
Evolving Turing Complete Representations
John R. Woodward

School of Computer Science
The University of Birmingham

B15 2TT UK
J.R.Woodward@cs.bham.ac.uk

Abstract-
Standard GP, chiefly concerned with evolving func-

tions which are mappings from inputs to output, is not
Turing Complete. This paper raises issues resulting
from attempts at extending standard GP to Turing Com-
plete representations. Firstly, there is a problem when
a contiguous peice of code is moved to a new location
(in a different program) by crossover. In general its
functionality will be altered if global memory is used,
as other parts of the program may access the same pe-
ice of memory. Secondly, traditional crossover does not
respect modules. Crossover can disrupt a group of in-
structions that were working together (e.g. in the body
of a loop) in one parent, but end up separated in two
different offspring after reproduction.

A crossover operator is proposed that only operates
at the boundaries of modules. The identification of
module boundaries is made easy by using a represen-
tation in which explicit modules are defined, in contrast
with other representations where the module boundaries
would have to be identified by some other means.

The halting problem is a central issue, however as
a consequence of this crossover operator we are more
likely to produce self terminating programs, thus saving
time when testing.

1 Introduction

Genetic Programming (GP) is the biologically inspired
search of the space of programs using crossover (XO)
and mutation operators [BNKF98]. Typically, the program
space does not include Turing Complete (TC) programs but
a subset (e.g. logically expressions or mathematical expres-
sions). Recently, however, researchers have begun to extend
standard GP to include memory and iteration making it TC
[Tel94c] (see figure 1). For the purpose of this paper, a
TC representation will mean any representation capable of
expressing a model of computation proved to be equivalent
to a Turing Machine, for example The C Programming Lan-
guage. Other examples are given in section 2. Given that the
representation GP is evolving is TC we are now searching
the space of algorithms or effective procedures (Church’s
Thesis). Turing Complete Genetic Programming (TCGP)
will mean the search of the space of TC representations, as
opposed to standard GP.

indexed memory

Figure 1: Standard GP is not Turing Complete but can be
supplemented by adding a repeat until function and
adding read and write functions to the function set. The
repeat until loop allows iteration. The read and write
functions allow the system to store data in a global array
(illustrated as set of boxes).

As GP techniques become more sophisticated, the prob-
lems attempted will become more demanding often re-
quiring a more expressive representation than that used
with standard GP. Standard GP has concentrated on func-
tional/reactive programs which are a direct mapping from
inputs to output. The same input produces the same output
and does not depend on the history of the inputs. For some
problems, however, the history is important and to tackle
this memory is required in the system (see [Tel94a] for a
discussion).

Generalization is the goal of learning, and the use of it-
eration and memory may help in expressing regularities in
data, and therefore should be expressible in the representa-
tion. In addition, for a given problem it maybe difficult to
decide beforehand what is the most appropriate representa-
tion, which has an inherent bias in it, the classic example
being perceptrons inability to express non linearly separa-
ble problems. If a TC representation is used, the system
can in principle evolve a suitable representation. This paper
addresses some of the issues of exploring the space of TC
programs by looking at a suitable XO operator and repre-
sentation.

The outline of the paper is as follows. In section 2 rep-
resentations and operators used by other researchers are de-
scribed and problems with these approaches are examined
in section 3. In section 4, TC landscapes are considered and

composition is defined. In section 5, a representation and
XO operator are proposed, and how it avoids the issues is
discussed in section 6. In section 7 the paper is concluded.

2 Related Work

This section reviews a number of representations and oper-
ators used in TCGP. Unfortunately, these systems have been
tried on different problems so it is not possible to compare
the results directly. Often the solutions evolved are general
(i.e. they work on unseen test cases), which is the central
goal of learning. Often noiseless training data was used so
one cannot comment on issues of over fitting. In all cases,
upper bounds were placed on the execution time of pro-
grams being evolved to avoid the problem of evaluating non
terminating programs.

Tanomaru[Tan93] directly evolves the state transition ta-
ble of Turing Machines. XO exchanges contiguous rows of
the transition table, but this can result is inconsistent ma-
chines referring to non-existent states. Mutation randomly
changes a single symbol in transition table. In further ex-
periments, XO is dropped and mutation is enhanced by al-
lowing states to be added or deleted, or the replacement of
a whole automaton with an entirely new one. Better results
were obtained than with the previous operators. For other
examples see [TA96, VR01].

In a seminal paper, Cramer [Cra85] uses a programming
language JB (list structure) which is a subset of a TC lan-
guage (which corresponds to the primary recursive func-
tions), the advantage being that programs are guaranteed to
halt. The data is stored as global variables. He comments
on the inappropriateness of XO given the epistatic nature
of JB, and introduces a modified language TB which has a
tree-like structure. In TB, XO is the exchange of subtrees
between parents and embodies the intuitive notion of XO as
the exchange of useful substructures (sub solutions), how-
ever it still uses global variables.

Huelsbergen[Hue98] evolves an assembly like language
which operates on a global register. His instruction set in-
cludes mathematical and logical functions along with con-
ditional jumps to control program flow. XO exchanges con-
tiguous groups of instructions. Mutation operates on single
instructions. A second XO operator is also used for com-
parison purposes; headless chicken XO exchanges contigu-
ous groups of instructions with a randomly created set of
instructions, and thus operates as a macro mutation, which
interestingly, performs better than standard XO.

Nordin et al. extend the Compiling GP System
(CGPS)[NB95] , which uses instructions of fixed length,
to Automatic Induction of Machine Code GP (AIM-
GP)[NBF99], which uses instructions of variable length.
The original motivation was to directly evolve machine code
avoiding the interpretation process high level languages

have to go through, achieving an impressive improvement
in speed of around 1000 times compared to LISP imple-
mentations. In CGPS, XO points are readily identifiable
as instructions are of fixed length. To avoid this issue in
AIM-GP, instructions are grouped together in fixed length
instruction blocks (the size of the blocks being a globally
defined parameter). XO exchanges these instruction blocks.
As more than one instruction may appear in an instruction
block, XO cannot separate them. Mutation can either affect
a whole instruction block, an instruction or the operand of
an instruction.

Push is a strongly typed, stack based programing lan-
guage designed for evolution [SR02]. While modularity
has been introduced into GP in the form of automatically
defined functions, in Push modularity (along with recursion
and control structures) ’comes for free’. It should be noted,
however, that modularity (recursion and control structures)
comes for free in any TC representation! GP may produce
potentially syntactically invalid programs during evolution;
there can be either too few or too many arguments on a
stack. To avoid this problem, if extra arguments are present
they are ignored, and if too few arguments are present the
instruction is ignored, thus all programs evolved are syntac-
tically valid. Traditional genetic operators are used which
exchange randomly chosen sub expressions with either a
new random sub expression or one from another individual.

3 Issues

We now consider the following issues; global memory in-
terference, the disruption of modules by XO, the halting
problem, the building block hypothesis, and the genotype
phenotype mapping by considering the representations in
section 2 and how they are manipulated by their respective
genetic operators.

All the models in section 2 have global memory. Let us
consider this in the context of the representation used by
Huelsbergen [Hue98]. If a section of code is performing
some function, it will in general access the registers (the
global memory). However, if this chuck of code is selected
for XO and is inserted into another program it will perform
a different function as there is no guarantee that the rest of
the program has left the specific registers in an appropriate
state. Register machines suffer from the problem of what
we will call global memory interference, as what one chuck
of code would do in one program, when it is crossed over
will do something else when inserted in a different program.
Similarly, the crossed over code may overwrite data in reg-
isters the rest of the program was using. It is perhaps not
surprising that headless chicken XO substantially outper-
forms standard XO in [Hue98]. GP with indexed memory
also suffers from this problem as the memory is a global
array accessed by read and write instructions. Nordin et

al.[NB95] make the note of the problem of register interfer-
ence and overcome it by storing a backup of the registers
and restoring them after a function call is completed.

Program flow is controlled in some models by either ab-
solute or relative jumps. For example, Turing Machines
typically use absolute jumps to states, whereas register ma-
chines typically use relative jumps. Let us first consider
absolute jumps. If a contiguous piece of code is selected
for XO, and transferred to a new location, whatever func-
tion it was performing before, it will almost certainly be
performing a different function in its new context as the ab-
solute position of the code may have been moved in the XO
process. Relative jumps do solve this problem, as instruc-
tions in a contiguous chunk of code will still refer to each
other, independent of their absolute position in the overall
program. However, XO may separate instructions that were
being jumped from and to (i.e. acting together), so in the
context of a new program entirely different instructions may
be jumped to. Thus XO can completely destroy the func-
tionality of a contiguous section of code by separating it.
For example consider a number of instructions which are
acting as the body of a loop (i.e. they are the content of the
loop), XO can choose a point in the body of the loop and
separate instructions which were working together. In gen-
eral, if a chunk of code is selected for XO it will perform a
different function after XO. Let us refer to this as disruption
of modules by XO.

We cannot know beforehand if a program will halt or not.
The methods discussed in section 2 all adopt the simplest
solution by putting an upper limit on the computing time of
each program in the population. This limit is removed after
evolution, allowing the program to compute on input which
may require longer to process than examples included in
the training set. (Some researchers also impose a memory
limit, however this is implied by the time limit as reading
and writing to memory require time). The main objection to
this method is that if the limit is set too low it will prohibit
solutions evolving, and if it is set too high time is wasted
waiting for non terminating programs. Unfortunately, none
of the researcher in section 2 report the proportion of pro-
grams which had to be terminated because they reached the
upper limit, or how this proportion varied during the evolu-
tion. Teller [Tel94b] describes an alternative method, based
on an analogy with cooking popcorn, where the population
is evaluated after a certain proportion of the programs have
halted. Possible other solutions include gradually increas-
ing the time limit as evolution progresses, or self adapt-
ing the limit. As a consequence of the XO operator pro-
posed, the chance of evolving a terminating program in the
next generation is increased (see section 6). This is a by
product of the original motivation of this work in propos-
ing an operator which does not suffer from the problems of
global memory interference and disruption of modules by

XO raised above.
There has been discussion about the building block hy-

pothesis, mainly in the genetic algorithm community but
also in the GP community. The motivation of XO is that
it will combine good parts of one individual with good parts
of another. However, due to the potentially destructive na-
ture of XO in TC representations, this would appear not to
be the case. Tanomaru [Tan93] drops XO in his second set
of experiments as ”the idea of XO is based on the building
blocks hypothesis, which is unlikely to hold in the case of au-
tomata generation”. Huelsbergen [Hue98] raises the ques-
tion of how beneficial building blocks are given that head-
less chicken macro mutation substantially outperforms stan-
dard XO. Nordin et al. [NBF99] claim that as compound
instructions may appear in one instruction block, XO can-
not separate these so it is easier to protect building blocks
against XO. However, the size of instruction blocks is con-
trolled by the user, and therefore does not evolve, limiting
the potential building blocks that may be produced.

Syntactically similar programs do not produce seman-
tically similar programs; changing one instruction in a
program can have catastrophic effect on its behaviour.
Teller[Tel94b] states ”because the space of algorithms is
so discontinuous, the mutation operator might almost as
well erase the old individual and make a new one from
scratch”, which indeed this was one of the operators
Tanomaru[Tan93] used. In evolution it is desirable to main-
tain a behavioural link between a program and its offspring.
Teller[Tel94b] makes the point that the success of standard
GP is due to this implicit assumption when evolving func-
tions (by functions he means representations without itera-
tion and memory), however when the GP system is extended
to be able to evolve algorithms, the landscape of the space
is highly discontinuous. A small change in a program can
produce huge changes in its behaviour. In terms of GP ter-
minology, the genotype is the program and the phenotype
is the functionality. Ideally genetic operators will generate
programs with a similar phenotype to the parent program.

4 Turing Compete Landscapes

GP moves around the search space using XO and mutation
operators. If applied without considering the representation
they can produce syntactically invalid programs. However,
most practitioners design operators, or interpretations of the
representation, to prevent this occurring. Perhaps more im-
portantly, is that the genetic operators may not produce the
required effect. The essence of XO is to take a ’contigu-
ous chunk of material’ from one individual and exchange it
with a contiguous chunk of material from another individ-
ual. The motivation for mutation is simpler than XO, but
again simply applying it without considering the represen-
tation can produce undesirable mutations.

The landscape metaphor, often used in Evolutionary
Computation, is realized in GP using the notion of graphs
(chapter 2 of [LP02]). Nodes in the graph represent pro-
grams. Links between nodes indicate that one program can
be reached from the other by one application of a genetic
operator. If probabilistic operators are used, the links can
be labeled with the probability that the transition occurs. If
XO operators are used, the probabilities are also time vary-
ing as the probability of the transition will depend on the
current population. The connectivity of the landscape is de-
fined by the representation and the genetic operators. If a
different representation or a different operator is used, this
will change the connectivity of the landscape. We will call
a landscape associated with a TC representation (and spec-
ified operator) a TC landscape. There are many equivalent
TC representations, and therefore, if suitable operators are
chosen for each representation, the landscapes defined will
be identical. Hence a landscape has a universal nature, in-
dependent of the representation and operators which define
it (i.e. a TC landscape constructed using one TC represen-
tation can be constructed using any TC representation). Let
us consider a landscape defined by a representation and a
mutation operator.

THEOREM: Given two TC representations,
�

and � , and a mutation operator, ����� � that acts
on programs represented in

�
, there exists an

identical mutation operator ������� that can be
applied to programs in � producing an identical
landscape.

PROOF: If
�

and � are TC representations,
there exists emulators, �	� � � and �
��� � that
allow programs expressed in one representation
to be expressed in the other (this is a direct
consequence of them being Turing Complete).
Suppose we have a program

��
expressed in�

and it is mutated giving
�� ��� ����� ��������� .

This operation can be emulated in � by
������� � � ����� �
��� ��� ����� ��� �
� � � � � ���������

The landscape defined by representation
�

and operator
����� � can be emulated in representation � (see Figure 2).
This result simply says that it is not worth considering the
suitability of one representation compared to another, but
rather the representation along with operators i.e. the land-
scape. For example, one may consider a tree based repre-
sentation to be more suitable than a linear representation,
however this theorem shows that whatever tree based muta-
tion operator is proposed, there exists an operator that can
be applied to the linear representation defining an identical
landscape. For example, we could evolve a Turing Machine
representation or a standard GP with indexed memory, but
ultimately whatever landscape is defined by the Turing Ma-

R’ S’

S’’R’’

R’ = emRS(S’)

S’’ = mutS(S’)R’’ = mutR(R’)

S’’ = emSR(R’’)

Figure 2: The ellipse on the left (right) is the space of all
programs represented in

�
(�). The operator ������� can be

emulated by first emulating program ��� in representation
�

,
second apply ����� � and third emulating back to the original
representation. Thus identical landscapes can be defined in
both representations

chine representation and the operator we use, there will ex-
ist an operator which acts on the standard GP with indexed
memory representation, which produces and identical land-
scape. While this theorem says that equivalent landscapes
can be defined with different representations, it may be eas-
ier to express the landscape in one representation compared
to another. The theorem applies to deterministic mutation,
but can simply be extended to include stochastic mutation
and XO.

Next we briefly consider composition as this forms the
basis for our proposed XO operator. Programs describe the
partially recursive functions, obtained by the base functions,
zero, successor and projection, and three processes of build-
ing functions from these, namely composition, recursion
and unbounded minimization. Here we will concentrate on
composition. If � �� �� and !#" �� $��%	�&�'�&% !)(�� $� are computable
then * �� $�+� � � !," �� $��%-�'�'�&% !)(�� ���� is also computable. * �� $�
is said to be constructed by composition. The outputs of
each ! function are the inputs to � (see figure 3). More-
over, if � and ! " % !). %	�&�'�&% ! (are total, * is total. The converse
however is not true; if * is total we cannot deduce that �
and ! " % !). %-�'�'�&% ! (are total. In terms of programs, if a pro-
gram halts on all inputs it corresponds to a total function
(i.e. defined on all inputs). If a program does not halt on all
inputs it corresponds to a partial function (i.e. undefined on
some inputs). Composition corresponds directly with con-
structing programs from smaller programs, which is closely
related to the building block hypothesis.

5 Proposed Representation and Crossover Op-
erator

In this section we define a module and outline some of its
features. The functional requirements of XO are described.
Finally, it is stated how these functional requirements avoid
the issues raised in section 3.

A module can be defined as a function defined in terms

g3(x)g2(x)g1(x)

f(x)

h(x) = f(g1(x), g2(x), g3(x))

x

Figure 3: Function * �� $� � � � ! " �� ���% ! �� �� . % ! �
�� $���

is con-
structed by feeding in the outputs of ! " �� �� , ! . �� �� and ! �

�� ��
into � �� $� . The large rectangle represents * �� �� and the
smaller rectangles represent � �� $� , ! " �� $� , ! . �� $� and ! �

�� $�
.

Module

input arguments

output value

Figure 4: A module and can be thought of as a black box.
It takes either none, one or many arguments (shown by an
arrow entering the box) and returns a value (shown by an
arrow leaving the box). Internally the module may consist
entirely of primitives or other modules (e.g. see figure 3)

of primitives (i.e. the function and terminal set) or previ-
ously defined modules. A module takes a number of argu-
ments (maybe none, one or many) and returns a value (see
figure 4), it can be thought of as a mapping from inputs
to output. One module may call another module, passing
arguments and returning a result. In this way more com-
plex modules can be constructed by calling simpler mod-
ules. This is the same idea that is used with automatically
defined functions (ADFs) [BNKF98]; initially ADFs are
constructed only from primitives but later new ADFs can be
constructed from previously defined ADFs. (i.e. previously
defined ADFs can be called just as if they were primitives)
(see figure 6). For a discussion of modularity see [Woo03],

Both representation and genetic operators need to be
considered together as these define the landscape of the
search space. Consideration of the building block hypothe-
sis, the intuitive idea of XO, composition of functions, and
the halting problem leads to the representation and XO op-
erator described in this section. The operations we want to
apply can be expressed either in terms of a representation
or in terms of the functions they compute. Here, the genetic
operators are illustrated in terms of functions as this is the
main idea we want to convey. Consider a function � , which
takes three arguments and ! " % !). % ! � each which take one
argument. Given two functions,

� � !," �� ���% ! . �� ���% ! �
�� ����

g3(x)g2(x)g1(x)

f(x)

g’3(x)g’2(x)g’1(x)

f’(x)

g’3(x)g1(x)g’1(x)

f’(x)

g3(x)g’2(x)

f(x)

g2(x)

Figure 5: The functions before (above) and after (below)
crossover. The functions ! " �� �� and ! �. �� �� have been ex-
changed.

and
� � � ! �" �� $��% ! �. �� $��% ! �� �� ����

are operated on by a XO operator to produce
� � ! �. �� $��% !). �� $��% ! �

�� ���� %
and

� � � ! �" �� $��% ! " �� $��% ! �� �� ����
Here ! " �� �� and ! �. �� �� have been exchanged.

XO exchanges a randomly selected subfunction from
one function for a a randomly selected subfunction from an-
other function. Note that in the case above � and ! " % ! . % ! �

maybe either functions from the function set or modules
(i.e. functions constructed by composition from the func-
tion set). This describes our functional requirements, and
one implementation of this is shown in figure 7.

Mutation is not considered in this paper. It could operate
either at the level of modules, replacing a module with a
randomly generated module, or could operate at the ’sub-
module’ level, mutating either single instructions or groups
of instructions within a module.

The issues raised in section 3 and how this model over-
comes them are now stated. Global memory interference
is avoided as each module does it processing locally, there
is no global memory in the model. XO does not disrupt
modules as it operates at the level of modules, it cannot sep-
arate instructions and moves modules about with no regard
for their origin. The probability of producing a non halt-
ing program is reduced as the modules chosen for XO are
more likely to represent total functions (more is said about
this in section 6). As the XO operator respects modules,
it is more likely that useful building blocks may propagate
over the generations, rather than having their functionality
destroyed. Finally, semantic links are maintained as sub-
functions are swapped, hence, XO and mutation can only
produce syntactically valid programs. No obscure meth-
ods of interpretation need to be invented (as with the Push
language[SR02]) to avoid the problems of stack underflows
or overflows. This model of local processing is illustrated in
figure 6 where each module only communicates with other

return result

Module 2

Module 1

Module 3

Figure 6: A modular architecture. A program is composed
of modules, each does it processing locally (i.e. it cannot
write to global memory, only local memory), communicat-
ing with the rest of the program by being passed arguments
and returning a value. Here modules 2 and 3 receive input,
process it and pass their output to module 1. One way to
implement this is shown in figure 7

ADF0

defintion
of ADF0

function argument
list

main program
body of

memory local to main program

memory local to ADF0

program

Figure 7: This figure shows how modules could be imple-
mented, here GP with local indexed memory is used. If a
module is moved to a different location it will perform the
same function.

modules by receiving arguments and passing values.
It should be emphasized that what is described above is

precisely what standard GP does, subtrees in an individual
are replaced with other subtrees, which corresponds exactly
to the idea of composition. When a subtree is moved by
XO to a new location it performs the same function it was
before XO. However, this is not what happens with GP with
indexed memory, as the memory is global and so suffers
from global memory interference (i.e. when a subtree is
moved by XO to a new location it will not perform the same
function it was before XO). A model which would realize
the above operators is GP with local indexed memory with
ADFs (see figure 7).

6 Discussion

Some GP practitioners have started to include modularity,
memory and iteration into standard GP. Often this includes
extending the representation by adding automatically de-
fined functions, external indexed memory or an iterative
construct. These features are implicitly present in any TC
representation. The interesting question is how to explore
the space of TC programs. It makes no sense to talk about
a good TC representation for TCGP, as what can be done
in one representation can be achieved in any other TC rep-

resentation. However, it may be easier to express a genetic
operator for one representation and difficult to express it for
another (e.g. expressing XO at modular boundaries for a
Turing Machine representation is possible in principle but
more involved in practice). Here we propose a representa-
tion where module boundaries are explicit.

It is appealing to equate building blocks with modules,
however there are a number of problem with this. Firstly it
is very difficult to assign a fitness value to a module based
on its performance when it is part of a larger program (this
problem is not addressed in this paper). Secondly, the larger
a module is the more likely it is to be disrupted by XO. In the
examples in section 2 the XO points are chosen with uni-
form probability across the representation, and no attempts
are made to identify structure within the program, thus the
larger a module, the more likely it is to be disrupted. This
is avoided by using a representation where the modules are
explicit and XO operators only at the level of modules.

One problem with TCGP is that many genetic operators
destroy the semantic links between parents and offspring.
In this paper, careful consideration has been given to the
reasons why. The problem of global memory interference
was introduced and this led to the proposal that modules
must do their memory processing locally, having arguments
passed to them and returning a value, rather than referring
to global memory. The problem of program flow was also
discussed, and the disruption XO can cause if instructions in
one potential module are separated by a XO operation. This
suggested, along with consideration of construction of com-
putable functions by composition and the building block hy-
pothesis, that modules should be moved around as complete
independent units.

The halting problem is a central issue for TCGP. If an up-
per limit is not imposed on the execution time of a program
in the population, GP would end up waiting indefinitely for
non-terminating programs. Any reasonable fitness function
should favour termination over non termination (within the
limit imposed), typically assigning the lowest fitness value
to non-terminating programs. This provides an evolution-
ary pressure towards halting programs. As stated earlier,
the composition of terminating programs will produce a ter-
minating program. The converse is not true; observing that
a program halts (on the test cases) does not imply that all
the modules in that program halt. However, with a XO op-
erator that respects the functionality of the modules, along
with a fitness function that favours halting programs, halting
modules are more likely to survive and propagate through
the population over a number of generations. Hence we
are more likely to produce halting programs. The upper
limit cannot be removed as there will always be a chance
that non-terminating programs will be produced, however
this XO operator will reduce the chances of producing a
non-terminating program in the next generation, and there-

fore reduce the amount of time waiting for non-terminating
programs. There is no guarantee that mutation of a halt-
ing program will produce a halting program, but mutation
should still be used as it is an important method of intro-
ducing new genetic material into the population, preventing
premature convergence. Hence as evolution progresses the
mutation rate should be lowered in comparison with the XO
rate, which is what most practitioners do anyway.

It is productive to consider three different but very sim-
ilar TC representations, namely GP with indexed memory.
GP with indexed memory and ADFs, and GP with local in-
dexed memory and ADFs. These illustrate the differences
between TC representations, namely a TC representation,
a TC representation with explicitly defined modules, and a
TC representation with local memory and explicitly defined
modules. Firstly, GP with indexed memory is Turing Com-
plete, however it is argued that this is not a suitable repre-
sentation to evolve because of the problem of global mem-
ory interference. Secondly, GP with indexed memory and
ADFs is also Turing Complete. ADFs do not add any ex-
pressiveness to the representation. What ADFs do achieve
is that they make modules explicit and XO needs to iden-
tify modules, as it operates at this level. Finally consider
GP with local indexed memory and ADFs. When XO ex-
changes subtrees, it is unlikely that they will be performing
the same function they were performing before XO, due to
global memory interference. Hence only memory local to
each ADF is allowed. Instructions in a given ADF can only
read and write to local memory associated with that ADF.

All TC representations are implicitly capable of express-
ing modularity. If the representation is TC, the functions it
can represent correspond to primary recursive functions and
this implies they are capable of modularity. However it may
be difficult to identify modules in any TC representation.
If we provide an explicit method to express modules, XO
can readily identify what portions of code it can exchange.
It should be stated that while there is a way to explicitly
express modules, there will also be implicit modules. For
example, within a single explicitly defined module, implicit
modules will also exist.

The output of GP is often novel and messy making its in-
terpretation problematic. As GP starts to scale to larger and
larger problems, the job of interpretation can only get more
difficult. The XO operator presented provide a more struc-
tured approach resulting in clearly defined modules. As pro-
grams are evolved in a modular fashion this makes the anal-
ysis potentially easier as each module can be interpreted in
isolation.

7 Summary

Standard GP is often not concerned with the evolution of
TC representations, however recently researchers begun to

extend standard GP in an attempted to evolve TC represen-
tations. This paper reviews a number of TC representations
and genetic operators used to manipulate them. We point
out a number of potentially undesirable effects result from
these representations and their genetic operators. Firstly,
there is the problem of global memory interference. If a
piece of code is moved to another location in a different pro-
gram by XO, it may perform a different function depending
on the state of the global memory. Secondly, standard XO
can disrupt modules by separating instructions which were
acting together.

A novel XO operator is introduced which operates at the
level of (explicitly defined) modules avoiding these prob-
lems. The first problem is avoided by only having memory,
which is local to an explicit module. The second problem is
avoided by only allowing XO to operate at the level of mod-
ules which are explicit in this representation, as opposed to
implicit in some models (e.g. Turing Machines and assem-
bly language type representations where modules exist but
are not immediately obvious). Hence modules are moved
around by the XO operator as a functional units, perform-
ing the same function they were performing before being
moved by the XO operator. Each module is passed a num-
ber of arguments, which are processed locally (i.e. a module
only has access to local memory), and returns a value.

This XO operator corresponds to the construction of
functions by composition, one of the operations used in the
theory of recursive functions. It is stated that by using a
XO, which is essentially a composition operator, programs
that are evolved are more likely to be self-terminating (self-
terminating meaning that the program terminates within the
upper bound set by the user). If a module appears in a num-
ber of self-terminating programs, then it is likely that the
module is also self-terminating. Provided the fitness func-
tion assigns a high fitness value to halting programs, and a
low value to non-terminating programs (i.e. which have to
be halted externally as they have reached the upper bound
on execution time), there will be an evolutionary pressure
towards self-terminating programs. As programs are ob-
served to halt, the modules within them are more likely to
propagate through the population with the use of this XO
operator. The same cannot be said about mutation operators
(i.e. we cannot predict if a self-terminating program will
still self-terminate after mutation) and therefore it is sug-
gested that the mutation rate is reduced during the evolution
to increase the chances of evolving a self-terminating pro-
gram using this XO operator.

8 Acknowledgments

Xin Yao, Jon Rowe, Stefano Cattani,

Bibliography

[BNKF98] Wolfgang Banzhaf, Peter Nordin, Robert E.
Keller, and Frank D. Francone. Genetic Pro-
gramming – An Introduction; On the Automatic
Evolution of Computer Programs and its Ap-
plications. Morgan Kaufmann, dpunkt.verlag,
January 1998.

[Cra85] N. L. Cramer. A representation for the adap-
tive generation of simple programs. In Interna-
tional Conference on Genetic Algorithms and
Their Applications., pages 183–187, July 1985.

[Hue98] Lorenz Huelsbergen. Finding general solutions
to the parity problem by evolving machine-
language representations. In John R. Koza,
Wolfgang Banzhaf, Kumar Chellapilla, Kalyan-
moy Deb, Marco Dorigo, David B. Fogel,
Max H. Garzon, David E. Goldberg, Hitoshi
Iba, and Rick Riolo, editors, Genetic Program-
ming 1998: Proceedings of the Third Annual
Conference, pages 158–166, San Francisco,
CA, USA, 1998. Morgan Kaufmann.

[LP02] W. B. Langdon and Riccardo Poli. Foun-
dations of Genetic Programming. Springer-
Verlag, 2002.

[NB95] Peter Nordin and Wolfgang Banzhaf. Evolv-
ing turing-complete programs for a register ma-
chine with self-modifying code. In L. Es-
helman, editor, Genetic Algorithms: Pro-
ceedings of the Sixth International Confer-
ence (ICGA95), pages 318–325, Pittsburgh, PA,
USA, 15-19 1995. Morgan Kaufmann.

[NBF99] Peter Nordin, Wolfgang Banzhaf, and Frank D.
Francone. Efficient evolution of machine code
for CISC architectures using instruction blocks
and homologous crossover. In Lee Spector,
William B. Langdon, Una-May O’Reilly, and
Peter J. Angeline, editors, Advances in Genetic
Programming 3, chapter 12, pages 275–299.
MIT Press, Cambridge, MA, USA, June 1999.

[SR02] Lee Spector and Alan Robinson. Genetic pro-
gramming and autoconstructive evolution with
the push programming language. Genetic Pro-
gramming and Evolvable Machines, 3(1):7–40,
March 2002.

[TA96] Julio Tanomaru and Akio Azuma. Automatic
generation of turing machines by a genetic ap-
proach. In Daniel Borrajo and Pedro Isasi, ed-
itors, The First International Workshop on Ma-

chine Learning, Forecasting, and Optimization
(MALFO96), pages 173–184, Gatafe, Spain,
10–12 1996.

[Tan93] Julio Tanomaru. Evolving turing machines
from examples. In J.-K. Hao, E. Lutton,
E. Ronald, M. Schoenauer, and D. Snyers,
editors, Artificial Evolution, volume 1363 of
LNCS, Nimes, France, October 1993. Springer-
Verlag.

[Tel94a] Astro Teller. The evolution of mental models.
In Advances in Genetic Programming, chap-
ter 9, pages 199–219. MIT Press, 1994.

[Tel94b] Astro Teller. Genetic programming, indexed
memory, the halting problem, and other cu-
riosities. In Proceedings of the 7th annual
Florida Artificial Intelligence Research Sympo-
sium, pages 270–274, Pensacola, Florida, USA,
May 1994. IEEE Press.

[Tel94c] Astro Teller. Turing completeness in the lan-
guage of genetic programming with indexed
memory. In Proceedings of the 1994 IEEE
World Congress on Computational Intelligence,
volume 1, pages 136–141, Orlando, Florida,
USA, 27-29 1994. IEEE Press.

[VR01] Edgar E. Vallejo and Fernando Ramos. Evolv-
ing turing machines for biosequence recogni-
tion and analysis. In Julian Miller, Marco
Tomassini, Pier Luca Lanzi, Conor Ryan, An-
drea G. B. Tettamanzi, and William B. Lang-
don, editors, Genetic Programming: 4th Euro-
pean conference, volume 2038 of LNCS, pages
192–203, Berlin, 18-20 April 2001. Springer.

[Woo03] J. R. Woodward. Modularity in genetic pro-
gramming. In Genetic Programming, Proceed-
ings of EuroGP 2003, Essex, UK, 14-16 2003.
Springer-Verlag.

