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ABSTRACT

Latent force models are a Bayesian learning technique that com-

bine physical knowledge with dimensionality reduction — sets of

coupled differential equations are modelled via shared dependence

on a low-dimensional latent space. Analogously, modal sound syn-

thesis is a technique that links physical knowledge about the vi-

bration of objects to acoustic phenomena that can be observed in

data. We apply latent force modelling to sinusoidal models of au-

dio recordings, simultaneously inferring modal synthesis param-

eters (stiffness and damping) and the excitation or contact force

required to reproduce the behaviour of the observed vibrational

modes. Exposing this latent excitation function to the user con-

stitutes a controllable synthesis method that runs in real time and

enables sound morphing through interpolation of learnt parame-

ters.

1. INTRODUCTION

Modal synthesis aims to reproduce the behaviour of the vibrational

modes of a sounding object, through consideration of its physical

properties [1]. If all the required physical properties are known,

then the frequency and amplitude of the modes can be calculated.

Alternatively, by taking the Fourier transform of a recording of

the sounding object, we can observe these same features empiri-

cally. Hence we have a clear link between the physics of vibrating

objects and observable acoustic behaviour. This has often been ex-

ploited to construct models for sound synthesis that provide users

with both physical and phenomenological control [2, 3, 4].

In [4], modal synthesis parameters were learnt automatically

from recordings of impact sounds by assuming the excitation force

to be an impulse and inferring the modes’ mass, stiffness and

damping coefficients from data. Others have constructed detailed

physical models for source-filter interaction, and set the filter pa-

rameters corresponding to observed peaks in the frequency spec-

trum [2, 5].

Recent work in the machine learning community, namely the

development of latent force models (LFM), has shown that it is

possible to build a model which incorporates physical knowledge

and to fit it to data via an inference procedure [6]. We adopt this

approach to formally use learnings from audio recordings to con-

struct a simple mechanistic model for modal synthesis that is gen-

eralisable to a large class of sounds.

Our framework for synthesis utilises sinusoidal analysis [7, 8]

to track modes over time, and makes assumptions about the be-

haviour of modes by representing their amplitude with first order

ordinary differential equations (ODEs). The introduction of such

ODEs into the model prior, a latent force model, allows us to infer

both the system parameters and the excitation function required to

reproduce the observed outputs. It does so by coupling the modes’

amplitudes through consideration of their common dependence on

a low-dimensional latent space, in this case the one-dimensional

excitation function. The result is a real-time synthesis model that

allows for user control and sound morphing. Interactive sound ex-

amples and MATLAB code for latent force modelling of sinusoidal

amplitude data are provided.†

We formulate our problem in Section 2. In Section 3 we sum-

marise the relevant literature relating to sound synthesis and latent

force models. In Section 4 we present our approach to the appli-

cation of latent force modelling to audio. Section 5 outlines how

our approach can be utilised to perform real-time synthesis and

sound morphing, and Section 6 presents empirical results and case

studies.

2. PROBLEM FORMULATION

Consider M modes of vibration of a sounding object, for which

we obtain observation data from sinusoidal analysis of an audio

recording. We assume the frequencies fi of the modes to be fixed

and that the amplitudes xi(t) are modelled by exactly one excita-

tion function u(t) being fed through an idealised physical system:

dxi(t)

dt
+Digx(xi(t)) = Sigu(u(t)), i = 1, ...,M, (1)

where coefficients Di and Si relate to physical properties of the

ith mode, with gx and gu being potentially nonlinear functions of

outputs xi and input u respectively.

The task is to fit our data to this model in such a way that we

can infer all the system parameters {Si, Di}
M
i=1 and predict the

behaviour of u(t). Doing so constitutes transformation of the data

to a one-dimensional control space. With resynthesis in mind, we

must encourage realistic parameters relating to stiffness and damp-

ing of the modes to be learnt, and require the predicted behaviour

of u(t) to be interpretable as physical energy driving the system.

After the model has been fit, the output audio signal Y can

be synthesised through summation of sinusoids with the recon-

structed amplitudes (and initial phase φi):

Y (t) =

M
∑

i=1

xi(t)sin(2πfit+ φi). (2)

†http://c4dm.eecs.qmul.ac.uk/audioengineering/latent-force-synthesis
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3. BACKGROUND

3.1. Sound Synthesis

Physics-based approaches to sound synthesis vary from detailed

numerical simulation of the sound production mechanism repre-

sented by differential equations [9, 10], to standard digital fil-

tering techniques informed by those same differential equations

[5, 11]. These approaches require significant knowledge regarding

the complex interactions that produce sound, and as such are lim-

ited to systems for which much of the pertinent physics are known.

Modal synthesis is a more generalisable, physically-inspired

approach which typically represents the vibrational modes of a

sounding object as a set of decoupled second-order differential

equations, also known as mass-spring-damper systems [1, 2]. The

forced mass-spring-damper corresponding to the ith mode has co-

efficients relating to mass mi, springiness (or stiffness) ki and

damping bi:

mi
d2Xi(t)

dt2
+ bi

dXi(t)

dt
+ kiXi(t) = u(t), (3)

where u(t) is the forcing function that excites the system. The

exact sound production mechanism is not modelled in full detail.

Instead it is assumed that sound is produced through the vibration

of an object or column of air, and that the frequency and relative

amplitude of these vibrations can be predicted based on mass, stiff-

ness and damping parameters determined by the physical proper-

ties of the object.

The solution to these mass-spring-damper systems is a bank

of modes,

Xi(t) = xi(t)sin(2πfit+ φi), (4)

with time-varying amplitude xi(t), frequency fi and initial phase

φi, referred to as damped sinusoids, or oscillators. In traditional

modal synthesis u(t) is assumed to be an impulse, and we obtain

the solution xi(t) = αie
−βit where αi and βi are the amplitude

and damping of the mode respectively. If we allow u(t) to be

unconstrained, then no analytical solution for the amplitude exists.

In the present work we will constrain u(t) by placing a Bayesian

prior on its possible values (Section 3.2).

Sinusoidal modelling [7, 8] is an analysis-synthesis technique

that compartmentalises a sound into its deterministic and stochas-

tic components, and models the deterministic part as a sum of si-

nusoids such as those in equation (4). Energy is tracked through

sequential frames of the Short Time Fourier Transform to create

"partials" — sinusoids with frequency and amplitude that can vary

over time.

Links between physical models and statistical behaviour have

been exploited in the past to design hybrid synthesis frameworks

that learn sound characteristics from data whilst enabling control

through spectral transformation [4] or by learning a mapping be-

tween computed audio descriptors and a performed control space

[12]. Our approach is to view sinusoidal data as the output of a se-

ries of digital filters representing the amplitudes xi(t) of the phys-

ical modes. This motivates the introduction of such filters (in ODE

form) into the prior assumptions for a machine learning algorithm

looking to infer knowledge from audio recordings.

3.2. Latent Force Models

Latent force models [6] are a probabilistic approach to modelling

data which assumes that M observed output functions are pro-

duced by some R < M unobserved (latent) functions being forced

through a set of differential equations. If this set of differential

equations represents some physical behaviour present in the sys-

tem we are modelling, even if only in a simplistic manner, then

such a technique can improve our ability to perform inference from

data [13, 14]. This is achieved by placing a Gaussian process prior

[15] over the R latent functions, calculating the cross-covariances

by solving the ODEs, and performing regression.

Standard latent force modelling involves batch processing of

data using prediction equations that involve inversion of large co-

variance matrices. This motivates the reformulation of the system

into its state space representation which allows for inference on

sequential time points [16]. This also gives us an intuitive form

with which to perform resynthesis (Section 4.3).

The aim here is to construct a joint model which incorporates

all of our ODE parameters and our assumptions about the input.

From this point onwards we assume R = 1, since we are attempt-

ing to model a one-dimensional excitation force. The introduction

of additional forces is straightforward, but not explored here.

Suppose we can describe the ith output xi by this linear first-

order ODE:
dxi(t)

dt
+Dixi(t) = Siu(t). (5)

We must now assume that u(t) can be modelled by a linear time

invariant (LTI) stochastic differential equation (SDE) of the form

dpu(t)

dtp
+ap−1

dp−1u(t)

dtp−1
+ ...+a1

du(t)

dt
+a0u(t) = w(t), (6)

where p is the model order and w(t) is a white noise process. If

the covariance function chosen as part of the Gaussian process as-

sumption cannot be written in this form with finite p, then approx-

imations must be used. Here we choose p = 3, which is sufficient

to represent the Matérn covariance function [15].

The joint state space model is constructed by inserting the

coefficients of (5) and (6) into the transition matrix for a stable

Markov process driven by w(t):

dx(t)

dt
= Fx(t) + Lw(t), (7)

where, if u̇ represents the first differential of u w.r.t t,
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This state space model includes all the necessary parameters,

and we discretise it using standard techniques involving calcula-

tion of the matrix exponential. Its discrete form is

x[tk] = F̂ [∆tk]x[tk−1]+q[tk−1], q[tk−1] ∼ N(0, Q[∆tk]), (8)

where k is the time index, F̂ is the transition matrix calculated us-

ing the matrix exponential of F , and Q is the process noise matrix
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calculated using the spectral density of w(t). ∆tk is the discrete

time step size. Our output measurement model now becomes

y[tk] = Hx[tk] + ǫ[tk], ǫ[tk] ∼ N(0, σ2), (9)

where H is the measurement matrix that simply selects the outputs

from the joint model.

This form allows us to calculate the filtered (i.e. backwards-

looking) posterior distribution p(x[tk] | y[t1:k], θ) of the state

x[tk] given observations y[t1:k] and hyperparameters θ, for k =
1, ..., T , through application of Kalman filtering using the standard

Kalman update equations [17]. Furthermore, we can also calculate

the smoothing (i.e. backwards- and forwards-looking) posterior

p(x[tk] | y[t1:T ], θ) using the Rauch-Tung-Streibel smoother. The

implementation of these combined sequential techniques is equiv-

alent to Gaussian process regression [14, 18].

Kalman filtering therefore provides us with a method for se-

quentially estimating the state of the outputs and the latent inputs

at each point in time given our data and the hyperparameters θ,

which now include the ODE parameters. This sequential method

provides a large efficiency gain over standard batch processing,

and the Kalman filter equations also provide the necessary compo-

nents to calculate the marginal data likelihood,

p(y[t1:n]|θ) =

n
∏

i=1

p(y[ti] | y[t1:i−1], θ). (10)

The usual approach to inference is to iteratively optimise θ by max-

imising this equation with gradient-based methods.

3.2.1. Nonlinear latent force models

During the prediction stage of Kalman filtering, we calculate

the required cross-covariances between the outputs and the latent

function by solving the necessary differential equations. However,

these calculations are only tractable if our model is linear.

Consider the ODE presented in our problem formulation (1),

in which nonlinear functions act on both xi and u(t). We can

similarly construct the LTI SDE form of this model by again con-

structing a joint state vector x(t) such that

dx(t)

dt
= g(x(t), t) + L(x(t), t)w(t). (11)

However, exact calculation of the Kalman prediction equations in

this case is not possible. Instead, the filtering and smoothing distri-

butions are approximated with Gaussian distributions and numeri-

cally computed with cubature integration methods [19].

4. LATENT FORCE MODELS FOR SOUND

The Spear software [8] is used to obtain the sinusoidal partials

from an audio recording. We then apply the above latent force

modelling techniques to map the high-dimensional sinusoidal data

to a controllable, one-dimensional latent function. In order for syn-

thesis to be intuitively controllable, parameters must be physically

meaningful and the learnt latent function must also be interpretable

in a physical sense.

Figure 1: Comparison of amplitude model choice: γ = 1 repre-

sents the standard model for the amplitude of a sinusoid. Selecting

γ < 1 alters the decay behaviour to more closely represent the

real data obtained from the decay section of the second harmonic

of a recording of a clarinet.

4.1. Modelling the Amplitude Data

Our approach is to consider M vibrational modes of a resonating

object, modelled as in equation (4), assuming the modes have fixed

frequencies. Given this assumption the problem becomes how to

model the amplitude of the modes, xi(t), i = 1, ...,M .

The analytical solution when u(t) is an impulse is xi(t) =
αie

−βit. This inverse exponential equation can be modelled with a

linear first-order ODE obtained by removing the second-order term

from the mass-spring-damper system (3). By doing so we obtain

equation (5), where Di = ki/bi and Si = 1/bi are physically

relevant parameters related to damping and stiffness of the system.

In practice, when observing real amplitude data (for which

u(t) will never truly be an impulse), we found that partials tend to

decrease in a more linear fashion than can be described by equa-

tion (5). Therefore we propose an alternative model containing a

parameter γ which alters the "linearity" of the decay of the signal,

dxi(t)

dt
+Dix

γ
i (t) = Siu(t). (12)

We found that a suitable range of values for representing real audio

data was γ ∈ [ 1
2
, 1], where a reduction in γ increases the linearity

of the decay. γ < 1/2 represents an almost straight line, whilst

γ > 1 would mean the data may never reduce to zero. No for-

mal method for selecting γ is presented here, instead we visually

inspect the amplitude data and select an appropriate value based

on the decay behaviour. Figure 1 shows the comparison between

different choices of γ.

Since predicted values of xi can go negative, raising our xi

term to the power of γ < 1 can give unwanted complex results.

Therefore in practice we take the real part of the xi term. This

compromises the smoothness of the model, but inference is still

possible with the nonlinear filtering approach outlined in Section

3.2.1, numerically approximating the solutions to these equations

rather than solving them analytically.

We aim to learn meaningful parameters representing damped

modes which reduce to zero in the absence of input. As such it

is advantageous for us to enforce a positivity constraint on input

u(t) via a function g. This has two major benefits. Firstly, the

new excitation force g(u(t)) becomes interpretable as a physical

entity; positive energy driving the system. Secondly, it encourages
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the optimiser to learn damping coefficients Di that are more phys-

ically realistic (i.e. larger / more damped), since they must enable

the system to reduce to zero when g(u(t)) = 0, whereas in the un-

constrained case this could be achieved via negative inputs rather

than damping.

A reliable positivity constraint that ensures smoothness is the

"softplus" rectification function,

g(u(t)) = log(1 + eu(t)). (13)

Introducing this nonlinearity gives us our final model for the am-

plitude of the ith damped vibrational mode of a sounding object:

dxi(t)

dt
+DiRe {xγ

i (t)} = Sig(u(t)), (14)

which is the target system formulated in (1) with gx(xi) =
Re {xγ

i } and gu(u) = g(u).

4.2. Selecting the Modes

Optimising our parameters in the latent force model framework is

a high-dimensional problem, since we have parameters Di and Si

(and the initial conditions) to estimate for all M outputs, in addi-

tion to the hyperparameters of the Gaussian process kernel for the

latent input (we use the Matérn covariance function). As such it is

common for optimisation to get stuck in local minima, and choice

of initial parameter settings can significantly affect the optimality

of our outcome.

Furthermore, we assume our outputs (the modes) to be

strongly correlated, such that a mapping to a low-dimensional

space that maintains much of their behaviour exists. The intro-

duction of partials that don’t represent vibrational modes could

compromise this assumption, in turn compromising the model’s

ability to represent the system.

We must therefore identify which partials in the sinusoidal

model are representative of the vibrational modes. If our analy-

sis signal has strong harmonic content (musical instruments, for

example), then picking the modes / harmonics is straightforward.

For inharmonic sounds (such as a hammer striking a metal plate),

energy is distributed across the sinusoidal model, and there may be

a strong noise component. In this case, selecting the modes is not

as simple as selecting the largest M partials. In Figure 2, we anal-

yse the frequency spectrum of the signal, designing a filter based

on the shape of the spectrum. We invert the filter to flatten the data,

allowing us to pick the modes of vibration from the peaks of the

filtered spectrum.

Once we have selected our M modes, we scale the observed

amplitude data to normalise their weighting prior to inference.

Note that it is possible to assign importance to particular modes by

altering the observation noise assumptions for a particular dimen-

sion of the Kalman filter. We calculate the median frequency value

for each partial, and treat their frequency as fixed from this point

onwards. Inference on the amplitude data is now performed using

the techniques outlined in Section 3.2 with the model in equation

(14).

4.3. Resynthesis with the State Space Model

After inference is performed, we obtain an optimised set of param-

eters θ, and a posterior distribution over the outputs and the latent

input. We apply an inverse scaling operation to obtain the original

magnitude weightings. The posterior distribution provides us with

Figure 2: A filter is designed by fitting a polynomial to the shape

of the frequency spectrum. The filter is inverted and applied to the

signal to flatten the spectrum. Peaks in the flattened spectrum are

then used to pick the vibrational modes of the signal.

information about the uncertainty of the prediction, and we can

compare the posterior mean of the outputs to the analysis data to

evaluate how much of the amplitude behaviour has been encoded.

Drawing samples from the distribution over the latent exci-

tation function and passing them through the model constitutes

resynthesis. Alternatively, to reproduce outputs faithful to the

analysis data, we can pass the posterior mean through the model.

To do so, we discretise equation (14) and restate it in state space

form, solving it using the Euler method. The ith output is therefore

given by the discrete model

[

xi[tk]
ẋi[tk]

]

=

[

1 ∆tk
0 0

] [

xi[tk−1]
ẋi[tk−1]

]

+

[

0
−Di

]

xγ
i [tk−1] +

[

0
Si

]

g[u[tk]],

(15)

where ∆tk is the time step size, chosen to be identical to the anal-

ysis step size in equation (8).

5. EXPRESSIVE REAL TIME SYNTHESIS AND SOUND

MORPHING

An advantage of using a relatively simple state space model such

as the one in equation (15) is its flexibility with regards to parame-

ter control and time step size. We now illustrate how we can utilise

these features to run our model in real time with user control, and

to interpolate between parameter values to manipulate the sound

timbre.
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Figure 3: Latent force modelling of a clarinet note. 6 modes are picked based on their amplitude, and the predictive mean of the output

distribution is compared to the real data (top left). The frequency data (bottom left) shows the modes are, in order of magnitude, the 1st,

3rd, 5th, 4th, 7th and 6th harmonics. The mean, ū, and 95% confidence interval (uncertainty) of the latent input u is shown (bottom right).

g(ū) is fed through the state space model to resynthesise the output (top right). Low uncertainty results in resynthesis very similar to the

predictive mean.

5.1. Real Time Synthesis

In the previous section ∆tk was fixed at the analysis time step size,

corresponding to framewise modelling. During synthesis we can

set the step size to be as large or small as required. Based on our

desired sampling frequency, we modify ∆tk such that the model

calculates sample-rate data and runs in real time.

This modification allows us to handle audio-rate input, which

may be crucial for a synthesis model that requires expressive user

control. As mentioned in Section 4.3, resynthesis can be per-

formed by sampling from the posterior distribution over the la-

tent excitation function and passing the sample through the model.

However, with the aim of user-controllable synthesis in mind, and

given that the excitation function is interpreted as physical energy

forcing the system, it is possible to replace the mean of the latent

distribution with a new function dependent on some user input.

We control the synthesis model with user input data corre-

sponding to the pressure applied to a MIDI CC button or a force-

sensing-resistor, scaling the data appropriately such that it has sim-

ilar properties to the learnt latent input. Alternatively, we provide

the user with a modifiable plot of the excitation function, which

they can re-draw and modify to create new sounds.

5.2. Sound Morphing

Our linear time-invariant synthesis model has fixed stiffness and

damping parameters corresponding to each mode. Adjusting these

parameters has an impact on perceptual characteristics relating to

timbre such as attack time, decay time and the modes’ amplitudes

relative to one another. Individual modification of these parame-

ters is possible, but not desirable if we wish to maintain coherence

across dimensions. Instead, we interpolate parameters between

models to create new sound timbres not present in the original

recordings.

Prior to parameter interpolation we match the modes between

models by ranking them in order of frequency. We also normalise

the magnitude of the excitation functions, adjusting the stiffness

parameters accordingly. For sounds without definable harmonic

structure, pairing the modes is straightforward and simply based

on their rank position. For harmonic sounds we must be careful to

match the nth harmonic in model A to the nth harmonic in model

B. If we fail to do so, interpolation of the frequency value will

compromise the harmonic structure of the sound.

Once modes have been paired we perform linear interpola-

tion of physical parameters Si, Di and the initial conditions, and

logarithmic interpolation of the frequency. Synthesis in this man-

ner negates the need for time-domain modification (such as time-

stretching) usually associated with morphing [20].

6. RESULTS

In order to show the versatility of our approach we consider two

case studies: musical instruments, demonstrated here by a short

clarinet note, and impact sounds, demonstrated by the sound of

metal being struck by a solid object. We then measure the accuracy

of our reconstructed data for a number of recordings, and show the

output produced by morphing between two different sounds.
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Figure 4: Latent force modelling of a metal impact sound. The real analysis data shows some variation in behaviour between modes (top

left). An increase in uncertainty in the posterior distribution after 0.1s reflects this fact (bottom right). The posterior mean of the latent

distribution, ū, is fed through the state space model, and the result shows that much of the variable behaviour was captured (top right).

PCA results are shown as a comparison, and we can see that the variable damping rates have not been reproduced (bottom left).

6.1. Musical Instruments

Most musical instruments have strong harmonic structure, and the

majority of the signal energy tends to be contained within rela-

tively few sinusoids representing these harmonics. By inspecting

the data and experimentally testing the results for various values

for γ, we found that musical instruments tend to have a relatively

linear decay, and a choice of γ = 1/2 fits the data best.

Figure 3 shows the results of latent force modelling of a clar-

inet note. The first 6 modes are considered, and on viewing the

mean of the distribution of the outputs (Figure 3a), we can see that

much of the behaviour has been captured in the model. The attack

of the largest mode is partially altered to fit the shape of the other

modes, since the simple mechanistic model struggles to encode

peaks that are out of phase with each other. However, the variable

damping rates have successfully been learnt, with the largest mode

reducing to zero at a much slower rate than the smallest modes.

We plot the 95% confidence interval for the latent input (Fig-

ure 3d), and observe that the uncertainty in the learnt model in-

creases towards the end of the signal, as some partials reduce to

zero and their behaviour no longer correlates with the non-zero

partials. The resynthesised outputs (Figure 3b) are almost identi-

cal to the predictive mean of the outputs when passing the mean of

the latent input, ū(t), through the model (14). This suggests that

the observed degree of uncertainty is acceptable.

6.2. Impact Sounds

Impact sounds often lack clear harmonic structure, and energy is

distributed across the frequency spectrum. In selecting just a small

number of modes, we risk losing much of the audio content. How-

ever, our selected modes are capable of reproducing much of the

deterministic character of the signal. The remainder is treated as a

residual, and not addressed here. We found that for impact sounds

a model choice of γ = 3/4 was more appropriate since the decay

rate varies as the amplitude decreases (in Figure 4a, the partials’

gradient flatten out over time).

Figure 4a shows that for a metal impact sound large varia-

tion of behaviour occurred between modes. To account for this,

a large variation of stiffness and damping parameters were learnt,

enabling much of the behaviour to be captured. Comparing the

synthesised outputs for the two largest modes in Figure 4b, we see

that whilst they have a similar attack, encoded by the stiffness or

sensitivity measure Si, they have a very different decay, encoded

by the damping measure Di.

Uncertainty in the metal impact model (Figure 4d) increased

more quickly than in the clarinet model, reflecting the fact that

behaviour is less consistent across these vibrational modes than

across the harmonics of the clarinet. In particular we observe an

increase in uncertainty after the initial attack, when the modes’

behaviour begins to diverge from one another.

6.3. Model Accuracy and Comparison with PCA

To evaluate our results we calculated the root-mean-square (RMS)

error between the actual data and our synthesised outputs. This

gives us a measure of our ability to reproduce the analysed si-

nusoidal partials. Readers are also invited to listen to the sound

examples provided.
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Figure 5: Sound morphing between an oboe and a clarinet. The modes of an oboe (left) are matched with the modes of a clarinet (right)

and colour-coded based on their pairings. Since the modes represent harmonics, it is important to maintain the harmonic structure, so the

2nd mode of the oboe does not have a match. Similarly, the 6th mode of the clarinet is not matched. Stiffness and damping parameters are

interpolated, and a user-drawn excitation function of arbitrary length is used to produce the morphed output (middle).

As a comparison, we run principal component analysis (PCA)

on our amplitude data. PCA is another dimensionality reduc-

tion technique that similarly maps high-dimensional data to a

lower-dimensional space through an input-output process (a sim-

ple scalar weighting), providing us with a set of orthogonal vari-

ables, called principal components, ranked in order of how much

of the data’s variance they describe.

Latent force modelling has many benefits over PCA, such as

physical interpretability, model memory (PCA is an instantaneous

mapping), the ability to introduce nonlinear mappings between in-

puts and outputs, and a probabilistic framework for calculating

uncertainty and resampling new data (although probabilistic PCA

techniques also exist). Regardless, PCA is a worthwhile compari-

son due to its simplicity and reliability.

Figure 4c shows the results of PCA on a metal impact

sound. Using just one principal component to reproduce the 8-

dimensional output fails to capture much of the behaviour, most

notably the variable damping rates. With the one-dimensional

LFM we are able to capture much more of the behaviour (Figure

4b). Note that it is possible to introduce more principal compo-

nents, and also possible to run latent force modelling with more

than one latent dimension, but this violates our assumption that

the modes are produced by a common excitation function.

Table 1 compares the RMS error for latent force modelling and

PCA for a number of audio recordings. The data is normalised to

give equal weighting to each dimension of the model. When dis-

parate behaviour occurs across dimensions, latent force modelling

is more accurate than reconstruction with one principal compo-

nent. For recordings in which the dimensions have high correla-

tion, such as the oboe, even one principal component sometimes

outperformed the latent force model. This poor performance of

the LFM for the oboe could be due to the optimisation procedure

converging on a sub-optimal local minimum, or due to the fact that

the oboe partials reduce to zero at an almost linear rate, and their

behaviour was not fully captured by our choice of γ = 1/2, i.e. a

more optimal choice of γ exists.

RMS error

Audio recording LFM PCA

Clarinet 0.0325 0.0593

Oboe 0.0189 0.0156

Piano 0.0441 0.0520

Metal impact 0.0377 0.0609

Wooden impact 0.0139 0.0291

Table 1: Root-mean-square (RMS) error between modal amplitude

data and outputs of latent force modelling (LFM) and principal

component analysis (PCA). The LFM outperforms PCA when dis-

parate behaviour across dimensions is observed.

6.4. Morphing

Figure 5 shows the results of sound morphing between recordings

of an oboe and a clarinet. A user-drawn excitation function is used

as input to the morphed model (Figure 5b) and we observe the ex-

pected change in relative amplitudes. The modes of the oboe have
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much faster decay times than the clarinet, and visual inspection of

the morphed sound confirms that decay rates in between these two

extremes are achieved.

7. CONCLUSIONS

The aim of this work was to demonstrate our ability to learn about

the physical behaviour of sound from recordings. Such an ap-

proach will aid those looking to design and build synthesis models

that are faithful to the real-world sounds we hear around us, whilst

also providing opportunities for control and expression.

We utilised knowledge about the way in which objects vibrate

to produce sound to construct a simple mechanistic model for the

behaviour of sinusoidal modes. Although this model does not de-

scribe all the physical interactions that create sound, its simplicity

enables the application of nonlinear latent force modelling tech-

niques to infer physically relevant parameters from audio record-

ings, in addition to the excitation required to produce meaningful

output.

After the learning process was complete, we demonstrated

how to perform synthesis in this framework, adapting the model

to run in real time with user control. We then provided a way

to manipulate sound characteristics through parameter morphing.

We showed how the model often outperforms PCA when attempt-

ing to map sinusoidal data to a one-dimensional control space, but

noted how higher accuracy is not guaranteed since we rely on a

high-dimensional optimisation procedure to find suitable parame-

ter values.

As future work, the inference process would benefit greatly

from intelligent selection of initial conditions to aid optimisation in

finding appropriate solutions. Automatic identification of linearity

measure γ, or inclusion of γ as a parameter to be optimised during

inference, would also be highly beneficial. The introduction of

additional latent functions would allow us to model more complex

systems with multiple control inputs.

Subjective evaluation of our ability to reproduce the quality of

a given audio recording was not presented here, but is necessary

to further assess the suitability of our approach. Complex ampli-

tude modulation is difficult to model if the modes’ peaks are out

of phase with each other, and a system that allows for variable

frequency would greatly improve its applicability. Finally, consid-

eration of the residual component of the signal is crucial for further

development of these techniques.
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