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Overview Incremental processing of both syntax and semantics, both in parsirgeaedation, is of
significant interest for modelling the human language capability, and foribgigystems which interact
with it. Formal linguistics has made significant contributions to this; one example fsadimework Dy-
namic Syntax, which provides an inherently word-by-word incrementahgnatical framework. How-
ever, making this practical for computational models or systems involves bugdamymars with broad
coverage on real data — a significant challenge. Here, we describéhadhier inducing such a grammar
from a corpus in which sentences are paired with semantic logical formakiByg a probabilistic view,
we hypothesise possible lexical entries — including entries for anapHeneats — and learn a lexicon
from their observed distributions without requiring annotation at the wael.|& he resulting grammar
provides a resource for incremental semantic processing with goochgeyevhile learning grammatical
constraints similar to a hand-crafted version.

Background Many dialogue phenomena demonstrateitiveemental nature of human language pro-
cessing in interaction; in particular, our ability to produce and undersiamplound contributions— units

in which a possibly incomplete contribution by one interlocutor can be quertedinued or completed
by another. These impose some strict requirements on the level of incrditgeptzuired:

(1) A:Before that then if they were ill  B: they got nothing.

(2) A:Theytook an x-ray. The doctor  B: Chorlton?  A: Uh-huh — exardinee thoroughly.
(3) A:I'mafraid | haven'tread  B: any of my papers at all.

(4)  A:lsmell burning. Have you B: burned myself? No.

As (1)-(4) show, speaker changes can happen apparently abarywithin a sentence; seman-
tic processing must proceed incrementally, with partial interpretations bedilglale for comprehension
and clarification; and syntactic processing must be incremental, with depeied (e.g. negative polarity
items, reflexives) respected across speaker changes even thesglthianges do not respect constituent
boundaries. Several grammatical frameworks might fulfil these condiinoliding categorial gram-
mars, tree-adjoining grammars and minimalist grammars) given a suitable alppodacremental pars-
ing (see e.g. Demberg and Keller, 2008; Stabler, 2013). Howevet)-#4)(also show, these incremental
processes must be able to switch seamlessly at any point between pacsgenaration, as interlocutors
switch from speaker to hearer and vice versa. Parser and gerstedtes must be entirely compatible at
all stages, with intermediate semantic and syntactic representations intexahbng/Vhile this could of
course be stipulated of suitable incremental parsing and generation foaksewore explanatory power
would be provided by a grammatical framework which itself ensures this neusighcase.

Dynamic Syntax (DS) is one such framework: an inherently incrementalrdenggammar for-
malism (Kempson et al., 2001; Cann et al., 2005) in which semantic représastare projected on a
word-by-word basis. It recognises no intermediate layer of syntaxtdsw), but instead reflects gram-
matical constraints via constraints on the incremental construction of pagiealdorms (LFs). Parsing
and generation are defined in terms of these same incremental construotiesges; it is therefore in
principle capable of modelling and providing semantic interpretations forgghena such as (1)-(4), not
licensed directly by standard grammar formalisms but important for dialogierag.

The output for any given string of words is a puredymantic tree representing its predicate-
argument structure; tree nodes correspond to terms in the lambda catbedasated with labels ex-
pressing their semantic type and formula, with beta-reduction determining teeatyp formula at a
mother node from those at its daughters (Figure 1). These trees qantia, containing unsatisfied re-
quirements for node labels (e.dly?e) is a requirement for future developmentTy(e)), and apointer



<> on the node currently under development. The grammar is defined in teraci @fs, bothlexical
actions associated with words and generally availatmeputational actions, which specify monotonic
tree updates (Figure 1). Grammaticality is defined as parsability: the stidéessemental construction
of a tree with no outstanding requirementsgaplete tree) using all information given by the words in
a sentence.

IF 7Ty(e) 7Ty(t) Jom 7Ty(t)
THEN put(Ty(e)) P
John put(Fo(Joh') - orfe omyesty Ty 7Tye)  TTye—t)
put((})L o Johr', (1)L, &
ELSE ABORT

Figure 1: Lexical action for the word ‘John’

Induction However, its definition in terms of semantics (rather than the more familiar synpdictise
structure) makes it hard to define or extend broad-coverage gramexaet linguists are required. It
is also not directly suitable for existing syntactic approaches to grammairigand induction, which
either learn grammars from treebanks annotated with syntactic trees at tth@meb phrase level (e.qg.
Charniak, 1996) or induce such grammars from lexical co-occuerémg. Klein and Manning, 2005).
However, recent research in has shown that lexicalised grammare ¢earbed using lightly supervised
learning, guided by semantic annotation using sentence-level propokitigital form rather than de-
tailed word-level annotation (e.g. Kwiatkowski et al., 2010). Here we &agiilar approach, but apply
it within DS'’s strictly incremental, semantic formalism. The grammar learned is threr@iherently
incremental, and can successfully treat items such as pronouns wlaosegtical constraints depend
on semantic context.

Approach We assume the availability of a LF in the form of a complieteet tree for the sentence,

containing information about its predicate-argument structure and how thisriposed, but not about
the relation of this to words or word order — see Figure 2, right. By hypidhey possible monotonic
extensions of any partial tree which subsume this target tree, togetheragiibfe constraints on their
application, we build a graph containing all possible parse paths for atgrsz which lead to the target
tree. A general anaphoric action can be hypothesised at any poirth wbjges semantic information
from some existing relative position on the current tree.
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Figure 2: Hypothesizing extension of tree under developrmgntleft) to target tred; (right)

Given these hypothesis graphs, we can now estimate a probability distriGytarer hypotheses
for each wordw, where8,(h) is the posterior probabilityp(hjw) of a given word hypothesis being
used to parsev. For this we use an incremental version of the Expectation-Maximisationitligor
(Dempster et al., 1977): in the Expectation step we populate the hypothegls\gith the current esti-
mates of these probabilities (assuming a uniform distribution over a heldrab@lpility mass for as yet
unseen hypotheses); the Maximisation step then re-estimates individual lexiothesis probabilities



based on the probabilities of graph paths containing them. The most prdtyglotheses then form the
induced grammar, providing lexical actions with associated constraintsdinglufor words likely to be
associated with an anaphoric copying action, constraints learnt on ecdatigcedent position).

We test this approach in terms of its ability to learn a grammar compatible with a kmoamy-
ally defined grammar: we generate a semantically annotated corpus fronméws lgrammar, induce
a grammar from this corpus, and compare with the original. The corpus evaraed by choosing
words randomly from an existing defined lexicon, with probabilities followirgylthoad part-of-speech
type and token frequency distributions observed in the maternal uttedateeérom the CHILDES cor-
pus (MacWhinney, 2000). The manual lexicon contained 156 lexicalesntnd the resulting corpus
contains 200 sentences with average length 3.7 words, paired with theintietnees. 90% of these
sentences were then used to induce a new grammar, and the remainingdd% asaluate its accu-
racy. Semantic accuracy on this test set, assessed as the availability ofréet £F within the top 2
derivations for successful parses, reaches 80%. Lexical ambigostyd a challenge: 10% of original
lexical entries were ambiguous between 2 or 3 different syntactic c&egar the induced grammar,
only 57% of these words had entries with both senses in the top 3 hypathadestion of grammatical
constraints on context-dependent elements was tested by including rpfatiins: the induced lexical
entries exactly match manually defined versions.
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