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ABSTRACT
The measurement of perceived loudness is a difficult yet im-

portant task with a multitude of applications such as loudness align-
ment of complex stimuli and loudness restoration for the hear-
ing impaired. Although computational hearing models exist, few
are able to accurately predict the binaural loudness of everyday
sounds. Such models demand excessive processing power making
real-time loudness metering problematic. In this work, the dy-
namic auditory loudness models of Glasberg and Moore (J. Audio
Eng. Soc., 2002) and Chen and Hu (IEEE ICASSP, 2012) are pre-
sented, extended and realised as binaural loudness meters. The
performance bottlenecks are identified and alleviated by reducing
the complexity of the excitation transformation stages. The ef-
fects of three parameters (hop size, spectral compression and filter
spacing) on model predictions are analysed and discussed within
the context of features used by scientists and engineers to quantify
and monitor the perceived loudness of music and speech. Parame-
ter values are presented and perceptual implications are described.

1. INTRODUCTION

The need to measure perceived loudness is imperative within fields
such as psychoacoustics and audio engineering. In particular, ac-
curate loudness alignment of complex stimuli is crucial when con-
ducting controlled listening experiments and configuring multi-
channel systems [1]. In broadcasting, the loudness of a wide range
of program material must be consistent yet natural to maintain a
comfortable listening experience. In recent years, a number of
researchers in the automatic mixing community [2, 3] have devel-
oped systems to automatically balance the loudness of multi-track
content according to perceptual loudness features extracted from
the audio.

Although there is a clear need for models of loudness, develop-
ers of real-time applications are often forced to sacrifice prediction
accuracy. The purpose of this paper is to demonstrate how the dy-
namic loudness models proposed by Glasberg and Moore [4] and
Chen and Hu [5] can be modified to obtain fast and efficient es-
timates of perceived loudness whilst maintaining agreement with
empirical data. Before describing the models in detail, background
information on single and multiband approaches to loudness pre-
diction is given.

1.1. Loudness Models

Following the ITU broadcast standard [6] first published in 2006,
subsequent EBU recommendation [7] and metering specifications
[8] and related standards [9], a number of commercial loudness
meters have appeared over the past few years. These meters em-
ploy single band loudness models which consist of a frequency
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Figure 1: Block diagram of a simplified loudness model. Dotted
boxes indicate stages used by multiband models.

weighting function, simulating the transmission response of the
outer and middle ear, followed by an energy integrator. Such ef-
ficient estimators have proven to work well on broadcast material
[10] and have been extended to capture the perception of single
instruments [11] making them attractive candidates for real-time
meters [12].

In contrast to single band loudness models, sophisticated multi-
band models founded on empirical measurements of auditory fil-
ters and excitation patterns [13, 14, 15] have received little interest
outside of psychoacoustics. As shown in Figure 1 multiband mod-
els also correct for the response of the outer and middle ear, but
go a step further by accounting for the frequency selectivity of the
cochlea. The signal is decomposed into frequency bands by means
of an auditory filter bank. The output of the filter bank is called an
excitation pattern and approximates the distribution of energy on
the basilar membrane. When plotted as a function of filter centre
frequency, the frequency scale is transformed to a perceptual scale
with units Cams [16]. A compressive nonlinearity, modelled either
as part of the filter bank or separately, describes the active mech-
anism of the auditory system. The specific loudness (SL) pattern
represents compressed intensity as a function of filter centre fre-
quency with units sones/Cam, where sones is the unit of loudness
[17].

The spectral integration stage calculates the area under the SL
pattern which estimates the instantaneous loudness (IL). This is
the key aspect of multiband models that differentiate them from
their single band counterpart. For narrow-band noise of constant
intensity, loudness increases once its spectral bandwidth exceeds
a critical bandwidth [13]. Single band models cannot account
for this phenomenon known as spectral loudness summation. For
time-varying sounds, the IL is smoothed by either a low-pass filter
or empirically derived sliding window. Dynamic models output
a loudness time series, from which various features can be com-
puted, such as average or peak loudness. In short, multiband mod-
els have been shown to explain the observed variations in loudness
caused by experimental factors such as sound intensity, frequency,
spectral bandwidth and masking [18, 19].

The primary drawback of multiband models is their computa-
tional demand which consequently limits their application. This
work explores this problem by optimising the excitation based
loudness models of Glasberg and Moore [4] and Chen and Hu [5],
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referred to as the GM02 and the CH12 respectively. Both mod-
els are refinements of Zwicker’s stationary-sound loudness model
[18] and have been extended to deal with time-varying sounds
(see [20] for a detailed historical review). The key difference be-
tween Zwicker’s and Glasberg and Moore’s procedure is the way
in which excitation patterns are computed and the equations defin-
ing the critical bandwidth as a function of frequency. The proce-
dure used by the GM02 is based on more recent measures of au-
ditory filters [14] and excitation patterns are directly derived from
the output of the filter bank [21]. The revised model for steady-
state sounds accurately predicts absolute thresholds, equal loud-
ness contours and binaural loudness and became the basis for the
2007 ANSI standard [22].

The model of Chen and Hu is important because unlike its
predecessors, the active process within the cochlea is modelled as
an integral part of the filter bank [23] - there is no transformation
from excitation to specific loudness. This is consistent with the
idea that frequency selectivity and cochlear compression are the
result of a single active process [24]. The authors of this recent
loudness model also made improvements to the spectral decom-
position procedure specified by Glasberg and Moore to correct for
inflated loudness estimates.

1.2. Faster Multiband Models

Efficient implementations based on the core excitation model used
by the GM02 have been established. In [25] a real-time loudness
meter was developed with optimisations at the excitation trans-
formation stage for increased efficiency. Although this model ac-
counted for the loudness of short duration sounds it was less ac-
curate in predicting the loudness of amplitude-modulated sounds
compared to the GM02 as discussed in [26]. A binaural loud-
ness device was established by [27] but the temporal integration
and binaural summation stages were simple approximations when
compared to more recent techniques [4, 28]. Other authors have
concentrated on fast calculation of excitation patterns by using
pruning techniques [29, 30] or making use of nonuniform spec-
tral sampling [31, 32]. These proposals were specific to the GM02
and it is not clear how flexible they are, e.g. when a specified error
limit is to be achieved. Finally, Burdiel et al. [33] discussed the
computation savings of the GM02 obtained through parameterisa-
tion. Importantly, they demonstrated that reducing the number of
analysis bands gave minimal impact on loudness estimates of mu-
sical sounds when compared to the effects of other parameters. Al-
though real-time performance was obtained, that implementation
was limited to monaural sounds and again specific to the GM02.

A full binaural dynamic loudness meter incorporating more re-
cent loudness theory has not yet been established. It is the purpose
of this study to present efficient parameterised implementations of
both the GM02 and CH12 to facilitate real-time binaural loudness
metering, with a focus on analysing the errors introduced. Addi-
tionally, the models have been realised as software plugins for use
in digital audio workstations1

An overview of both models and implementational details of
the meter is given in Section 2. In Section 3, the procedure used to
analyse the performance of the models is provided and results are
outlined in Section 4. Section 5 discusses key findings and draws
comparisons to previous approaches, before concluding remarks
and suggestions for future work are given in Section 6.

1Code available at https://github.com/deeuu/LoudnessMeters.
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Figure 2: Block diagram of the loudness models and meter inter-
face. Bold text indicates parameters investigated in this study.

2. MODELS AND METER IMPLEMENTATION

In this section the GM02 is described first, followed by the CH12.
Developments for the meter are subsequently outlined before per-
formance profile reports are summarised. The structure of both
loudness models within the context of the binaural meter is given
in Figure 2. The time-domain input signal can be either from a
microphone, head and torso simulator (HATS) or digital record-
ing (mono or stereo). A calibration stage is required to anchor the
signal to a known reference. In order to reduce both latency and
computational load, a third order Butterworth high-pass filter is
applied to approximate the low-frequency response of the middle
ear and the remaining outer and middle-ear filtering is conducted
in the frequency domain [32]. This is in contrast to the 4096 order
FIR used in the original model [4].

Short-term multi-resolution power spectra are obtained via six
parallel FFTs. The six segments are obtained using Hann win-
dows, with each successive window half the length of the previ-
ous. The windows are aligned at their centres via zero-padding.
The FFTs are updated every millisecond, but the window hop size
(time-step) was exposed as a free parameter. A spectral compres-
sion stage was added to reduce the number of components in the
composite spectrum. This achieves a compact power spectrum
by summing components into composite bins, the width of which
increases with frequency. More specifically, the algorithm tries
to maintain a constant spacing between components on the Cam
scale. This reduces the number of components significantly in or-
der to simplify the computation of excitation patterns as suggested
in [25] and is similar to the enhancement used in the GM02 imple-
mentation by [34].

The power spectrum is then weighted according to the presen-
tation of the stimulus [22]: free-field, diffuse-field or middle ear
only (HATS). An additional BeyerDynamic DT990 option is avail-
able for simulating headphone presentation. The transfer function
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of the headphone capsules were measured on an artificial ear.
The power spectrum is transformed to an excitation pattern

using a bank of rounded exponential (roex) filters equally spaced
from 1.8 to 38.9 Cams in steps of 0.1, yielding a total of 372 filters
[22]. The shape of the filters are level dependent and have to be
re-evaluated on every frame. In our implementation, filter shapes
are computed according to [15], but a lookup table is employed
to save on computing exponentials. As with hop size and spectral
compression criterion the filter spacing was also made variable.

Following [22], a separate stage is required to transform the
excitation pattern to an SL pattern, which represents compressed
intensity within the cochlea. Unlike the published version of the
model which approximates overall binaural loudness by summa-
tion of loudness across the ears, the procedure of [28] was incor-
porated to improve estimates of loudness for stimuli presented bin-
aurally by modelling inhibitory interactions between the ears. The
binaural inhibition block produces an inhibited SL pattern for each
ear.

The IL in each ear is given by summing the inhibited SL val-
ues. The overall IL is the sum of the ILs at each ear, which is then
smoothed by two cascaded asymmetrical low-pass filters to give
the short-term loudness (STL) and long-term loudness (LTL) re-
spectively. The time constants are given in Table 1 in accordance
with [4] and [5].

Table 1: Time constants (seconds) used by the two models.

Model STL LTL
τA τR τA τR

GM02 0.022 0.050 0.1 2
CH12 0.016 0.032 0.1 2

The CH12 differs from the GM02 in the following ways:

1. It uses twice the frequency resolution (largest window size
of 128 ms compared to 64 ms for the GM02).

2. The pre-cochlear filter is performed entirely by weighting
the power spectrum.

3. The middle ear transfer function follows [23].

4. It uses a set of double roex filters [23] equally spaced from
1.5 to 40.2 in steps of 0.1 Cams (388 filters).

5. No SL transformation is required.

Chen and Hu decided to double the frequency resolution be-
cause the DFT specification reported by Glasberg and Moore re-
sulted in a spectral bandwidth that exceeded the critical bandwidth
at 1 kHz. Consequently, the predicted total loudness of pure tones
was larger than expected. Unlike the GM02, the filter bank used
by the CH12 incorporates a compressive nonlinearity and thus the
area under the excitation pattern is proportional to loudness. The
output of the filter bank was scaled by the constant of proportion-
ality in order to arrive at the SL pattern, which can then be fed to
the binaural inhibition stage. Although the binaural procedure has
been integrated into the GM02 [20], our modification to the CH12
to account for binaural loudness requires validation.

2.1. Modifications Specific to the Meter

As stated above, the pre-cochlear filter of the original GM02 has
been modified to simplify computation and a binaural inhibition
procedure has been incorporated into both models. The loudness

meter displays inhibited SL on a logarithmic scale as a function of
frequency on the Cam scale. Both left and right patterns are shown
to facilitate visual comparison. In addition, bargraphs have been
added to show the STL (in sones) for each ear, which are useful
for comparing and aligning loudness between the ears. Finally, the
overall LTL and peak STL are displayed for purposes of measuring
global binaural loudness. A third number box shows the average
unweighted sound pressure level (SPL) which is useful for system
calibration.

The user interface, shown in Figure 3, also features two addi-
tional screens which can be activated using the appropriate buttons.
The first is a settings screen for configuring the models in accor-
dance with the exposed parameters highlighted in bold in Figure
2. The second is a calibration window, allowing the user to enter
SPL measurements and estimate calibration gains.

Figure 3: Loudness meter user interface.

2.2. Profiling the Models

The three parameters that govern the speed-accuracy trade-off are:
hop size (R), spectral compression criterion (α) and filter spacing
(β). A program to extract the loudness from 30 stereo sounds was
developed for both models, each configured with their respective
default parameter set (see Section 3). The sample-based profiler
OProfile2 was used to identify the most computationally intensive
parts of each model. The programs were run on an idle Intel Core 2
Quad CPU Q8200 operating at 2.33 GHz with 4 GB RAM running
Ubuntu 14.04 over 10 executions to increase the sample size. The
profile reports are summarised in Table 2.

Table 2: Program profile report - absolute sample count (and per-
centage of total samples collected).

Process GM02 CH12
Excitation transformation 2.7×108 (87.3) 1.3×108 (67.2)
FFTW [35] 1.4×107 (4.6) 3.4×107 (17.6)
Binaural Inhibition 8.1×106 (2.6) 8.8×106 (4.6)

For both models, the majority of CPU time was spent at the
excitation transformation stage. Compared to the CH12, the GM02
collected a larger number of samples in this module, likely due to
the added overhead of calculating variables pertaining to the roex
filter shapes. Furthermore, the number of frequency points used
by the CH12 is twice that of its predecessor and thus the time to
compute the multi-resolution DFT is greater. The time required to
compute the inhibited SL values was longer for the CH12, which
can be attributed to the use of slightly more auditory filters.

2http://oprofile.sourceforge.net/
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Importantly, the time complexity of the stages involved in ex-
citation transformation of both models are linear functions of the
number of frequency components (N ) and auditory filters (M ).
For both models, the inner product of the auditory filters and power
spectrum has the highest complexity of the excitation transforma-
tion module being O(NM) (see [30]). Thus, although increasing
the hop size reduces overall process time by computing fewer es-
timates, both spectral compression and filter spacing parameters
target the bottleneck directly.

3. EVALUATION PROCEDURE

For each model, the parameter values were varied to reduce the
computational workload and the errors between the reference and
approximations were examined. The values used for each refer-
ence model and the approximations are given in Table 3 using Mat-
lab notation ([start: delta: end]). The models were configured to
process stereo recordings using the combined outer ear (free-field)
[22] and middle ear [22, 23] transfer functions.

Table 3: Reference and evaluation parameter values.

Parameter Reference Approximation
R 1 ms [2:2:16] ms
α NA [0.1:0.1:1] Cams
β 0.1 Cams [0.25:0.25:4] Cams

The parameters were varied both independently and in combi-
nation. The effect of filter spacing was studied with and without
interpolation applied to the excitation pattern. From experiment-
ing with various input signals and interpolation schemes, cubic
spline interpolation applied to the log excitation pattern was found
to capture the smooth shape of the reference high-resolution pat-
terns with good accuracy.

3.1. Stimuli

Each of the configurations were evaluated by extracting loudness
features from 30 stereo tracks taken from the Sound Quality As-
sessment Material (SQAM) database [36] and assessing the error
introduced. All tracks were sampled at 44.1 kHz. Each record-
ing belonged to one of the following stimulus categories: single
instruments, vocal, speech, solo, orchestra and pop music. Repre-
sentative sound segments of the selected tracks were edited manu-
ally (average duration of 4.4 s (standard deviation (s.d.) 0.5 s)) and
then peak calibrated to a random level between 84 and 94 dB SPL
giving a spread of typical listening levels across the 30 sources (av-
erage RMS of 72.2 dB SPL (s.d. 4.4 dB) and peak of 89.1 dB SPL
(s.d. 2.7 dB)).

3.2. Errors

The primary interest was to investigate the error between the ref-
erence and estimated short-term loudness time series of a given
stimulus, denoted STL and ˆSTL respectively. The normalised
root-mean-square error (nRMSE) between the reference and ap-
proximation is given by

nRMSESTL =
1

STLµ

√√√√ 1

F

F∑
f=1

(STLf − ˆSTLf )2, (1)

where F is the number of non-zero frames and STLµ is the av-
erage of the reference loudness. This normalisation was used to

obtain a scale-free evaluation metric and corresponds to the coef-
ficient of variation of the RMSE [37].

The following metric was used to measure the error introduced
in the specific loudness patterns,

nRMSESL =
1

SLµ

√√√√ 1

F ×M

F∑
f=1

M∑
m=1

(SLf,m − ŜLf,m)2,

(2)
where SLf,m is the total specific loudness in auditory filter m ob-
tained by summing the corresponding inhibited specific loudness
values in both ears. The RMS error is normalised by the average
specific loudness value over time. In order to calculate the error
at hop sizes greater than 1 ms a sample and hold procedure was
applied to the approximated STL and SL time series.

It is also insightful to explore the perceptual implications of
model performance for different parameter sets. For each stim-
ulus, the level change (∆L) required for equal overall loudness
between the reference and approximated loudness predictions was
estimated using the sone ratios obtained from three global loud-
ness descriptors: average LTL (LTLµ) [4], peak STL (STLpk)
[38] and the 95th percentile of the STL distribution (STL95) [39].
Because of the nonlinear relationship between intensity level and
loudness, an iterative procedure was employed to find the optimal
gain required for equal loudness. More specifically, ∆L is ob-
tained for each descriptor by minimising the sone ratio in decibels
using a tolerance of 0.01 dB. For example, the level change re-
quired for equal loudness according to the peak STL is found by
minimising the magnitude of

ε = 10× log10

(
STLpk

ˆSTLpk

)
, (3)

where STLpk and ˆSTLpk is the peak STL of the reference and
approximation. For convenience, ∆L is referred to as the global
loudness descriptor error and is expressed in decibels.

In addition to profiling the models, the computational savings
are also analysed in terms of the reduction in the number of fre-
quency components and auditory filters with respect to the refer-
ence quantities.

4. RESULTS

Figures 4, 5 and 6 show the nRMSE for parameters hop size (R),
spectral compression criterion (α) and filter spacing (β). The base
10 logarithm of the stimulus errors (see ordinate) was taken in
order to reduce positive skew in the error distributions (and thus
biassing the arithmetic mean), as well as providing visual clarity
throughout the plots. Data points are the arithmetic means of the
log nRMSE across stimuli for either the STL or SL. The shaded
areas surrounding the lines are the 95% confidence intervals of the
means and were estimated using a percentile bootstrapping pro-
cedure based on 5000 samples [40]. These intervals have been
corrected to eliminate between-stimuli variability which bias the
sampling error in repeated-measures designs and are useful for
observing patterns in the population means [41]. For example,
the intervals shown in subplot (a) of Figure 6 were calculated ac-
cording to a 2 (models) x 2 (interpolants) x 16 (filter spacings)
within-stimulus design.
4.1. Hop Size

Increasing the hop size widens the interval between instantaneous
loudness samples, giving rise to greater error in the time integrated
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Figure 4: Log normalised RMSE plotted as a function of hop size
for (a) the STL and (b) SL. The data points are the arithmetic
means of the log stimulus errors and shaded areas surrounding
the lines represent the 95% confidence intervals of the estimates
for the GM02 (black solid lines) and CH12 (red dotted lines).

0.1 0.3 0.5 0.7 0.9

-5

-4

-3

-2

-1

lo
g 1

0(
nR

M
SE

)

(a)

0.1 0.3 0.5 0.7 0.9

(b)

Compression criterion, Cams

Figure 5: Log normalised RMSE plotted as a function of compres-
sion criterion for (a) the STL and (b) SL. The data points are the
arithmetic means of the log stimulus errors and shaded areas sur-
rounding the lines represent the 95% confidence intervals of the
estimates for the GM02 (black solid lines) and CH12 (red dotted
lines).

measurements. Although the STL error functions show a simi-
lar trajectory for both models, the errors appear to increase at a
slightly faster rate for the CH12. A doubling of the hop size in-
creases the geometric mean of the STL nRMSEs by an approxi-
mate factor of 2.1 for the GM02 and 2.2 for the CH12. Subplot
(b) of Figure 4 shows the error introduced when SL patterns from
previous processing frames are used as estimates for the current
frame output by the reference model. The SL errors are higher than
STL errors because they are instantaneous calculations whereas
the STL is the combined result of integrating the SL patterns both
in frequency and over time. For a hop size of 2 ms, the SL error
is lower for the CH12, but rises above the GM02 at larger values,
indicating that the CH12 sees greater variation in the auditory pat-
terns over time.

4.2. Compression Criterion

For both models, spectral compression distorts the loudness pat-
terns as shown in subplot (b) of Figure 5. This is to be expected,
given that the input components are summed into sub-bands prior
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Figure 6: Log normalised RMSE plotted as a function of filter
spacing for (a) the STL and (b) SL. The data points are the arith-
metic means of the log stimulus errors and shaded areas surround-
ing the lines represent the 95% confidence intervals of the esti-
mates for the GM02 (black and blue solid lines) and CH12 (red
and green dotted lines). The lines with square markers are the
errors introduced when the approximated excitation patterns are
interpolated at filter locations defined by the reference models.

to auditory filtering. In general, the CH12 is more sensitive to
spectral modifications and gives consistently larger errors in the SL
domain where the average ratio of the nRMSE geometric means
between the CH12 and GM02 was 9.1. The only criterion in which
this model produced a lower average error (STL only) was 0.1 Cams
although there is strong overlap between the two confidence inter-
vals. For the GM02, summing the erroneous SL pattern leads to
a non-monotonic STL error function; the error function shows a
peak at 0.5 Cams and continues to increase above 0.7 Cams. This
is an important consideration when optimising the GM02 based on
spectral compression.

4.3. Filter Spacing

Figure 6 shows the STL and SL errors as a function of filter spac-
ing, with interpolation type as parameter. With no interpolation,
doubling the filter spacing increases the geometric mean of the
STL nRMSEs by an approximate factor of 7.0 for the GM02 and
9.9 for the CH12, which is considerably higher than the relative
increase in error when doubling the hop size. The STL error func-
tions of the CH12 are especially steeper than those of the GM02
over 0.25-0.75 Cams, indicating that the former is more sensitive
to modifications in this range. The only spacing in which the STL
error of the CH12 was lower than the GM02 was 0.25 Cams.

The geometric mean of the STL nRMSEs, averaged across
0.25 and 0.5 Cams with cubic interpolation, was reduced by 74%
for the GM02, though no such improvement was observed for the
CH12. It is important to highlight that the nRMSE is a relative
error metric; plotted data points below -3 translate to central RMS
errors less than 0.1% of the mean loudness time series. The appli-
cation of cubic interpolation to the SL patterns show an improve-
ment in the approximations, though the benefit does not carry over
to the STL measurements for the CH12.

4.4. The Bottleneck

The STL and SL errors have been presented for model parameters
hop size (R), spectral compression criterion (α), and filter spac-
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Table 4: Number of components and filters (and percentage reduc-
tion) obtained with the optimal combination of compression crite-
rion (α) and filter spacing (β) at R = 1 ms. The maximum global
loudness descriptor error is also given.

Model α N̂ β M̂ max |∆L| (dB)
GM02 0.7 63 (95 %) 1.25 30 (92 %) 0.08
CH12 0.3 148 (95 %) 0.5 78 (80 %) 0.11

Table 5: Program profile report after optimisations.

Process GM02 CH12
FFTW [35] 1.4×107 (73.7) 3.4×107 (78.9)
Excitation transformation 1.6×106 (8.1) 1.6×106 (3.8)
Binaural inhibition 1.1×105 (0.6) 4.7×105 (1.1)

ing (β). When configured with the reference parameter sets (see
Table 3), the models did not execute in real-time. The computa-
tional speed can be increased approximately two-fold by simply
doubling the hop size, however Table 2 shows that the bottleneck
resides in the excitation transformation stage. The findings indi-
cate that initial values of the hop size introduce significantly larger
STL error when compared to a range of α and β values.

Can a speedup factor greater than two with a lower average
STL error than that introduced by a hop size of 2 ms be achieved
by targeting the bottleneck directly?

The number of frequency components (N ) was 1393 and 2971
for the GM02 and CH12. The number of auditory filters (M ) was
372 and 388. Let N̂ and M̂ denote the number of components and
filters resulting after increasing parameters α and β beyond the
reference values. For each model, the error surface generated by
different combinations of α and β (with R = 1 ms) was searched
for all geometric average STL errors less than the error introduced
by R = 2 ms alone. The target error was 0.3% for both mod-
els. All combinations which lead to average errors exceeding this
threshold were discarded. Of the remaining parameter values, the
combination that maximised the complexity reduction at the exci-
tation transformation stage (1− (N̂M̂)/(NM)) was selected.

Table 4 shows the performance of the models with the optimal
parameter sets, operating with a hop size of 1 ms. The average
STL nRMSEs were less than 0.25% and lead to a total complex-
ity reduction of approximately 99% for both models. Indicative of
worst-case performance, the final column shows the maximum ab-
solute level change required for equal loudness between the refer-
ence and approximation predictions across all stimuli for all three
features. The largest deviation from the global loudness predic-
tions given by the reference models was 0.08 dB for the GM02
and 0.11 dB for the CH12.

The profile reports associated with the optimal parameter sets
are shown in Table 5. It can be seen that the processing time
consumed by the excitation transformation has been significantly
reduced (by two orders of magnitude for the GM02) and conse-
quently, the bottleneck has shifted to the computation of the multi-
resolution DFT. The mean stimulus speedup factor (CPU time of
the reference divided by the CPU time of the approximation aver-
aged across ten executions) was 16.09 (s.d. 0.01) for the GM02
and 4.55 (s.d. 0.02) for the CH12. This demonstrates that large
speedups can be achieved before having to resort to incrementing
the hop size independently. It should be noted that these param-
eters were selected based on a target STL nRMSE at R = 2 ms.
Running the same optimisation procedure using the LTL yields

Table 6: Performance of the optimised models at four hop sizes
(R) in terms of maximum global loudness descriptor error and
minimum speedup factor across all stimuli. The first and second
row of each cell correspond to the GM02 and CH12 respectively.
The row in bold indicates the only parameter set in which real-time
processing was not achieved.

R
max |∆L| (dB) Speedup

LTLµ STLpk STL95

1 0.05 0.08 0.08 15.4
0.06 0.03 0.11 4.4

2 0.05 0.07 0.10 30.5
0.06 0.03 0.11 8.7

4 0.12 0.81 0.22 63.2
0.08 0.21 0.20 17.7

8 0.29 2.57 0.24 124.8
0.12 1.54 0.42 34.4

slightly lower values for α and β because this feature is less af-
fected by hop size and thus lowers the target error to 0.1% for both
models.

Finally, maximum level differences required for equal loud-
ness readings across all sounds according to three global loudness
descriptors are given in Table 6 for the two models configured with
the parameter values listed in Table 4. The performance is evalu-
ated at four hop sizes and worst-case speedup factors across all
program executions and all stimuli are given. The row in bold in-
dicates that the CH12 did not achieve real-time performance on the
computer used in this study at the reference hop size.

5. DISCUSSION

The two dynamic loudness models presented in this study have
been parameterised by hop size, spectral compression and filter
spacing. The effect of hop size on STL error was comparable in
both models and a hop size of 2 ms introduced a larger STL er-
ror than using the lower compression and filter values tested with
a hop size of 1 ms. As shown in Table 6, large hop sizes can be
detrimental when estimating the loudness of short duration sounds,
which rely on accurate estimates of peak loudness [4]. Zwicker
[38] highlighted the importance of maximum loudness for quan-
tifying the perceived loudness of impulse and speech sounds. In-
deed, of all the stimuli tested, the castanets recording (track 27 of
the SQAM CD) occurred most frequently in the top 5% of the STL
nRMSE distributions across all hop sizes tested for both models.
Compared to the peak STL descriptor, the LTL and percentile mea-
sures stay within 0.5 dB of the reference values for hop sizes up to
8 ms.

A compressed spectrum can be incorporated into both models
to reduce the number of components whilst attempting to maintain
sufficient energy in the auditory filters to preserve the loudness
density. The grouping of component intensities does introduce
some error in the auditory patterns, the extent of which is depen-
dent on the bandwidth used to average the spectrum. The GM02
requires a wider bandwidth to achieve a similar percentage reduc-
tion in the number of components as the CH12. This is because
the GM02 uses half the frequency resolution as the CH12. When
α = 0.1 the compression criterion is satisfied above 264 Hz for
the CH12 but not until 764 Hz for the GM02. In combination with
the fact that most musical sounds are dominant in the low-mid fre-
quency range, this explains why the average errors of the CH12
shown in Figure 5 are generally higher.
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Figure 7: Specific loudness pattern of a segment of track 42 (Ac-
cordion) from the SQAM CD using the GM02 (solid black line)
and CH12 (solid grey line) with the reference parameter sets. Data
points correspond to values obtained by sampling at increments of
1 Cam and dotted lines show the result of cubic interpolation.

The choice of filter spacing determines the accuracy of the ex-
citation and SL patterns. Too few filters per critical band can be
severe for tonal signals where peak excitations that dominate per-
ception are unlikely to be captured. Large intervals can also have
a marked effect on broadband sounds in that the area under the
SL pattern is estimated from an undersampled excitation pattern.
The results showed that the CH12 is more sensitive to changes
in filter spacing and introduced larger deviations from the target
data compared to the GM02. This can be attributed to differences
in DFT frequency resolution and filter bank architecture. For the
CH12, the DFT mainlobe width is narrower and so the importance
of filter spacing is greater. This issue was investigated by running
the GM02 with twice the frequency resolution at multiple filter
spacings (with the reference reconfigured) and indeed larger er-
rors resulted. The SL patterns output by the two reference models
were also compared across stimuli and it was observed that those
of the CH12 had much larger peak-to-valley ratios compared to
the GM02 (see Figure 7). The excitation pattern must be sampled
more frequently to accurately capture peak excitations. Consid-
ering that the RMSE metric emphasises large deviations, it is of
no surprise that the SL errors produced by the CH12 are notably
high. As shown in Figure 7, large excitatory oscillations generated
by the CH12 can be problematic when interpolating low-resolution
patterns. For this particular analysis frame, the instantaneous loud-
ness predicted by the reference GM02 was 30.86 sones and, with
cubic interpolation applied to the excitation pattern sampled at
1 Cam intervals, 30.87. The CH12 predicted 25.41 sones and, for
the same approximation, 24.68. Although the CH12 did not bene-
fit from interpolation in terms of the integrated loudness, Figure 7
indicates that cubic interpolation should be preferred over linear
interpolation when displaying SL versus frequency.

The parameter sets listed in Table 4 provide a good guideline
for speeding up the models based on the initial bottleneck. Both
models see a significant reduction in execution time by combining
spectral compression with filter spacings above 0.1 Cams. Further
speedup factors of ∼ 2 can be obtained by doubling the hop size.
The results in Table 6 indicate that for a hop size of 2 ms, combined
with the parameters values given in Table 4, real-time performance
can be achieved with estimates of global loudness within 0.15 dB
of the reference predictions for a range of music and speech. Con-
sidering that discrimination thresholds for intensity can be as low
as 0.2 dB for pure tones and 0.5 dB for most broadband noises [39],

it is unlikely that there will be noticeable differences between iden-
tical stimuli aligned in loudness by the reference models and pro-
posed approximations. More importantly, [42] found the average
reproducibility of subjective relative loudness judgements involv-
ing different program material to be 1.24 dB. This suggests that
greater error may be tolerable when the faster implementation is
used for purposes of balancing the loudness of typical program
material.

The authors in [33] showed that, based on STL errors of the
GM02, a filter spacing of 1 Cam could be used to achieve real-time
performance on their test machine. In the current study, a finer
range of parameter values have been explored and for the GM02,
greater computational savings and lower average STL nRMSE can
be obtained using an interval of 0.75 Cams combined with a com-
pression criterion of 0.2. Furthermore, the real-time proposal in
[33] included a frequency domain weighting function to replace
the FIR filter used by Glasberg and Moore. However, it has been
shown [32] that spectral weighting is problematic at low-frequencies,
mainly in terms of absolute threshold predictions, and hence why
the implementation here incorporates a high-pass filter to improve
the response. Our implementation can be applied to both labora-
tory and everyday sounds without having to switch filtering tech-
niques. Finally, the authors in [31] employed the Hopping Go-
ertzel DFT algorithm to optimise the parallel FFTs, which was
then used by [32] to simplify the calculation of excitation patterns
by means of nonuniform spectral sampling. Although faster per-
formance can be obtained with that implementation at very low
hop sizes, larger time-steps are unlikely to yield substantial com-
putational gains due to the processing requirements of the Hop-
ping Goertzel DFT. Preliminary experiments showed that for the
GM02, nonuniform spectral sampling introduced larger average
STL error compared to all compression criteria tested in this study.

6. CONCLUSIONS

Efficient implementations of the loudness models of Glasberg and
Moore [4] and Chen and Hu [5] have been developed for the pur-
pose of real-time binaural loudness metering. The meter exposes
key parameters that govern model performance, enabling the user
to control the speed-accuracy trade-off to meet the demands of a
given application. The bottleneck of both models was identified as
the transformation from power spectrum to excitation pattern. By
incorporating a perceptually inspired method to obtain a compact
spectrum and experimenting with different filter spacings, the total
complexity of the excitation transformation stage was reduced by
99%, yielding significant speedup in execution time. The largest
deviation was 0.11 dB when measured in terms of short-term and
long-term loudness metrics commonly used to quantify overall
loudness of time-varying sounds. The effect of hop size was also
investigated both independently and in combination with the pa-
rameter sets that lead to high computational savings. In the latter
case, a hop size of 2 ms was required to achieve real-time perfor-
mance.

Future work is required to validate the predictions of the bin-
aural models against empirical data, especially on sounds with
complex spectro-temporal behaviour. Derivation of parameter sets
that achieve maximum speedup whilst maintaining error limits to
match required perceptual criteria would also be useful. Our me-
ter does not currently simulate the effects of cross-talk between
loudspeakers in multichannel setups typically used by sound engi-
neers. This would require a more sophisticated filtering stage that
accommodates appropriate head-related transfer functions.
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