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Abstract

We address the challenge of improving live end-of-turn detec-
tion for situated spoken dialogue systems. While traditionally
silence thresholds have been used to detect the user’s end-of-
turn, such an approach limits the system’s potential fluidity in
interaction, restricting it to a purely reactive paradigm. By con-
trast, here we present a system which takes a predictive ap-
proach. The user’s end-of-turn is predicted live as acoustic fea-
tures and words are consumed by the system. We compare the
benefits of live lexical and acoustic information by feature anal-
ysis and testing equivalent models with different feature sets
with a common deep learning architecture, a Long Short-Term
Memory (LSTM) network. We show the usefulness of incre-
mental enriched language model features in particular. Training
and testing on Wizard-of-Oz data collected to train an agent in a
simple virtual world, we are successful in improving over a re-
active baseline in terms of reducing latency whilst minimising
the cut-in rate.

Index Terms: turn-taking, end-of-turn detection, VAD, human-
computer interaction

1. Introduction

Spoken dialogue systems in situated settings, where the sys-
tem and user have access to a shared environment, are becom-
ing increasingly prevalent in everyday life and in research. The
most recent applications include those within industrial and so-
cial robots and virtual personal assistants [1, 2, 3, 4].

These systems carry out specific tasks in response to spoken
commands from the user, such as selecting an object to manipu-
late in a shared workspace. For effective and timely responses to
user commands, whether verbal or non-verbal, the system must
be able to predict the end of the user’s turn to ensure a fluid in-
teraction with little delay. In accordance with [5]’s observation
that “human turn-taking is so precise that next speakers tend to
start with no gap and no overlap” ([6], p.555), in this paper we
present a practical framework for learning automatic predictive
end-of-turn detection in situated interactions from data.

2. End-of-Turn Detection

There are two different debates on end-of-turn (‘EOT’ largely
from here) detection and the turn-taking cues used in human-
human conversation: firstly, the reactive [7, 8, 9] vs. predictive
[5, 10, 11, 12] paradigm debate and, secondly, the debate as
to whether lexical and syntactic (linguistic) information [11] or
acoustic [13] information is sufficient or most crucial for pre-
dicting and detecting an EOT.

Much work has gone into leveraging acoustic information
for reactive EOT detection systems [14, 15], using silence dura-
tion as a feature with an optimization based on minimizing the

trade-off between latency in detecting the EOT and avoiding
‘cut-in’s to ongoing turns [16].

We argue the reactive approach limits a dialogue system’s
potential fluidity in interaction. The system we describe here
models the predictive viewpoint, following [17, 18], and the re-
sults will be compared to a reactive baseline, where an EOT is
simply predicted after a silence threshold. We compare the ben-
efits of linguistic versus acoustic information by testing equiva-
lent models with different feature sets. We use a common deep
learning architecture, the Long Short-Term Memory (LSTM)
recurrent neural network to investigate this, posing the follow-
ing research questions:

e Is it possible to improve over a silence-thresholding
baseline for EOT detection by using live acoustic and
linguistic features?

* To what degree do acoustic features and linguistic fea-
tures affect EOT detection success when using a sequen-
tial deep learning architecture?

* Is it possible to use the output from a sequential deep
learning network in decoding to control the trade-off be-
tween latency and cut-in rate?

3. Data and Features

We use the TAKE corpus from the PentoRef release [19], a
German corpus of situated Wizard-Of-Oz (WQZ) interactions.
Excluding one non-native German speaker, the data is from 6
participants (18-30 years, mean = 24.1; 4 male, 2 female). We
use 933 episodes (the participants’ turn plus following silence)
in total for our experiments, divided into training, heldout and
test sets as explained in §5. The participants’ task was to in-
struct the system to select a Pentomino puzzle piece from a vir-
tual scene of several pieces, while in reality they spoke to a
human Wizard who selected the Pentomino he thought the par-
ticipant intended as soon as he could recognize it in the virtual
scene. A standard user turn can be seen in (1):

(1) dhm das griine Objekt oben links /pause] in der Ecke
um the green object top left [pause] in the corner

The turns we focus on consist of a single dialogue act type,
namely instructions. We did not include the confirmation utter-
ances which frequently follow the event of the Wizard select-
ing the piece on the board. 52% of the turns featured mid-turn
pauses after the speaker had begun the turn, such as the [pause]
above, before resuming, whilst the others consisted of a single
utterance. In either case, we characterize the end of the user’s
final utterance before the Wizard responded as the gold standard
end-of-turn time point.

To simulate the conditions of a live dialogue system, we ex-
tract feature vectors for every 10ms frame of an episode. In line
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Figure 1: Local tri-gram and utterance WML values and En-

tropy values and Intensity slope for an example turn. X-axis
annotations are words and their end times.

with our research questions we use both linguistic and acoustic
features, which we describe below.

3.1. Acoustic Features

Following [18, 20, 13] we use raw pitch (F0), a smoothed FO
contour, the Root Mean Square (RMS) signal energy, the loga-
rithmized signal energy, intensity, loudness (as the normalised
intensity raised to a power of 0.3) and derived features for each
10ms frame as acoustic features.

For the derived acoustic features, we use the window of
the last 50ms (5 frames of an audio signal) of the RMS energy
values, and the previous 150ms (15 frames) of intensity and raw
pitch values, an approximation to the length of a syllable, to
compute slope and mean values for those windows.

We follow [15] and [21] in using the duration of vowels,
and additionally the duration of nasals and fricatives. Instead
of raw duration we use the z-score, the normalization over the
standard deviation of duration of the last vowel/nasal/fricative
for that speaker.'

The acoustic features were extracted with OpenSmile?
and phoneme durations were extracted offline using Forced
Alignment, but only made available to our systems at the end
of each phoneme. In total there are 16 acoustic features per
time-step. All values of each frame were centered by removing
the mean value of each feature, then scaled by dividing non-
constant features by the standard deviation.?

3.2. Linguistic Features with Enriched Language Models

For linguistic features, we make the words available to our de-
tection system on the last frame of the word, simulating perfect
zero-latency speech recognition (ASR). The words were auto-
matically Forced Aligned and then manually corrected, sub-
stituting all partial or mispronounced words with the corre-
sponding complete word, all mis-spelled words with the correct

I'This is the only feature where we use information about the rest
of the speaker’s utterances to obtain values. Given the small number
of speakers this is the only way the feature could be useful. In future
work we intend to compute the z-score without using the same speaker’s
utterances.

2http://audeering.com/research/opensmile/

3Concretely, saved as a Sci-kit learn StandardScaler object—
see http://scikit-learn.org/stable/modules/
preprocessing.html#preprocessing-scaler

spelling, and words uttered in a dialect with standard German
forms. We use insights on modelling grammaticality and (dis-
)fluency [22, 23] by using information-theoretic features from
enriched language models, rather than using the word values
themselves. In this paper we use Weighted Mean Log trigram
probability (WML) [22], which is an approximation to incre-
mental syntactic probability by factoring out lexical frequency,
as given in (1) where py, is a Kneser-Ney smoothed trigram
language model.

> iep logs prn (Wi | wi—2, wi—1)
- Z;‘l:2 logy prn (w;)

In the spirit of Hidden Event Language Models (HELMs)
[24] we introduce a hidden word to model our event of interest,
<EOT/>, which is appended to the end of turns in training the
language model. Then in testing we compute the probability
of <EOT/> occurring after current prefix of the utterance con-
sumed so far. Specifically, we compute two related WML fea-
tures: the first for the latest word w; consumed by considering
the trigram w;—1, we, <EOT/> at time-step ¢; the second is the
WML of w1, ..., w¢, <EOT /> for the whole utterance. While
the first measure estimates the likelihood of an EOT given the
local context, the latter computes a smoother probability which
factors in the WML of the utterance consumed so far.

Furthermore, we go beyond [15]’s use of the current length
of the utterance as an approximation to information content
by word-by-word computation of Entropy (the negative sum
of probability weighted log probabilities of the trigrams in the
utterance). This serves as a good compliment to the WML
features in that it should discourage classifiers from predict-
ing <EOT/> until there is sufficient information in the ongo-
ing turn— in a simple situated dialogue situation like ours this is
similar across turns, regardless of length.

We extract these linguistic features using STIR (STrongly
Incremental Repair detection) [23]’s language models.* The
language model is trained iteratively over the six speakers with
one speaker held out on each iteration for which the 3 features
are obtained. We do this to avoid obtaining values for speak-
ers whose utterances are in the language model’s training data—
this would provide over-fitted features which are unavailable at
testing time with unknown speakers. An example of how the
feature values evolve over a turn is given in Fig. 1 — overall
WML (green line) peaks on the final word as desired, whilst the
local trigram WML measure (blue) is more jittery. The steadily
rising entropy measure (turquoise, highest line) should allow a
classifier to take account of there being a sufficient amount of
information in the utterance for a potential EOT.

WML(wp . .. wn) =

ey

3.3. Feature Analysis for Predictive Ability

We would like to know how predictive these features are, and in
the following experiments, how they could be complementary
to one another. We examine a few of them here briefly.

For the linguistic features, Fig. 2 (left) shows the distribu-
tion of WML trigram values for final and non-final words, when
tested on utterances not seen during language model training.
There is some overlap in the distributions, however there is still
some useful separation (final words mean= -0.648 (std.=0.493),
non-final words mean= -1.121 (std.=0.529)).

The central graph in Fig. 2 plots the mean entropy values
for each of the 6 speakers’ utterances as a function of time over

4Available within STIR at

julianhough/stir

https://bitbucket.org/
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Figure 2: Features: Local tri-gram WML values (left) overall Entropy values as a function of time for each speaker in the corpus
(middle) and vowel/nasal/fricative phoneme durations (right) for predicting the end-of-turn.
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Figure 3: Overall architecture of the system

the turn. In line with Fig. 1 this generally rises towards the end
of turns across speakers.

For our vowel, fricative and nasal phoneme duration Z-
score feature there is a lengthening turn-finally as can be seen in
Fig. 2 (right) (final words mean= 0.846 (std.=0.952), non-final
words mean= 0.05 (std.=1.084)).

4. EOT Detection System Components

As we have features which correlate well with end-of-turn
events, we investigate how predictive they can be in a time-
series classifier by using them in a simple deep learning set-up
with a simple decoder as a proof of concept.

We pose the problem as a sequence labelling task over 10ms
windows, where the three labels can be speech (S), mid-turn
pause (MTP) and end-of-turn (EOT). We are principally con-
cerned with the first point at which the EOT label is predicted,
but the other labels form part of this task. The overall architec-
ture of the system is as in Fig. 3.

4.1. LSTM

We use the Keras LSTM model [25], using an LSTM layer with
the standard input, output and forget gates with the tanh activa-
tion, and a softmax output layer over the three classes. The input
to the network is a concatenated vector of the 16 acoustic and
3 linguistic features explained above. We train using negative
log likelihood loss (NLL) as a cost function and the Adam op-
timizer [26]. We experimented with different hidden layer sizes
with grid search and an LSTM layer with 68 nodes worked best
on heldout data. To train the network we use a batch size of 10
and maintain the hidden state from one batch to the next.

4.2. Decoding optimization through windowing

The task of the system is to decide, given there is a speech-to-
silence boundary, whether this is the end of the user’s turn. To
simulate that, we assume that we have access to perfect Voice
Activity Detection (VAD), so whilst in training we train on the
label ‘S’, in decoding we interpolate the output from our net-
works with the gold standard information about whether there
was speech or not, and hence the principal decision is whether
to label the current frame as MTP or EOT.

We experimented with several thresholding techniques to
optimize performance. We found a simple windowing tech-
nique with two different windows was most effective for con-
trolling the trade-off between predicting the EOT as quickly as
possible, and not cutting in. The arg max window is used for
computing the class with the highest probability over a fixed
window of previous frames. Making this window longer in-
creases the latency of detection whilst ensuring more confi-
dence. The silence threshold window is the number of frames
of silence (or frames of an MTP are predicted) beyond which an
EOT is predicted automatically for the current frame (and the
previous frames originally labelled MTP are also reclassified).
As with standard silence thresholding, making this shorter risks
cutting in, while making it longer risks increasing latency.

We experimented with different values for the arg max win-
dow size and silence threshold window size, and found that a
ratio of 0.3 from the latter to the former value gave the best
performance on the heldout data.

5. Experimental Set-up

We test our system against a silence-threshold baseline which
predicts an EOT once a given threshold of silence has been
reached. We use thresholds of 50ms—6000ms in 50ms incre-
ments to give a target curve. Given this technique has been used
in previous work with good effect [15], while simple, this is a
competitive baseline.

We evaluate against two principal metrics of interest: the
mean latency at which a turn is detected by a system after the
gold EOT frame, and the cut-in rate, which is the proportion
of times the system predicts an EOT before the gold standard
EOT point. Given achieving the best trade-off between these
two, as per [16], is the objective, we formalize this as follows
as a mean between the cut-off rate and mean latency normalised
by maximal acceptable values for each as in (2).

n cut-in rate mean latency
EOT Trade-Off = 0.5 x - + 2)
max cut-in rate max latency

In this paper we set max cut-in rate to 100% and the max
latency to 10 seconds. The precise values of these can be tested
empirically, but this simple assumption seems to work well for



a situated dialogue system setting— a wait of 10 seconds for a
system response is likely to be as irritating as the system cutting
in every turn, and a very small latency of one tenth of a second is
equivalently effective as only cutting in once every one-hundred
turns. The lower this value, the better, and systems must do well
in both individual metrics to do well overall.

We employ a cross-validation strategy for evaluation to sim-
ulate the demands of a real system. Our systems are trained on 5
speakers, then tested on the heldout sixth one. We divided each
fold into heldout and test data so we could experiment before
getting our final results.” After training the LSTM, we decode
using different silence threshold back-offs incrementing from
50ms up to 2000ms in 50ms increments, and then from 2000ms
to 6000ms using 500ms increments with the arg max window
size always 0.3 times this value. The purpose is to see if good
trade-offs can be found which can beat the silence threshold
baseline when operating with different latencies.

We run all the different threshold settings across an LSTM
trained on the acoustic features alone, one trained on the lin-
guistic features alone, and one trained on all features. We use
early stopping on heldout data with a patience of 5 epochs with-
out improvement.

6. Results

Our results are as in Table 1. The best overall performance is in
the top block of the table and the best performance for detection
latencies under 750ms and 500ms are in the second and third
blocks, respectively. As can be seen, our best LSTM system
outperforms the baseline in all three categories in terms of the
best trade-off, with the overall best having an average of roughly
1.195 seconds of latency with a cut-in rate of 18 %, while it can
perform well at the lower latency settings achieving a latency of
0.733 seconds with a cut-in rate of 24% and a latency of 0.494s
with a cut-in rate of 29%. The model using both linguistic and
acoustic features outperforms the individual settings, and only
in the <500ms part of the evaluation does one of our systems
(linguistic features only) get beaten by the baseline.

The curve in Fig. 4 shows the performance of the system
with different feature sets. As can be seen there is some room
under the baseline curve for our LSTM that uses linguistic and
acoustic features. A T-test shows the three LSTM systems
have points on the curve with mean trade-off values signifi-
cantly lower (better) than the baseline, while the model with
joint acoustic and linguistic features is significantly better than
both the acoustic features only (p<0.02) and linguistic features
only systems (p<0.04). There is no significant difference be-
tween the linguistic features only and acoustic features only sys-
tem performances, showing that the fusion of the feature sets is
maximising the utility of both feature sets when fused together.

There is significant performance variation over the different
speaker folds, with best trade-offs ranging from a modest 0.294
(latency=3.683s, cut-in=21.9%) in a speaker with unusually
long pauses, to the best performance of 0.024 (latency=0.153s,
cut-in=3.3%). The variation is part of a general problem we
face as dialogue system designers for systems with a small num-
ber of diverse users, but we plan to do future work on online
adaptation [27].

5The experiments are fully reproducible from the reposi-
tories https://bitbucket.org/anmaier/eot_detection
and https://bitbucket.org/anmaier/eot_detection_
data.

System (silence threshold, arg max Latency | Cut-in Trade-
window) (ms) rate(%) | off
LSTM Acoust+Ling (2000,600) 1195.3 18.0 0.150
LSTM Ling (2000,600) 1396.2 | 17.8 0.159
LSTM Acoust (1650,490) 1101.7 | 21.2 0.161
Baseline (1600,-) 1600.0 | 17.5 0.168
LSTM Acoust+Ling (1200,360) 732.6 24.2 0.160
LSTM Ling (1000,300) 717.7 26.7 0.169
LSTM Acoust (1100, 330) 729.6 27.2 0.173
Baseline (750,-) 750.0 27.2 0.174
LSTM Acoust+Ling (800,240) 494.1 29.2 0.173
LSTM Acoust (750,220) 485.8 30.7 0.178
Baseline(500,-) 500.0 31.0 0.180
LSTM Ling (650,190) 460.2 32.0 0.183

Table 1: Results from our systems against the baseline.
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Figure 4: The trade-off between latency (x) and cut-in rate (y)
with our LSTM systems against a silence-thresholding baseline.

7. Conclusion

Our work most closely follows [15] in building a system which
allows the trade-off between latency and cut-in rate in end-of-
turn detection. We specifically do this for a situated dialogue
system setting, and use an LSTM with threshold-based decod-
ing which uses acoustic and linguistic features to predict end-
of-turn events incrementally, improving over a reactive silence
thresholding baseline. We show the combination of linguistic
and acoustic features yields improvements when used together,
suggesting the fusion in the LSTM is working effectively. We
suggest our method could be applied to both dialogue systems
and segmentation of human-human dialogues, where according
to [5] there is often no silence between turns.

We are aware of the simplifying assumptions we have made
here. In future work, we will make our system fully live by
testing it with the input of real users, and therefore using output
from a real VAD and ASR. Additionally, we aim to use our
predictive approach in dialogue situations that are less easily
predictable such as user interruptions or emotive speech.
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