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Abstract-*When sigma-delta modulation is used for 
audio signal processing, limit cycles in the output 
may result in idle tones that are audible to the 
listener. We show that a multibit implementation 
of a modified first order sigma-delta modulator 
may be used to produce an effective, stable chaotic 
modulator that accurately encodes the input and 
helps remove the presence of idle tones. 

 Introduction 

Sigma delta modulation (SDM) is a popular method 

for high-resolution A/D and D/A conversion. It is 

frequently used in audio processing and has a wide 

range of applications. Sigma-delta modulators 

operate using a tradeoff between oversampling and 

low resolution quantization. A signal is sampled at 

higher than the Nyquist frequency, typically with one 

bit quantization, so that the signal may be effectively 

quantized with resolution on the order of 14-20 bits.
1
 

Recent work has concentrated on tone suppression
2-3

, 

multibit
4
 and chaotic SDM.

5
  

The simplest sigma delta modulator consists of a 1-

bit quantizer embedded in a negative feedback loop 

which also contains a discrete-time integrator, as 

depicted in Figure 1(a). The analog input to the 

modulator is oversampled and converted into a binary 

output. The system may be represented by the map
6
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where X represents the analog input signal and Q is 

the quantizer 
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Q(Un) represents the quantization of input Xn-1. If 

α=1, then this quantizes the difference between the 

input and the accumulated error. When the error 

grows sufficiently large, the quantizer will flip in 

order to reduce the error. On average, the 

quantization should equal to the input. Typically, the 

integrator leaks due  to finite operational amplifier 
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gain, which is represented by α<1. If α>1, then the 

modulator may behave chaotically for constant input.  

 

Figure 1. Block diagrams for the two systems. In (a) 

gain is applied to the integrator output. In (b) gain is 

applied to the quantizer error. 

If a gain is instead added to the quantization error 

then the sigma delta modulator takes the form 

1 1 1
( ( ))n n n nU X U Q Uα− − −= + −  (3) 

 

In this work, we consider chaotic modulators where a 

gain term multiplies either the integrator output (1) or 

the error term (3). We consider whether either is an 

effective means of idle tone prevention. We 

demonstrate that for the case of gain applied to 

integrator output, although an implementation of a 

chaotic multibit modulator may lead to idle tone 

suppression, it may not be practical. This is because 

in many cases, the output of a chaotic modulator does 

not effectively approximate the input. 

The systems 

A multibit implementation of either (1) or (3) may 

offer increased resolution in the quantization. For an 

n bit first order modulator, the quantized output can 

assume one of m=2
n
 states. 
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Where we assume that quantizer input is in the range 

–2 to 2. The systems that will be studied are  

 

1. The 1
st
 order, single bit SDM with gain applied 

to the integrator: (1) and (2). 

2. The 1
st
 order, single bit SDM  with gain applied 

to the error: (3) and (2). 

3. The 1
st
 order, multi bit SDM  with gain applied 

to the integrator: (1) and (4). 

4. The 1
st
 order, multi bit SDM  with gain applied 

to the error: (3) and (4). 

Bifurcations 

System 1 (Equations (1) and (2)), is perhaps the most 

well known and simplest form of SDM. It exhibits 

chaos if the gain is in the range 1 2α< ≤ . The 

bifurcation diagram of this system is depicted in 

Figure 2(a).  

 

Figure 2. The bifurcation diagrams for System 1 (a) 

and System 2 (b) with 0 input. 

System 2 has a slightly different bifurcation diagram 

(Figure 2b). It also exhibits chaos if the gain is in the 

range 1 2α< ≤ . Here, the integrator output does not 

immediately reach the extremes as α is increased past 

1. The full range of integrator output is between –2 

and 2, and for 1α ≥ , the range of output extends 

from -α to α. It may seem problematic at first, since 

the expected input, X, is between –1 and 1. However, 

as shall be seen later, as long as the average 

integrator output sufficiently approximates the input, 

then this is not a difficulty. We simply require that 

the input signal be bounded by 1± , even though the 

quantizer can accept input bounded by 2± .  

Stability 

One difficulty with operating a sigma delta modulator 

with greater than unity gain is that the modulator may 

become unstable. That is, asnU n→ ±∞ → ∞ . This 

is illustrated in Figure 3, which depicts the size of the 

stable regime for constant input 0 1X≤ ≤  (the plot is 

symmetric for 1 0X− ≤ ≤ ) and gain 0 2α≤ ≤ . 

Operating a one bit sigma delta modulator, Equation 

(1), in the chaotic regime becomes unworkable for 

any large input, since the integrator output diverges.  

 

Figure 3. The stability regime for gain and constant 

input between 0 and 1. The solid line represents the 

stable regime for a 1 bit modulator with gain applied 

to the integrator output (System 1). The dashed line 

represents the stable regime for a 2 bit modulator and 

the dot-dot-dashed line for a 3 bit modulator (System 

3). For gain applied to the error, the dotted line 

represents the stable regime for the 1 bit case (System 

2), and the dot-dashed line represents the stable 

regime for the 2 bit case (System 4). 

The stable regime is increased if the gain is applied to 

the difference between the quantizer output and the 

integrator output (Equation (3). For a 1 bit quantizer, 

the stable regime is greater than a 2 bit traditional 

sigma delta modulator. If we move to a 2 bit 

quantizer in Equation (3), then the entire domain has 

bounded integrator output. 

Quantization Error 

One requirement for SDM is that the quantizer output 

approximate the input signal. That is,  
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=∑  (5) 

for constant input X within a given range. With unity 

gain, Equation (5) holds for the single and multibit, 

first order sigma delta modulators. However, this is 

typically not true for 1α ≠ . Feely and Chua
7
 showed 

that integrator leak, α<1, may cause the average 

output of the sigma delta modulator to assume 

discrete values that misrepresent the input. The 

resulting structure of average quantized output as a 

function of the input is known as a devil’s staircase. 

As shown in Figure 4, this is also the case for a 

traditional sigma delta modulator with α>1(Equation 

(1)). In fact, for nonunity gain, the average output is 

approximately αX. Using a multibit modulator is not 

sufficient to alleviate this problem. This is a 

fundamental problem that is often overlooked in the 

literature.
7 

 

 

Figure 4. Clockwise from top-left. The average 

quantized output as a function of the input for a 1 bit, 

2 bit, 3 bit, and 4 bit sigma delta modulator with gain 

applied to integrator output.  The gain is set to 1.1. 

The 45 degree line represents the ideal average 

quantization. 

The modified modulator of (3) behaves quite 

differently. Figure 5 shows that this modulator, 

although assuming discrete values, still approximates 

the input. In addition, a multibit implementation 

helps to minimize the length of the stairs in the 

devil’s staircase structure. As the number of bits used 

by the quantizer is increased, the average quantized 

output approaches the average quantized output of an 

ideal sigma delta modulator. 

 

 

Figure 5. Clockwise from top-left. The average 

quantized output as a function of the input for a 1 bit, 

2 bit, 3 bit, and 4 bit sigma delta modulator with gain 

applied to quantization error.  The gain is set to 1.1. 

The 45 degree line represents the ideal quantization. 

Symbol Sequences 

On a practical level the output prior to quantization is 

not of primary concern. More importantly,  the 

quantized output must accurately encode the input 

signal without producing idle tones. That is, tones 

which are not present in the analog input may appear 

in the digital output. For instance, a constant input of 

0 with α=1 and initial condition U0=0 will produce 

an output sequence of 1,-1,1,-1,1,-1… Longer period 

cycles will produce tones at lower frequencies which 

may appear audible to the listener.  

One proposed method of eliminating these tones is to 

operate the sigma delta modulator in the chaotic 

regime. Although the output will still approximate 

the input, limit cycles might be eliminated. As an 

example, a constant input of 0 with α=1.5 will 

produce an output 1,-1,-1,1,-1,1,-1,-1,1,-1,… This is 

an endless pattern that never settles into a limit cycle. 

 

Figure 6. The permissible 7 bit sequences that can be 

generated using a first order, single bit sigma delta 

modulator. 
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In order to determine the range of quantized 

dynamics, we must investigate the symbol sequences 

that can be generated for various values of α. Figure 

6 depicts the seven bit symbol sequences generated 

by a single bit sigma delta modulator with zero input 

(System 2). A sliding window of seven bits was 

applied to produce output sequences in the range 

0000000 to 1111111 (0 to 127). A cyclic symbol 

sequence would be counted as multiple sequences, 

e.g., 010101… and 101010… are counted as separate 

allowable symbol sequences. This figure is the same 

for both System 1 and System 2. This demonstrates 

that limit cycles are more dominant with 2α � since 

there is a smaller range of allowable dynamics. 

Power Spectra 

 
One reason to attempt SDM in the chaotic regime is 

to see if it can effectively eliminate idle tones, while 

at the same time preserving the frequencies in the 

input signal. For this reason, the power spectrum is 

an appropriate tool.  
 

 

Figure 7. Power spectra for the input signal  

0.5 sin(2 /64)nX nπ= ⋅ ⋅ .  (a) is the power spectrum 

for the input signal, (b)for the quantized output signal 

with gain set to 1, and (c) for the quantized output 

signal with gain set to 2. The power is assumed to 

have a base value of 10
-7

 (-140dB). 

 
In Figure 7, power spectra are depicted for a signal 

with 32 times oversampling, Xn= 0.5 sin(2 /64)nπ⋅ , 

applied to System 4. Figure 7(a) depicts the power 

spectrum for the input. As expected, peaks are seen at 

frequencies of 1/64 and 63/64. However, for a 2 bit 

modulator with unity gain, the output power 

spectrum exhibits additional peaks at all multiples of 

1/64 (Figure 7(b)). In Figure 7(c), the modulator is 

operated at maximum gain (Equation (3)), 2α = . 

The idle tones have been replaced by chaotic 

fluctuations similar to broadband noise. This noise 

can be filtered, thus leaving only the frequencies that 

were apparent in the original signal. 

Conclusions 

A first order sigma delta modulator, where gain is 

applied to the integrator output, does not approximate 

input for 1α ≠ . If instead the gain is applied to the 

error in quantization, then the sigma delta modulator 

may achieve accurate quantization over a far greater 

range of input. If a multibit quantizer is used, then the 

modulator can be made stable over the full range of 

input and errors in quantization due to the Devil’s 

staircase structure are minimized. This has the benefit 

that idle tones can be removed from the quantization 

process by operating in the chaotic regime.  
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