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Overview Incremental processing of both syntax and semantics, both in parsing andgeneration, is of
significant interest for modelling the human language capability, and for building systems which interact
with it. Formal linguistics has made significant contributions to this; one example is the framework Dy-
namic Syntax, which provides an inherently word-by-word incremental grammatical framework. How-
ever, making this practical for computational models or systems involves buildinggrammars with broad
coverage on real data – a significant challenge. Here, we describe a method for inducing such a grammar
from a corpus in which sentences are paired with semantic logical forms. Bytaking a probabilistic view,
we hypothesise possible lexical entries – including entries for anaphoric elements – and learn a lexicon
from their observed distributions without requiring annotation at the word level. The resulting grammar
provides a resource for incremental semantic processing with good coverage, while learning grammatical
constraints similar to a hand-crafted version.

Background Many dialogue phenomena demonstrate theincremental nature of human language pro-
cessing in interaction; in particular, our ability to produce and understandcompound contributions – units
in which a possibly incomplete contribution by one interlocutor can be queried,continued or completed
by another. These impose some strict requirements on the level of incrementality required:

(1) A: Before that then if they were ill B: they got nothing.

(2) A: They took an x-ray. The doctor B: Chorlton? A: Uh-huh – examined me thoroughly.

(3) A: I’m afraid I haven’t read B: any of my papers at all.

(4) A: I smell burning. Have you B: burned myself? No.

As (1)-(4) show, speaker changes can happen apparently at any point within a sentence; seman-
tic processing must proceed incrementally, with partial interpretations being available for comprehension
and clarification; and syntactic processing must be incremental, with dependencies (e.g. negative polarity
items, reflexives) respected across speaker changes even though these changes do not respect constituent
boundaries. Several grammatical frameworks might fulfil these conditions(including categorial gram-
mars, tree-adjoining grammars and minimalist grammars) given a suitable approach to incremental pars-
ing (see e.g. Demberg and Keller, 2008; Stabler, 2013). However, as (1)-(4) also show, these incremental
processes must be able to switch seamlessly at any point between parsing and generation, as interlocutors
switch from speaker to hearer and vice versa. Parser and generatorstates must be entirely compatible at
all stages, with intermediate semantic and syntactic representations interchangeable. While this could of
course be stipulated of suitable incremental parsing and generation frameworks, more explanatory power
would be provided by a grammatical framework which itself ensures this must be the case.

Dynamic Syntax (DS) is one such framework: an inherently incremental semantic grammar for-
malism (Kempson et al., 2001; Cann et al., 2005) in which semantic representations are projected on a
word-by-word basis. It recognises no intermediate layer of syntax (see below), but instead reflects gram-
matical constraints via constraints on the incremental construction of partial logical forms (LFs). Parsing
and generation are defined in terms of these same incremental construction processes; it is therefore in
principle capable of modelling and providing semantic interpretations for phenomena such as (1)-(4), not
licensed directly by standard grammar formalisms but important for dialogue systems.

The output for any given string of words is a purelysemantic tree representing its predicate-
argument structure; tree nodes correspond to terms in the lambda calculus,decorated with labels ex-
pressing their semantic type and formula, with beta-reduction determining the type and formula at a
mother node from those at its daughters (Figure 1). These trees can bepartial, containing unsatisfied re-
quirements for node labels (e.g. ?Ty(e) is a requirement for future development toTy(e)), and apointer



♦ on the node currently under development. The grammar is defined in terms ofactions, both lexical
actions associated with words and generally availablecomputational actions, which specify monotonic
tree updates (Figure 1). Grammaticality is defined as parsability: the successful incremental construction
of a tree with no outstanding requirements (acomplete tree) using all information given by the words in
a sentence.

Action Input tree Output tree

John

IF ?Ty(e)
THEN put(Ty(e))

put(Fo(John′)
put(〈↓〉⊥)

ELSE ABORT

?Ty(t)

?Ty(e),
♦

?Ty(e → t)

John
−→ ?Ty(t)

Ty(e),?Ty(e)
John′,〈↓〉⊥,♦

?Ty(e → t)

Figure 1: Lexical action for the word ‘John’

Induction However, its definition in terms of semantics (rather than the more familiar syntacticphrase
structure) makes it hard to define or extend broad-coverage grammars:expert linguists are required. It
is also not directly suitable for existing syntactic approaches to grammar learning and induction, which
either learn grammars from treebanks annotated with syntactic trees at the word and phrase level (e.g.
Charniak, 1996) or induce such grammars from lexical co-occurrence (e.g. Klein and Manning, 2005).
However, recent research in has shown that lexicalised grammars can be learned using lightly supervised
learning, guided by semantic annotation using sentence-level propositional logical form rather than de-
tailed word-level annotation (e.g. Kwiatkowski et al., 2010). Here we takea similar approach, but apply
it within DS’s strictly incremental, semantic formalism. The grammar learned is therefore inherently
incremental, and can successfully treat items such as pronouns whose grammatical constraints depend
on semantic context.

Approach We assume the availability of a LF in the form of a completetarget tree for the sentence,
containing information about its predicate-argument structure and how this iscomposed, but not about
the relation of this to words or word order – see Figure 2, right. By hypothesising possible monotonic
extensions of any partial tree which subsume this target tree, together with possible constraints on their
application, we build a graph containing all possible parse paths for any sentence which lead to the target
tree. A general anaphoric action can be hypothesised at any point which copies semantic information
from some existing relative position on the current tree.

?Ty(t)

Ty(e),
john

?Ty(e → t),
♦

?Ty(e) ?Ty(e → (e → t))

Ty(t),
upset ′( john′)(mary′)

Ty(e),
john

Ty(e → t),
λx.upset ′(x)(mary′)

Ty(e),
mary′

Ty(e → (e → t)),
λyλx.upset ′(x)(y)

Figure 2: Hypothesizing extension of tree under developmentTcur (left) to target treeTt (right)

Given these hypothesis graphs, we can now estimate a probability distributionθw over hypotheses
for each wordw, whereθw(h) is the posterior probabilityp(h|w) of a given word hypothesish being
used to parsew. For this we use an incremental version of the Expectation-Maximisation algorithm
(Dempster et al., 1977): in the Expectation step we populate the hypothesis graph with the current esti-
mates of these probabilities (assuming a uniform distribution over a held-out probability mass for as yet
unseen hypotheses); the Maximisation step then re-estimates individual lexical hypothesis probabilities



based on the probabilities of graph paths containing them. The most probablehypotheses then form the
induced grammar, providing lexical actions with associated constraints (including, for words likely to be
associated with an anaphoric copying action, constraints learnt on relative antecedent position).

We test this approach in terms of its ability to learn a grammar compatible with a known,manu-
ally defined grammar: we generate a semantically annotated corpus from this known grammar, induce
a grammar from this corpus, and compare with the original. The corpus was generated by choosing
words randomly from an existing defined lexicon, with probabilities following the broad part-of-speech
type and token frequency distributions observed in the maternal utterancedata from the CHILDES cor-
pus (MacWhinney, 2000). The manual lexicon contained 156 lexical entries, and the resulting corpus
contains 200 sentences with average length 3.7 words, paired with their semantic trees. 90% of these
sentences were then used to induce a new grammar, and the remaining 10% used to evaluate its accu-
racy. Semantic accuracy on this test set, assessed as the availability of the correct LF within the top 2
derivations for successful parses, reaches 80%. Lexical ambiguityposed a challenge: 10% of original
lexical entries were ambiguous between 2 or 3 different syntactic categories; in the induced grammar,
only 57% of these words had entries with both senses in the top 3 hypotheses. Induction of grammatical
constraints on context-dependent elements was tested by including relativepronouns: the induced lexical
entries exactly match manually defined versions.
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