta heuristic (for example, a genetic algorithm)
to tackle a given instance of the bin packing problem. In this
case, the genotype would consist of information which, when
interpreted, assigns a given item to a given bin explicitly
(e.g., item 4 goes into bin 29). Falkenauer [4] discusses
some of the issues surrounding representation and introduces
a hybrid grouping genetic algorithm. However, “Although the
evolutionary algorithm may solve a given problem very well,
simply re-running the EA or changing the problem slightly
may produce very different and/or worse results” [11]. In
addition, further parameter tuning may be necessary. For this
reason we consider hyper heuristics (i.e., heuristics to choose
heuristics) [2]. In [11], a hyper heuristic approach is used. A
number of heuristics are used in order to combine them into
a system which performs better than any of the constituent
heuristics. Impressive results are obtained, but the question
arises as to how these heuristics are created in the first place.

Human-designed heuristics perform well under certain
circumstances for which they are specifically tailored, but
perform poorly under other circumstances dictated by the
distribution of the item sizes. In general, the relationship
between the problem class, which is defined by the distri-
bution of item sizes, and which heuristic will perform better,
is complex and often unknown. The automated design of
effective heuristics via evolution is, therefore, an appealing
perspective. For example, the use of GP would allow the
discovery of heuristics which are difficult for humans to find
as the space of human designs is a subset of the space of
all designs [10, page 2]. This motivates us to build systems
which can automatically generate heuristic algorithms for the
specific, but possibly ill-defined, class of problems at hand.

In [5] four variants of the minimum bin slack heuristic
and a framework for variable neighbourhood search are
presented. The hope is that due to this flexible framework, it
may be possible to design even more sophisticated heuristic
algorithms. Our suggestion is to use this as a framework for
a search space in which GP can evolve designs.

There are a number of motivations for evolving heuristics.
Firstly, we can construct a space which contains all of
the heuristic algorithms including the human design heuris-
tics mentioned above. The system can then search for an
algorithm, rather than having humans generate them. We
are therefore automating the design process of heuristic
algorithms. If the representation used to construct the search
space is capable of expressing human designed heuristics,
then it is possible that the system should at least be able to



achieve human competitiveness. Secondly, once a heuristic
algorithm is obtained, it can be applied to new problems
without having to go through the process of searching the
space again, which is unlike the situation with the meta
heuristic approach (for example, if we were using a GA
approach, where items are hard-coded into the genotype,
this does not help with future problems). We are attempting
to find general solutions to a class of problem, rather
than a specific solution to a single problem. Finally, some
human designed heuristics perform well on problem classes
which are simple to describe [6]. However, given a class
of problem which has a distribution of item sizes which
is difficult to describe, it is hoped that GP will be able to
produce a heuristic algorithm which performs well on this
type of distribution. Although the item size distribution in
the bin packing problem is typically a uniform distribution
between 0 and the bin capacity, in most real world industrial
applications this will not be the case. In [6] they mention
tackling more complex bin packing environments, and using
GP is one way to do this empirically, which is where the
interests of most industrial applications lie.

In previous work [1], a tree-based GP system for online
bin-packing was presented. This evolves a heuristic that
decides whether to put an item in a bin when presented with
the sum of the sizes of items already in the bin, and the size
of the item that is about to be packed. This heuristic operates
in a fixed framework that iterates through the open bins,
applying the heuristic to each one, before deciding which bin
to use. The best evolved programs emulate the functionality
of the human designed first-fit heuristic. In this paper, thanks
to a novel approach to bin packing used in conjunction with a
linear GP system, we are able to evolve human-competitive
offline heuristics bin packing with discrete item sizes. On
non-uniform distributions of item sizes, these outperform to
a significant extent the well-known BFD heuristic.

The paper is organised as follows. In Section II we
describe a novel approach to bin packing based on the
notion of matching the item size histogram with the bin-
gap histogram. In Section III we describe four hand-designed
heuristics and show their relation to BFD. In Section IV
we describe our GP system, including its fitness function,
operators and training set. In Section V we test and compare
the performance of the hand-designed and evolved heuristics.
Finally, we draw some conclusions in Section VI.

II. BIN PACKING VIA HISTOGRAM MATCHING

Let S be the bin size. Instead of focusing on how full the
bins are, we imagine that the space remaining (i.e., the gap)
can vary dynamically. For example, if a bin contains items
totalling size ŝ, we will just think of it as a gap of size S− ŝ.
Further, let us restrict our attention to the case where both S
and item sizes are integers. So, gap sizes are also integers.

Let gs(t) represent the number of gaps of size s at time t,
where time is measured in terms of the number of items
packed. Naturally, gs(0) = 0 for all s. Let os(t) be the
number of items of size s which still need to be packed
at time t. Thus, gs(t) = 0 and os(t) can be thought of
as histograms. Let O =

∑

s os(0) be the total number of
items that need to be packed. Clearly, σ =

∑

s s × os(0) is

the minimal volume required to pack all the items. So, the
minimum number of bins required to solve the problem is
Bmin = dσ/Se, while the maximum is O, corresponding to
one item in each bin.

The objective of the histogram matching algorithm is to
get gs(t) ≥ os(t) (where comparison is extended component
by component) at some time t, for all s, with equality holding
for as many s as possible. If this state can be achieved, the
problem is solved, the algorithm can stop and we know that
there is a gap of appropriate size in the bins for each of the
remaining items awaiting to be packed.

Let us consider an example. Suppose we need to pack
two items of size 2, one of size 3 and two of size 4, i.e.,
os(0) = (0, 2, 1, 2), and that the bin size is S = 6. Naturally,
gs(0) = (0, 0, 0, 0) since there are no bins currently open.
Let us assume we want to start by packing an item of size
4. Obviously, we need to place the item in a new bin. So,
the current bin configuration is 4 . This move changes the
item histogram as follows: os(1) = (0, 2, 1, 1). Of course, the
insertion of an item of size 4 in a bin of size 6 produces a gap
of size 2. Therefore, we also have that gs(1) = (0, 1, 0, 0).
Suppose we then decide to pack another item of size 4.
Since the gap in the first bin is too small to hold it, we
will need to start a further bin, giving: os(2) = (0, 2, 1, 0)
and gs(2) = (0, 2, 0, 0). So, the current bin configuration is
4 4 . Note that there is already a partial match between

gs and os, in that g1(2) ≥ o1(2), g2(2) ≥ o2(2) and
g4(2) ≥ o4(2). Now suppose we place the item of size 3.
Again, this requires a new bin and produces a gap of size
3, leading to os(3) = (0, 2, 0, 0) and gs(3) = (0, 2, 1, 0). So,
the current bin configuration is 4 4 3 . Now, gs ≥ os

for all s. This means that there are sufficient gaps to place
all remaining items. Placing such items produces the final
gap histogram gs(3)− os(3) = (0, 0, 1, 0). So, we have used

three bins and the final bin configuration is
2 2
4 4 3 .

There are many strategies by which one can achieve the
target state gs(t) ≥ os(t). A simple algorithm to do this is
shown in Algorithm 1. This algorithm receives S and os(0)
as input and achieves the target state by iteratively changing
os(t) and gs(t). The algorithm works as follows. It iterates
its main body (lines 2–21) until the list of sizes for which
gs < os (a condition that we term a “clash”) is empty. If
this is not the case, then the algorithm chooses a new item
to pack (line 6). This choice is performed by the function
selectitem() on the basis of the list of clashes as well as the
item and gap histograms. The algorithm then identifies, out
of all the possible gaps currently available, those which could
be filled with the selected item (lines 7 and 8). Not all gaps
are considered to be available: only those which are in excess
of the need (i.e., gs > os). If one or more such gaps exist,
then the function selectgap() is invoked to choose which gap
to fill (lines 9 and 10). Once a gap is selected, the gap is
filled with the item. This implies updating the gap histogram
(lines 11–14). If no appropriate gaps exist, then a new bin
is opened (line 16), and the gap histogram is updated (lines
17–19). Finally, the item histogram (line 21) is updated to
reflect the packing of the selected item.



III. HAND-DESIGNED HEURISTICS

In this first exploration we decided to keep selectgap()
fixed and, instead, vary the function selectitem(). In partic-
ular, we choose

selectgap() = first(avail-gaps-big-enough)
(1)

Effectively, whenever there are multiple gaps that could
host an item, this strategy uses the smallest one, thereby
preserving the bigger gaps for big items yet to be packed.
These are intuitively more difficult to place, and this strategy
helps in packing them.

The efficient packing of large items is often critical in de-
termining the overall performance of bin-packing algorithms.
So, one might wonder if giving priority to their handling
could produce good results. A simple way to achieve this is
to use the following definition for the selectitem function:

selectitem() = last(clashes) (2)

We call this strategy LAST. LAST’s behaviour is illustrated
in the first column of Figure 1, where various snapshots of
gs(t) and os(t) taken during the packing of 500 items of
sizes uniformly distributed in the range [21, 70]. As one can
see, the matching between the two histograms proceeds in an
orderly fashion from right (big items) to left, with the item
and gap histograms gradually collapsing down towards zero.
Note that, after around 350 steps, the histograms match and
so the algorithm is stopped, and packing continues by simply
allocating each remaining item to one of its corresponding
gaps. In the last row of the figure, we show the distribution
of gaps after this phase is completed.

Interestingly, with the LAST strategy, our histogram
matching bin-packer (Algorithm 1) is effectively equivalent
to the BFD algorithm. The equivalence arises for the follow-
ing reasons. Firstly, when using Equation (2), our algorithm
always picks the largest unallocated item first. So, although
we do not explicitly sort items, we still pick them in the same
order as BFD. Secondly, with BFD, bins are always ordered
by occupancy levels (so they are ordered by ascending gap
sizes). So, the bin that ends up being used for an item is
always the one with the smallest gap out of those where the
item could fit, which is exactly what Equation (1) does. So,
LAST and BFD lead to exactly the same packing.

An alternative line of reasoning is the following. If the
objective of the histogram matching algorithm is to get gs

and os to match as quickly as possible, it would make sense
to give priority to those sizes for which there is a large
difference between the number of available gaps and the
number of items of that size. This can be achieved using

selectitem(...) = argmin
s

(gs − os) (3)

We call this strategy MIN. The behaviour of MIN is il-
lustrated in the second column of Figure 1. In this case,
the matching between the two histograms proceeds more
uniformly, with no size being particularly favoured. Also,
unlike with LAST, the histograms are not forced to collapse
to zero.

A variant of this is one where we still look at how
closely histograms match, as in MIN, but we also give higher

Algorithm 1 Bin-packing by histogram matching.
1: loop
2: clashes = list of s values for which gs < os

3: if clashes is empty then
4: STOP
5: end if
6: nextitem = selectitem(gs,os,clashes)
7: available-gaps= list of s values where gs > os

8: avail-gaps-big-enough= subset of available-gaps for
which s >= nextitem

9: if avail-gaps-big-enough is not empty then
10: gap=selectgap(gs,os,avail-gaps-big-enough);
11: ggap = ggap − 1
12: if place != nextitem then
13: g(gap−nextitem) = g(gap−nextitem) + 1
14: end if
15: else
16: bincounter ++;
17: if S > nextitem then
18: g(S−nextitem) = g(S−nextitem) + 1
19: end if
20: end if
21: onextitem = onextitem − 1
22: end loop

importance to larger sizes. A possible implementation of this
strategy is the following

selectitem(...) = argmin
s

[s × (gs − os)] (4)

We call this strategy SMIN. As shown in Figure 1 (third col-
umn) the behaviour of SMIN is somehow half-way between
LAST and MIN, with the bigger items being given higher
priority, but the histograms not being forced to collapse to
zero.

The final hand-designed strategy we consider is much
simpler than MIN and SMIN: simply pick a random clash
and try to eliminate it. This strategy, which we call RAND,
is implemented by the following

selectitem(...) = random-element(clashes) (5)

With this strategy the matching of the histograms is per-
formed rather uniformly, with some similarity with the MIN
strategy.

The MIN and SMIN strategies presented above are both
instances of the following more general form:

selectitem(...) = argmin
s

[f(s) × (gs − os)] (6)

where f(s) = 1 in MIN, while f(s) = s in SMIN. So, one
may wonder whether there would be other functional forms
for f(s) that could provide meaningful strategies.

IV. EVOLVING HISTOGRAM-MATCHING STRATEGIES

Although one can manually design and test many bin-
packing strategies, it is very appealing to be able to automate
the process of strategy selection. This, for example, would
make it possible to adapt one’s bin-packer to changes of
the distribution of items. In this section, we consider the



TABLE I
PRIMITIVE SET USED TO EVOLVE HISTOGRAM-MATCHING STRATEGIES

Primitive Explanation
NOP No operation is performed

A=A+R1 Add content of register R1 to accumulator A
A=A+R2 Add content of register R2 to accumulator A
A=A+R3 Add content of register R3 to accumulator A
A=A+R4 Add content of register R4 to accumulator A
A=A+R5 Add content of register R5 to accumulator A
A=A+B Add accumulator B to accumulator A

A=A*R1 Multiply A by R1 and store in accumulator A
A=A*R2 Multiply A by R2 and store in accumulator A
A=A*R3 Multiply A by R3 and store in accumulator A
A=A*R4 Multiply A by R4 and store in accumulator A
A=A*R5 Multiply A by R5 and store in accumulator A
A=A*B Multiply A by B and store in accumulator A

A=sqrt(A) Take square root of A and store in accumulator A
A=Aˆ2 Square accumulator A
A=A+1 Increment A by 1
A=A+2 Increment A by 2

A=A+1/2 Increment A by 1/2
A=-A Negate A
B=A Store A in accumulator B
A=B Store B in accumulator A

A=A-B Subtract B from A and store in A
A=R5-R4 Store the difference between R5 and R4 in A
A=abs(A) Store magnitude of A in A

TABLE II
INPUT REGISTERS

Register Content
R1 s/S
R2 smax/S
R3 smin/S
R4 os

R5 gs

(smax =largest s for which os > 0, smin =smallest s for which os > 0)

evolution of histogram-matching strategies to be used within
Algorithm 1. In particular, we consider strategies of the
form presented in Equation (6) and we will investigate a
GP methodology to evolve the f(s) function.

For this work, we decided to use a form of linear GP. The
instruction set includes the primitives described in Table I.
Each primitive is internally represented by an integer. A
program is therefore represented as a sequence of integers of
some prefixed length `. Naturally, ` is only an upper bound
to the number of instructions actually executed, because of
the presence of a NOP operation in the primitive set.

Before execution, the accumulators, A and B, are both
initialised to 0. The registers R1 to R5 are protected from
overwriting, and are initialised with the values shown in
Table II.

After the execution of a program, the value stored in
accumulator A is passed through the wrapper |A| + 10−4,
which guarantees that the result is strictly positive.1 The
result is returned as the value of f(s) associated to one
particular size s. Naturally, in order to apply the minimum
operation in Equation (6), the execution process must be
repeated for 1 ≤ s ≤ S.

In order to evolve general heuristics f(s), we used a
training set with four different size distributions, with item

1The reason for having a rectifying wrapper is to ensure that the minimum
operation excludes sizes for which gs is already bigger than os.

sizes in the ranges [20, 80], [1, 80], [30, 70] and [1, 150], and
with three different numbers of items, 100, 250 and 1,000, for
each distribution giving us a total of 12 conditions. In each
condition we constructed three random problem instances.
So, our training set includes 48 fitness cases. In each fitness
case, the distribution of item sizes was approximately flat
within the specified ranges.2

For each fitness case, we run our histogram-matching bin-
packer with its f(s) heuristic implemented via a GP program.
Let Bi be the number of bins used by our algorithm to pack
the items in fitness case i, and let Bmini

be the theoretical
minimum. We measure the fitness of a program as

Fitness =
1

48

∑

i

(

Bi

Bmini

)

(7)

The objective is to minimise this function.
The GP system initialises the population by randomly

drawing primitives from the primitive set. This is done
uniformly at random except for the primitive NOP which
is chosen with a probability 1/3, to provide a more varied
distribution of effective code length. The GP system is
steady-state and the population is then manipulated by the
following operators:

• Tournament selection with tournament size 2.
• All offspring are created by two forms of crossover:

a) a form of crossover where the offspring is created
by extracting a random section of the first parent and
inserting it at a random point in a copy of the second
parent; b) uniform crossover (with 50% exchange proba-
bility). The form of crossover used to create a particular
offspring is determined by an equiprobable Bernoulli
trial.

• All offspring undergo point-mutation. This operation
is applied with a 0.1 probability (per locus). When a
primitive is changed, its replacement is randomly drawn
from the primitive set (with the same strategy used
for initialisation, i.e., NOPs are more likely than other
primitives).

V. EXPERIMENTAL RESULTS

In our experiments, we used programs consisting of ` = 10
instructions, populations of size 100, run for 30 generations.
Although we experimented with other parameter settings,
with these settings the GP system was able to produce high
quality heuristics in virtually all runs. So, there seemed to be
no point in using larger programs, population sizes, or runs.

To illustrate the kind of results that the system produces,
we report in Table III, two representative evolved heuristics.
They are both strictly increasing monotonic functions of s.
So, they give precedence to larger items. However, if os

and/or gs are non-uniform, then the basic strategy of giving
higher priority to bigger sizes is modified, biasing it towards
the sizes for which there are many items still to be packed

2More precisely, if we denote with [smin, smax] the range of item sizes,
our bin size distributions are multinomials, with success probabilities pi =
1/ (smax − smin + 1) for i = smin, . . . , smax and pi = 0 for i =
1, . . . , smin −1, smax +1, . . . , S. So, the distribution of size of the items
is uniform only in expectation and there can be ample variations in the
minimum number of bins required by different problem instances.



and/or for which there are many gaps in the bins. One can
see these strategies in action during the packing of 500 items
of sizes uniformly distributed in the range [21,70] in the last
two columns of Figure 1.

We compare the performance of the hand-designed strate-
gies and of a selection of 13 evolved strategies in the
upper part of Table IV, where we report the average of the
number of bins used by each strategy over the classes of
problems from which testing instances in the fitness function
were drawn. The column labelled “THEOR” represents the
average minimum number of bins theoretically required by
the problem instances.

As expected, BFD (see column labelled “LAST”) is ex-
tremely good when the distribution of sizes is uniform within
the range [1, 150] – the type of range over which bin-packing
algorithms are typically analysed. Also, BFD is very good
in the range [1,80], although almost all algorithms did very
well in this range. However, BFD loses badly its lead in the
ranges [20,80] and [30,70] where it is outperformed by most
of the evolved algorithms. A better all-rounder among the
manually designed algorithms is SMIN.

To test the generality of hand-designed and evolved algo-
rithms, we performed a further series of tests with different
item distributions and bin sizes. The results are shown in
the lower part of Table IV. These confirm that all evolved
rules generalise well. Again, BFD/LAST does best when the
distribution of sizes is uniform and spans ranges of the form
[1, smax], but the opposite is observed in other situations.

In order to analyse the variations in behaviour of all al-
gorithms, we collected statistics concerning which algorithm
performed better than which other algorithm when compared
head to head on the same problem instances. For each testing
condition (bin size, size range and number of items) these
statistics take the form of an array A with as many rows
and columns as the number of algorithms under test (17).
Element A(a1, a2) represents the number of times algorithm
a1 did better than the algorithm a2 in a trial problem. Ties
are counted as 1/2 of a win. Results are then divided by the
number of trials (100), so entries represent estimates of the
probability of an algorithm outperforming another.

Because we use 32 conditions (12 for training, 20 for
testing), we constructed 32 such arrays. Naturally, we cannot
report them here. So, we averaged the contents of each
array by row (excluding the diagonal elements which are
meaningless), obtaining the average probability p(a) with
which a particular algorithm can beat the others. That is

p(a) =
1

16

∑

a′

A(a, a′)

The values of p(a) are reported for all 32 conditions and for
the 17 algorithms under test in Table V. At the bottom of
the table we also report the performance of each algorithm
averaged over the 12 training problem classes, the 20 test
problem classes or the full set of 32. Note that average
values higher than 0.5 mean that an algorithm tends to beat
other algorithms more often than they beat it, and vice versa.
Many algorithms have conditions where they win against
most other competitors, and vice versa as shown by the

reported standard deviations. Some algorithms, however, are
less prone to such variations.

The results reveal that, while there are size distributions
for which it is difficult to beat BFD, most GP evolved
heuristics can beat it on the training set, on the test set, and
overall. SMIN is harder to beat, but again there are several
evolved heuristics that do so. It is interesting to note that such
heuristics not only outperform BFD and SMIN, but they also
are more robust, as indicated by their much lower standard
deviations.

The overall champion regarding performance appears to
be GP2, which after simplification is

f(s) =
49

4
·
s2(smin)2

S4
+ 10−4,

while GP13 is a champion for reliability. After simplification
the GP13 heuristic is

f(s) =
smax + smin + s

S
+ 10−4.

Both are extremely simple, yet effective and reliable.

VI. CONCLUSIONS

We presented a novel algorithm for the one-dimension
offline bin packing problem with discrete item sizes. The
algorithm works by progressively reducing the distance be-
tween the item-size distribution and distribution of gaps
available in bins. The approach is controlled by a two
functions: one function which decides how to prioritise items
in order to decide which one to insert next, the other function
decides how to prioritise gaps in order of urgency. Acting
within Algorithm 1, these two functions progressively reduce
the difference between item and gap histograms.

In this work we have kept the gap-selection function
constant, and varied the item-selection function. This has
allowed us both to manually define and to evolve high-
performing bin-packing heuristics. Evolution was performed
by a simple form of linear register-based GP.

We tested our evolved heuristics and compared them with
hand-designed ones, including the well-known BFD heuristic
and SMIN, a highly competitive, human-designed histogram-
matching heuristic. Results have been very encouraging
with most of the evolved heuristics outperforming human-
designed heuristics.

In the future we will look at whether joint evolution of the
item-selection function with the gap-selection function may
afford further performance improvements. In addition, we
intend to extend the approach to two- and three-dimensional
bin packing, which can be trivially done by using multi-
dimensional item- and gap-size histograms, and evolving
item-selection functions of the form f(s1, s2, . . . ). Also, we
intend to extend the approach to more traditional continu-
ous bin-packing problems where item sizes are reals. This
extension can be obtained by quantising gap and item sizes.
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TABLE III
SAMPLE EVOLVED HEURISTICS FOR HISTOGRAM-MATCHING

Name Code Function f(s)

GP-S1 A=A*R4 A=A+B A=A+B A=A*R1 A=A+R3
∣

∣

∣

(os+2)s+smin

S

∣

∣

∣
+ 10−4

GP-S2 A=A+R4 A=A+R5 A=sqrt(A) NOP A=A+R1 A=A*R2 NOP NOP NOP NOP

∣

∣

∣

∣

(
√

os+gs+1+ s

S )smax

S

∣

∣

∣

∣

+ 10−4

LAST MIN SMIN GP-S1 GP-S2
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Fig. 1. Snapshots of gs(t) and bs(t) at different time steps and for different histogram matching algorithms.
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TABLE IV
PERFORMANCE OF HAND-DESIGNED (LAST/BFD, MIN, SMIN, RAND) AND EVOLVED (GP1–GP13) STRATEGIES ON THE CLASSES OF PROBLEMS FROM WHICH TESTING INSTANCES WERE DRAWN

(UPPER 12 ROWS OF TABLE) AND ON AN INDEPENDENT TEST SET (LOWER 20 ROWS). FIGURES ARE MEANS OVER 100 INDEPENDENT TRIALS. THEOR IS THE MINIMUM NUMBER OF BINS

THEORETICALLY REQUIRED BY THE PROBLEM INSTANCES.

S Range Items THEOR LAST MIN SMIN RAND GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8 GP9 GP10 GP11 GP12 GP13
150 [20,80] 100 33.89 34.66 36.4 34.68 35.32 34.59 34.65 34.61 34.74 34.58 34.63 34.63 34.62 34.61 34.6 34.63 34.7 34.64

250 83.6 85.39 86.74 84.84 85.83 84.58 84.72 84.57 84.93 84.59 84.56 84.6 84.55 84.55 84.65 84.52 84.82 84.64
1000 333.55 340.26 339.21 336.59 338.7 335.88 336.11 335.82 336.77 335.9 335.95 336.07 335.74 335.85 335.99 336.02 336.27 336.12

[1,150] 100 51.02 53.21 58.88 53.3 55.12 53.36 53.29 53.38 53.31 53.33 53.41 53.32 53.43 53.38 53.3 53.41 53.31 53.35
250 126.61 130.08 139.1 130.44 134.01 130.73 130.24 130.82 130.33 130.61 130.87 130.55 131.03 130.86 130.37 130.86 130.49 130.69

1000 505.27 512.85 525.31 513.77 521.84 515.16 513.19 516.11 513.47 514.16 518.95 514.31 515.72 515.36 513.69 515.42 515.14 513.86
[30,70] 100 33.85 36.23 36.31 35.35 36 35.49 35.4 35.51 35.41 35.54 35.45 35.41 35.52 35.47 35.45 35.44 35.42 35.43

250 83.86 89.81 88.52 87.1 88.25 86.9 86.9 86.82 87.31 86.91 86.83 86.73 86.84 86.79 87.05 86.78 87.05 86.91
1000 333.79 357.87 348.63 346.64 347.83 344.58 344.97 344.3 347.21 344.18 344.84 345.05 343.87 344.46 345.68 344.4 346.44 345.36

[1,80] 100 27.43 27.48 29.36 27.46 28.01 27.48 27.49 27.48 27.48 27.51 27.48 27.49 27.48 27.49 27.47 27.48 27.48 27.5
250 67.83 67.89 69.96 67.84 68.44 67.86 67.84 67.84 67.85 67.87 67.84 67.83 67.86 67.84 67.84 67.85 67.84 67.85

1000 270.59 270.6 272.99 270.59 271.09 270.61 270.59 270.6 270.59 270.6 270.59 270.61 270.6 270.6 270.59 270.59 270.6 270.59
150 [20,80] 4000 1333.62 1360.57 1348.43 1343.26 1347.56 1342.32 1343.24 1342.11 1344.26 1341.98 1342.24 1342.58 1342.07 1341.84 1343.13 1342.28 1343.76 1342.79

[1,150] 4000 2013.25 2028.5 2046.17 2030.33 2045.14 2032.3 2029.51 2034.04 2030.03 2030.71 2040.61 2031.03 2033.22 2032.55 2030.25 2032.91 2032.78 2030.49
[30,70] 4000 1333.83 1429.65 1391.33 1383.86 1382.41 1378.59 1381.87 1376.93 1385.98 1376.65 1378.54 1380 1376.44 1378.04 1381.96 1378.65 1383.04 1380.23
[1,80] 4000 1080.67 1080.67 1083.16 1080.67 1080.88 1080.67 1080.67 1080.68 1080.67 1080.67 1080.67 1080.67 1080.67 1080.67 1080.67 1080.67 1080.67 1080.67

75 [20,40] 100 40.28 43.71 43.75 43.94 44.47 43.86 44.07 43.58 44.02 43.92 43.68 44.15 43.58 43.76 43.9 43.71 44 43.87
250 100.47 109.28 107.59 109.23 110.37 109.5 109.05 109.43 109.28 109.67 109.28 109.49 109.48 109.75 109.16 109.46 109.61 109.33

1000 400.27 436.53 423.43 431.6 437.31 433.75 432.15 435.63 431.9 433.29 434.12 432.93 435.38 435.19 433.1 433.9 433.48 433.55
4000 1600.25 1746.44 1687.03 1721.11 1743.22 1733.32 1723.27 1736.67 1723.51 1731.23 1736.99 1729.56 1735.16 1735.38 1727.78 1730.79 1729.27 1729.4

[1,75] 100 50.91 52.98 56.38 53.12 54.6 53.27 52.99 53.27 53.1 53.16 53.28 53.13 53.29 53.29 53.1 53.28 53.13 53.15
250 126.84 130.46 134.75 130.72 133.35 131 130.6 131.04 130.68 130.85 131.93 130.81 131.12 130.96 130.68 131.06 130.94 130.8

1000 506.56 513.71 519.58 514.13 519.31 514.72 513.97 515.12 514.1 514.4 516.9 514.26 515 514.8 514.12 514.77 514.69 514.26
4000 2026.69 2041.94 2051.28 2042.79 2052.83 2043.57 2042.42 2044.36 2042.71 2043.09 2049.33 2043.02 2044.03 2043.65 2042.84 2043.87 2044.16 2042.94

300 [20,160] 100 30.75 31 34.24 31.05 31.62 31.01 31.03 31.01 31.04 31.02 31.01 31.02 31.03 31.02 31.01 31.01 31.06 31.03
250 75.6 76.02 80.17 76.07 76.93 75.92 75.97 75.97 76.1 75.95 76 75.92 75.95 75.96 75.96 76.01 76.02 76

1000 300.23 301.51 305.53 300.91 302.49 300.71 300.7 300.66 300.95 300.7 300.67 300.8 300.66 300.67 300.8 300.69 300.85 300.71
4000 1199.52 1203.85 1205.44 1201.19 1203.35 1200.78 1200.58 1200.73 1201.25 1200.76 1200.8 1200.93 1200.74 1200.67 1200.92 1200.81 1201.09 1200.74

[1,300] 100 50.74 53.22 60.89 53.25 55.19 53.29 53.37 53.31 53.25 53.27 53.3 53.25 53.32 53.29 53.25 53.3 53.26 53.34
250 126.09 129.81 144.44 130.06 134.39 130.28 130.28 130.35 129.97 130.24 130.53 130.07 130.63 130.46 130.06 130.53 130.07 130.45

1000 501.08 508.62 532.46 509.99 520.58 511.61 509.29 512.49 509.68 510.93 512.69 510.82 512.63 512.22 509.91 512.34 510.66 510.94
4000 2007.54 2022.79 2055.99 2026.42 2049.48 2031.02 2023.99 2034.48 2025.67 2027.27 2044.37 2027.79 2032.72 2031.48 2026.03 2032.09 2031.96 2026.81



TABLE V
HEAD TO HEAD COMPARISON BETWEEN HEURISTICS. FIGURES REPRESENT THE FRACTION OF TIMES AN ALGORITHM WON OVER ALL OTHERS IN 100 TEST PROBLEMS.

S Range Items LAST MIN SMIN RAND GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8 GP9 GP10 GP11 GP12 GP13
150 [20,80] 100 0.5387 0.01094 0.5294 0.2381 0.5744 0.5444 0.5641 0.4997 0.5787 0.5541 0.5538 0.5587 0.5641 0.5691 0.5541 0.5194 0.5484

250 0.2341 0.01469 0.4888 0.1422 0.6134 0.5472 0.6188 0.4453 0.6088 0.6225 0.6038 0.6281 0.6259 0.5794 0.6416 0.5003 0.5853
1000 0.0175 0.07312 0.4025 0.1056 0.6694 0.5809 0.6887 0.3475 0.6606 0.6413 0.5928 0.7159 0.6775 0.6263 0.6137 0.5159 0.5706

[1,150] 100 0.6159 0.0003125 0.5784 0.1078 0.55 0.5828 0.5422 0.5734 0.5641 0.5263 0.5687 0.5169 0.5406 0.5781 0.5263 0.5737 0.5544
250 0.7609 0.000625 0.6159 0.07406 0.5153 0.6972 0.4816 0.6591 0.5434 0.4578 0.5784 0.4128 0.4688 0.6416 0.4681 0.5938 0.5306

1000 0.8913 0.0175 0.7066 0.07562 0.4475 0.8278 0.3369 0.7603 0.6275 0.2213 0.5944 0.3375 0.4031 0.7241 0.3819 0.4587 0.6881
[30,70] 100 0.1791 0.1559 0.6109 0.3109 0.5406 0.5863 0.5312 0.5813 0.515 0.5612 0.5809 0.5262 0.5497 0.5606 0.5666 0.5734 0.57

250 0.009375 0.1028 0.5141 0.1584 0.5972 0.5953 0.6325 0.4269 0.595 0.6262 0.6675 0.6231 0.6434 0.5331 0.6481 0.5341 0.5928
1000 0 0.1053 0.2953 0.2034 0.6903 0.61 0.7497 0.2334 0.7737 0.6369 0.6 0.8284 0.7166 0.4641 0.7309 0.3275 0.5344

[1,80] 100 0.5487 0.003438 0.5587 0.2903 0.5487 0.5438 0.5487 0.5487 0.5338 0.5487 0.5438 0.5487 0.5438 0.5537 0.5487 0.5487 0.5388
250 0.5269 0.00375 0.5516 0.2931 0.5416 0.5516 0.5516 0.5466 0.5369 0.5516 0.5563 0.5416 0.5513 0.5516 0.5466 0.5513 0.5466

1000 0.5431 0.001563 0.5481 0.3266 0.5381 0.5481 0.5431 0.5481 0.5431 0.5481 0.5381 0.5431 0.5431 0.5481 0.5481 0.5431 0.5481
150 [20,80] 4000 0 0.08281 0.4597 0.1091 0.6741 0.4594 0.725 0.285 0.7528 0.6975 0.6175 0.7328 0.7928 0.4928 0.6884 0.365 0.5653

[1,150] 4000 0.93 0.04094 0.7044 0.05969 0.465 0.8363 0.3266 0.7547 0.6569 0.1475 0.6247 0.3437 0.4238 0.7147 0.3884 0.4128 0.67
[30,70] 4000 0 0.06437 0.2628 0.3709 0.7009 0.4084 0.8169 0.1675 0.8575 0.7053 0.5653 0.8794 0.7397 0.3919 0.6997 0.3206 0.5487
[1,80] 4000 0.5381 0 0.5381 0.4331 0.5381 0.5381 0.5331 0.5381 0.5381 0.5381 0.5381 0.5381 0.5381 0.5381 0.5381 0.5381 0.5381

75 [20,40] 100 0.5709 0.5491 0.4753 0.265 0.505 0.4278 0.6341 0.435 0.4766 0.5903 0.3681 0.6331 0.5487 0.4962 0.5781 0.4403 0.5062
250 0.5247 0.8872 0.5569 0.235 0.4641 0.5984 0.4759 0.5366 0.4047 0.5363 0.4528 0.4669 0.3853 0.5703 0.4778 0.42 0.5072

1000 0.1616 1 0.8 0.09781 0.4941 0.7119 0.235 0.7394 0.5656 0.4316 0.625 0.2531 0.28 0.5856 0.4666 0.5272 0.5256
4000 0.02219 1 0.9009 0.06687 0.3903 0.8469 0.2538 0.8322 0.4803 0.2103 0.5697 0.2809 0.2756 0.6684 0.5209 0.6028 0.5778

[1,75] 100 0.6416 0.009063 0.58 0.1306 0.5106 0.6372 0.51 0.5891 0.5619 0.5084 0.5756 0.5019 0.5034 0.5897 0.5088 0.5753 0.5669
250 0.7222 0.02906 0.6166 0.09906 0.5138 0.6647 0.4944 0.6331 0.5684 0.3488 0.5831 0.4697 0.5228 0.6306 0.4875 0.5337 0.5825

1000 0.7872 0.04813 0.6669 0.05281 0.4956 0.7141 0.4134 0.6766 0.5881 0.2425 0.6306 0.4125 0.4688 0.6744 0.4847 0.5156 0.6281
4000 0.8228 0.07812 0.6772 0.04 0.5166 0.745 0.3831 0.6913 0.615 0.1913 0.6294 0.4266 0.5003 0.6544 0.4591 0.4166 0.6534

300 [20,160] 100 0.5612 0 0.5359 0.2575 0.5566 0.5463 0.5562 0.5416 0.5513 0.5556 0.5513 0.5463 0.5509 0.5559 0.5556 0.5316 0.5463
250 0.5425 0.0003125 0.5175 0.1322 0.5909 0.5669 0.5669 0.5025 0.5766 0.5519 0.5909 0.5766 0.5719 0.5716 0.5469 0.5419 0.5522

1000 0.2328 0 0.5094 0.07156 0.6031 0.6084 0.6266 0.4906 0.6081 0.6219 0.5616 0.6272 0.6219 0.5619 0.6131 0.5384 0.6034
4000 0.07719 0.00625 0.45 0.1044 0.6266 0.7137 0.6488 0.4272 0.6347 0.6181 0.5613 0.6434 0.6744 0.5659 0.6134 0.4934 0.6412

[1,300] 100 0.5922 0 0.5781 0.07719 0.5587 0.5209 0.5494 0.5781 0.5687 0.5544 0.5778 0.5447 0.5591 0.5781 0.5544 0.5731 0.535
250 0.7241 0 0.6291 0.06344 0.5534 0.5534 0.5269 0.6656 0.5647 0.4641 0.6269 0.4356 0.4863 0.6266 0.4641 0.6262 0.4897

1000 0.9472 0 0.7163 0.0625 0.4581 0.8378 0.3563 0.7684 0.5706 0.2959 0.5697 0.2888 0.3562 0.73 0.345 0.6025 0.5947
4000 0.9731 0.02781 0.7188 0.07312 0.4316 0.91 0.2609 0.8072 0.6506 0.1297 0.6197 0.3109 0.3987 0.7603 0.3572 0.3787 0.6916

Training set Mean 0.4055 0.04083 0.5334 0.1938 0.5689 0.6013 0.5658 0.5142 0.5901 0.5413 0.5815 0.5651 0.569 0.5775 0.5646 0.52 0.5673
Std 0.3062 0.05391 0.1054 0.09533 0.06642 0.08332 0.1038 0.1389 0.07217 0.1141 0.03492 0.1278 0.08672 0.06415 0.08949 0.07067 0.0428

Test set Mean 0.5186 0.1912 0.5947 0.1401 0.5324 0.6423 0.4947 0.583 0.5896 0.447 0.572 0.4956 0.5099 0.5979 0.5174 0.4977 0.5762
Std 0.3262 0.354 0.1409 0.1119 0.07855 0.1453 0.1588 0.1715 0.09627 0.1851 0.06401 0.1617 0.1361 0.08794 0.09546 0.08748 0.05685

Overall Mean 0.4762 0.1348 0.5717 0.1602 0.5461 0.6269 0.5213 0.5572 0.5897 0.4824 0.5756 0.5217 0.5321 0.5902 0.5351 0.5061 0.5729
Std 0.3187 0.2886 0.1305 0.1077 0.0753 0.1257 0.1432 0.1613 0.08676 0.1667 0.05446 0.1516 0.1219 0.07938 0.09468 0.08113 0.05147


