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ABSTRACT
For effective HRI, robots must go beyond having good leg-
ibility of their intentions shown by their actions, but also
ground the degree of uncertainty they have. We show how
in simple robots which have spoken language understand-
ing capacities, uncertainty can be communicated to users
by principles of grounding in dialogue interaction even with-
out natural language generation. We present a model which
makes this possible for robots with limited communication
channels beyond the execution of task actions themselves.
We implement our model in a pick-and-place robot, and ex-
periment with two strategies for grounding uncertainty. In
an observer study, we show that participants observing in-
teractions with the robot run by the two different strategies
were able to infer the degree of understanding the robot had
internally, and in the more uncertainty-expressive system,
were also able to perceive the degree of internal uncertainty
the robot had reliably.
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1. INTRODUCTION
In human-human interaction, understanding is not an all-

or-nothing affair. When following a request to do something,
we can act tentatively, displaying uncertainty about our un-
derstanding. In HRI, much existing work is concerned with
the legibility of robot actions, under the assumption that
the robot’s current goal is always certain to the robot, as
is the robot’s basis for that goal [6, 5]. In this paper we
investigate how simple robots with spoken language under-
standing capabilities can best communicate their internal
uncertainty to users and onlookers with their non-verbal,
task actions. Particularly, we investigate how the degree
of a robot’s uncertainty can be communicated through the
manner of execution of its actions during interaction.

We take uncertainty, or the converse property, confidence,
to be a first class citizen of HRI. Humans and robots gen-
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erate different internal representations and use qualitatively
different types of processing when interacting with each other
[14], giving rise to different types and degrees of uncertainty
for each agent. In an interaction with a manipulator robot
which responds to a user requesting manipulation of real-
world objects through speech, the types of uncertainty are
on multiple levels. These levels include: uncertainty over
which words are being spoken as they are recognized from an
automatic speech recognizer (ASR); the current real-world
location and visual properties of the objects from a com-
puter vision processor; which target objects or locations are
being referred to (language grounding, or reference resolu-
tion), and, recognition of intentions as to what to do with
the objects (dialogue act and intention recognition).

In this paper we explore how simple robots can commu-
nicate their internal uncertainty to human interaction part-
ners. After providing background on grounding uncertainty
in §2, we present a grounding model for HRI which draws
on dialogue systems research in §3. The model is designed
to allow a robot’s internal uncertainty to be communicated
to users as it interprets speech, and in an online, fluid man-
ner. In §4 we describe a proof-of-concept implementation
of the model in a simple robot whose only communicative
channel is the execution of its task actions, and then in §5
describe a study which proves its efficacy in communicating
its uncertainty to observers of the robot’s behaviour.

2. GROUNDING UNCERTAINTY IN HRI
Communicative grounding in the sense of [4, 3] is the way

in which interaction participants build and align their in-
ternal representations towards shared information or “com-
mon ground”. In HRI, grounding is a particular challenge,
given the fundamental differences in the internal representa-
tions and processing of humans and robots [14]. Given these
differences, perceived behaviour of modern robots may not
reflect their internal states appropriately, as system design-
ers may feign competences to make interaction less cum-
bersome, whilst obscuring the robot’s real level of under-
standing. For robots which understand speech, the trade-
off between “keeping up appearances” by displaying appar-
ently human-like dialogue behaviour, and on the other hand
grounding the robot’s uncertainty, can be weighted more to-
wards the former objective. Consequently, users may not
be aware how or to what degree a robot has misunderstood
them, which could have negative consequences if robots are
to engage in active learning through interaction [23, 22].

In HRI, grounding research has focused on communicative
problems in language grounding, for example on how per-
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spective taking and frame of reference differ between robots
and humans [13, 17, 16]. Also, the improvement of ground-
ing intentions through increasing the legibility of actions
has received attention– [6, 5] show the importance of leg-
ible robot motion which is more ‘intent-expressive’ to users.

We argue in this paper that a robot not only needs to mon-
itor when its internal goal is becoming legible, but the robot
should also be able to ground the degree of commitment to
its goal with the user when it is uncertain, so it may get the
required aid, and do so in a fluid and non-cumbersome way.

In simple robots, uncertainty can be grounded in the man-
ner of execution of the task actions themselves, and here,
our motivation is similar to [20]’s position paper on how a
robot’s uncertainty can be indicated through hesitation be-
fore moving. Technically, we also aim to achieve the trade-
off between ‘safety’ and speed of movement similar to [19]’s
system, however, our notion of safety here, rather than be-
ing the avoidance of physical hazards, is the state of inter-
nal certainty the robot has about the user’s current inten-
tion, according to their ongoing speech. We propose this can
be achieved through incorporating a fluid grounding mech-
anism into the robot’s architecture.

3. A MODEL FOR FLUIDLY GROUNDING
UNCERTAINTY FOR SIMPLE ROBOTS

We propose a communicative grounding model to make a
robot’s internal uncertainty common ground with the user.
We draw on computational models of grounding [27, 21] and
recent attempts to incrementalize grounding strategies in
dialogue models [8, 7, 10], which can be purposed for sim-
ple robots with speech interfaces if certain modifications are
made. The first modification is that the robot’s actions have
the same status as dialogue acts. The second is that commit-
ment to goals can be real-valued rather than absolute, and
this commitment can be evaluated by strength-of-evidence
functions which monitor the degree to which each agent is
showing commitment to their goal at a given point in the
interaction. From the definition of these functions and the
grounding model, internal measures of understanding and
confidence can be calculated on-line by the robot. We ex-
plain the elements in turn below.

Statecharts with strength-of-evidence functions.
For our grounding model, we follow work using Harel stat-

echarts [9] for dialogue control in robotic systems by [22,
26]. Fig. 1 defines the grounding state machine for a simple
robot which interprets a user’s speech to carry out actions.
Here we characterize the user and robot as having parallel
states, represented either side of the dotted line. This al-
lows the robot to estimate which grounding state the robot
and human are in concurrently, without having to explicitly
represent the Cartesian product of all possible states.

Fig. 1 shows the states and “triggering conditions” that
must be satisfied to allow state transitions (written on
the arcs between state boxes, where specific conditions or
“guards” are in square brackets). The main motivation of
the model is to explore the criteria by which the robot judges
both their own and their interaction partner’s goals to have
become publicly manifest (though not necessarily grounded)
in real time, and therefore when they are showing commit-
ment to them. To determine which grounding state each
agent is in, we use evaluation functions Ev for each agent’s

state in the triggering conditions on the state transitions–
these are strength-of-evidence valuation functions that re-
turn a real number value indicating the degree to which
the agent has displayed their goal publicly, according to the
robot’s best knowledge. Goals are hidden in the case of the
user state and observed in the case of the robot, yet both
have to be evaluated for the degree to which they are mani-
fest to allow appropriate interpretation of the user’s speech.
UserGoal is estimated as the most likely user intention

in the set of possible goals Intentions, given the current
utterance u, the robot’s state Robot and the current task’s
state Task, as in (1). Intentions is the set of user intentions
specified on a degree of abstraction deemed relevant by the
system designer– for example a possible intention could be
TAKE(X) for a robot capable of taking object X.

UserGoal := arg max
i∈Intentions

p(i | u,Robot, Task) (1)

While the estimated user’s goal is continuously being up-
dated through new evidence, this goal can only be judged
to become sufficiently mutually manifest with the robot
when a certain confidence criterion has been met– here
we characterize this as a real-valued threshold δ. Us-
ing a real-valued threshold allows experimentation into in-
creasing responsiveness of the robot by reducing it [10].
As Fig. 1 shows, once Ev(UserGoal) ≥ δ then the state
user_showing_commitment_to_goal can be entered. In a
fully cooperative system one can assume the assignment
RobotGoal := UserGoal is then carried out upon enter-
ing the state (though we omit this from the core grounding
model given cooperativity is not assumed).

Conversely, the Robot’s view of its own grounding state
uses the function Ev(RobotGoal) and its own threshold ε.
Unlike the user, the robot’s goal is taken to be fully observed,
however it must still estimate when RobotGoal is made pub-
lic by its action, and once ε has been reached, the robot may
enter robot_showing_commitment_to_goal. Once in this
state it is permissible for the user state to either commit
to the goal and trigger grounding, else engage the robot in
repair, entering user_repairing_robot_action. Then, as
soon as is physically possible in the motor plan, the robot
state will become robot_repairing_robot_action. The re-
pairing state’s internal processes are identical to the initial
user_uncommitted one, except the first action upon entry is
to prune Intentions such that:

Intentions := {i | p(RobotGoal | i) = 0} (2)

(2) removes all those intentions which would eventually
lead to entry to the repaired RobotGoal intention. The robot
will remain in this repairing state until the user’s state has
exited user_repairing_robot_action, triggering the end of
the user-initiated repair interaction. Note that it is only pos-
sible for the user state to repair the RobotGoal, rather than
UserGoal– the user can repair the latter through self-repair,
but that is currently not represented as its own state. Repair
of the robot’s current action is only possible through know-
ing it had shown commitment to a goal which caused it (i.e.
been in the state robot_showing_commitment_to_goal), oth-
erwise, as per normal principles of situated dialogue, it would
not be able to interpret the utterance as a repair. The
strength-of-evidence function Ev(RobotGoal) and the thresh-
old ε are therefore of tantamount importance, as they deter-
mine when confirmations and repairs can be interpreted as
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Figure 1: Interactive Statechart as modelled by the Robot. The statechart consists of two parallel, concurrent
states, one for each participant. The triggering events and conditions in the transition functions (the directed
edges) can reference the other state.
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Figure 2: Concurrent User and Robot grounding states during an interaction where an initial mis-recognition
of ‘green’ as ‘grey’ by the ASR, and confusion over colours in reference resolution where ‘grey’ gives higher
probability to a blue object. The recognition of repair allows the participants to become grounded again.

such, and consequently determine the interactive dynamics
of system.

Fluidity through incremental processing.
We achieve fluidity in this grounding process through in-

cremental processing. The increment of the triggering events
in the User state is the latest word w in current utterance
u (as opposed to the latest complete utterance). The prin-
cipal Natural Language Understanding (NLU) decisions are
therefore to classify incrementally which type of dialogue act

u is, (e.g. u : Confirm), whether w begins a new dialogue
act or not, and estimate UserGoal from the set Intentions,
whatever they may be in the given application. The ground-
ing statechart is then checked to see if a transition is possible
from the user’s current state as each word is processed, akin
to incremental dialogue state tracking [28].

For an example of the grounding model in action see
Fig. 2. This shows the state dynamics for the concurrent
statechart during an interaction with repair.1 The robot’s

1Notice how the Robot state mirrors, though slightly lags,
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ASR error leads to it showing commitment to picking up
the wrong object, where upon user-initiated repair inter-
action begins. From its repair state, the robot changes
its goal and re-enters robot_showing_commitment_to_goal

once its new movement has become legible. In this
state, the user’s confirmation “right” is interpreted as re-
ferring to the current RobotGoal, triggering the entry to
robot_committed_to_goal.

In addition to the word-by-word, left-to-right incremen-
tal language understanding ability [15] describe, our system
can simultaneously act after each word is processed (like
[2]’s model, which is not implemented in a robot), but the
novelty is that the robotic action then dynamically updates
the context used to understand the following words in the
utterance. This is consistent with our approach that the
robot’s non-verbal actions are treated with the same status
as dialogue/speech acts in dialogue and speech act models.

Internal Measures of Understanding and Confidence.
With this grounding model and dialogue act and intention

recognition adequate for the robot to know it is in a given
grounding state, it is possible to derive measures of under-
standing and confidence in its own actions, in line with our
motivation of making robots monitor their own uncertainty.

Unless being explicitly informed, a robot will not have di-
rect knowledge of its own level of understanding of the user’s
speech. However, using our grounding model it can estimate
this simply as the efficiency in transitioning within its Robot
state machine from the initial robot_uncommitted state to
the robot_committed_to_goal state for a given goal. So,
the level of understanding for a given time period ti..tn is
simply as in (3), where S(ti..tn) represents the states tran-
sitioned to over that time.

U(ti...tn) =
2× | {sj | sj ∈ S(ti...tn) ∧ sj : robot committed to goal} |

| S(ti...tn) |
(3)

This simple measure is based on the following assumption:
if the level of understanding is perfect, only two grounding
state entries are required to go from being uncommitted to
robot_committed_to_goal (see Fig .1). In the example in
Fig. 2, the understanding measure for this time period would
be 2

4
= 0.5, as the total number of state transitions is 4, and

there is only one robot_committed_to_goal state. Under-
standing is therefore a measure of grounding efficiency.

Confidence, which is the inverse of uncertainty, is char-
acterized in (4). It is simply the sum of all the strength-
of-evidence measures for the user’s goal which have been
recorded in the state history so far, normalized by the num-
ber of state transitions. Confidence in the hypothesized
UserGoal is the basis on which the robot’s actions are made.

C(ti...tn) =

∑
j sj .Ev(UserGoal) ∈ S(ti...tn)

| S(ti...tn) |
(4)

(4) is a summary of the evidence for the user’s goal so
far– simply the mean of the strength-of-evidence values that
the actions were based on. If there is no uncertainty at
all in the evidence about the user’s goal when these ac-
tions were taken, then this measure would simply average

the User, by virtue of the fact that it takes time to demon-
strate commitment to a given goal with a sufficently strong
Ev(RobotGoal) (or legibility [6]).

at 1. Lower Ev(UserGoal) values reduce this ongoing aver-
age confidence. We use averaging as opposed to a standard
product for probability values in Markov chains as we as-
sume confidence is additive, and the length and efficiency of
the interaction is better captured by our simple understand-
ing metric in (3).

Showing uncertainty in action execution.
When the robot repairs its action during the user’s speech,

this is a clear sign of unsuccessful grounding. Legible change
of intent shows a lack of absolute commitment to the original
goal. However, there are also ways in which simple robots
can display the degree of uncertainty about their goal and
communicate the value of Ev(UserGoal) which their actions
are based on. A robot can do this by waiting longer periods
for confirmation before acting, as in [20], or by moving more
slowly. We explore these two strategies in our experiment in
§5 to communicate the robot’s current internal confidence.
More complex robots could display low levels of confidence
through other means such as a confused facial expressions,
or requesting clarification for robots with spoken language
generation abilities [18].

3.1 Managing uncertainty at different levels
with the Incremental Unit framework

To manage the processing in our robotic system which the
grounding state machine is housed in, we use the Incremen-
tal Unit (IU) framework [25]. The input and output of each
module are incremental units (IUs), which are packages of
information with a pre-defined level of granularity– e.g. a
wordIU can represent a single incremental ASR word hy-
pothesis. IUs created in the output buffer of one module
trigger downstream processing (and creation of new IUs) in
other modules with access to that buffer.

IUs can be defined to be connected by directed edges,
called Grounded In links, which in general take the semantics
of “triggered by” from the source to the sink IU. Grounded
In links are useful in cases where input IU hypotheses may
be revoked (for instance, by changing ASR hypotheses), as
reasoning can be triggered about how to revoke or repair
actions that are Grounded In these input IUs in downstream
modules– see e.g. [11].

To implement the grounding strategies above, we recast
the standard Grounded In dependencies: while the output
IUs are taken as Grounded In the input IUs which triggered
them (from sensor modules to actuator modules), as per
standard processing, in our system the reverse will also be
true: consistent with the statecharts driving the behaviour,
the interpretation of the user’s speech is dependent on the
robot’s latest or currently ongoing robot action. Conse-
quently interpretation IUs can be grounded in action IUs–
see the reversed feedback arrow in Fig. 3.

To deal with concurrency issues that this closed-loop ap-
proach has, the IU modules coordinate their behaviours by
sending event instances to each other, where events here are
IU edit messages. The edit messages consist in ADDs where
the IU is initially created, COMMIT s if there is certainty
they will not change their payload, and, as mentioned above
REVOKEs may be sent if the basis for a previously ADDed
IU becomes unreliable. IUs also have different temporal sta-
tuses of being either upcoming, ongoing or completed, a tem-
poral logic which allows the system to reason with the status
of the actions being executed or planned by the robot.
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dard IU approaches helps achieve requirements of
fluid interaction and situated repair interpretation.
Grounded In links in blue.

4. IMPLEMENTATION IN A SIMPLE PICK-
AND-PLACE ROBOT

We implement the above grounding model and incremen-
tal processing in a real-world pick-and-place robot, Pen-
toRob [10], the architecture of which can be seen in Fig. 4.
The domain we use in this paper is grabbing and placing
real-world magnetic Pentomino pieces at target locations,
however the system is adaptable to novel objects and tasks.

For the robotic arm, we use the ShapeOko2,2 a heavy-
duty 3-axis CNC machine, which we modified with a ro-
tatable electromagnet, whereby its movement and magnetic
field are controlled via two Arduino boards. The sensors are
a webcam and microphone.

4.1 System components
The robot was implemented in Java using the InproTK

[1] dialogue systems toolkit.3 The modules involved are de-
scribed below, in terms of their input information or IUs,
processing, and output IUs.

Incremental Speech Recognizer (ASR).
We use Google’s web-based ASR API [24] in German

mode, in line with the native language of our experimental
participants. It achieves a Word Error Rate in our target
domain of 20%. While it has slightly sub-optimal incremen-
tal performance, this did not incur great costs in terms of
the grounding we focus on here.

Computer Vision (CV).
We utilize OpenCV in a Python module to track objects in

the camera’s view. This information is relayed to InproTK
from Python via the Robotics Service Bus (RSB),4 which
outputs IDs and positions of objects it detects in the scene

2http://www.shapeoko.com/wiki/index.php/ShapeOko 2
3http://bitbucket.org/inpro/inprotk
4https://code.cor-lab.de/projects/rsb
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Figure 4: Robot architecture.

along with their low-level features (e.g., RGB/HSV values,
x,y coordinates, number of edges, etc.), converting these into
sceneIUs which the downstream reference resolution model
consumes. The Robot State Machine also uses these for
reasoning about positions of the objects it plans to grab.5

Reference resolution (WAC).
The reference resolution component consists of a Words

As Classifiers (WAC) model [12]. Our robot’s WAC model is
trained on a corpus of Wizard-of-Oz Pentomino puzzle play-
ing interactions. During application, as a referring expres-
sion is uttered and recognized, the classifier for each word in
the expression is applied to all objects in the scene, which
after normalisation, results in a probability distribution over
objects. [12] report 65% accuracy on a 1-out-of-32 reference
resolution task in this domain with the same features.

User State Machine.
We implement the principal NLU features within the User

State Machine module, which runs the User state of the in-
teractive grounding statechart as in Fig. 1. While the stat-
echart defines the transitions between states, their trigger-
ing criteria require the variables of the estimated current
UserGoal from a set Intentions, its strength-of-evidence
function Ev and threshold δ to be defined. In our domain we
characterize UserGoal as simply taking or placing the most
likely object in the referent set R being referred to according
to WAC’s output distribution given the utterance u so far
(e.g. (5) and Intentions is simply the distribution over the
possible actions of the Pentomino pieces still in play. When
the action is TAKE, the Ev function is the probability value
of the highest ranked object in WAC’s distribution over its
second highest rank as in (6). We experimented to find a
suitable δ which (6) needs to reach as 0.05 [10].

UserGoal = TAKE(arg max
r∈R

p(r | u)) (5)

5The objects’ positions are calculated accurately from a sin-
gle video stream using perspective projection.
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Ev(UserGoal) = Margin(arg max
r∈R

p(r | u)) (6)

When the action of the goal is PLACE and the system
is waiting to recognize a target location as a numbered lo-
cation based on the incoming wordIUs, we use a simpler
Ev(UserGoal): this remains 1.0 until 4 seconds after the
last robotic action, then decays gradually to 0.05 after 10
seconds. We assigned these bounds after a short pilot study.
Given the uncertainty lies in incoming wordIUs for the sim-
ple location references, a function based on the ASR con-
fidences could be used, however for our purposes the time
elapsed alone was a good enough indicator of uncertainty.

We obtain UserGoal incrementally with a simple NLU
method, which uses the results from the WAC refer-
ence resolution and the Robot and User’s current ground-
ing state. Firstly, sub-utterance dialogue act (DA) clas-
sification is performed, judging the utterance to be in
{request, confirm, repair} after every word. The classi-
fier is a simple segmenter which uses key word spotting for
confirm words and common repair initiating words, and
also classifies a repair if the word changes the UserGoal,
else outputting the default request. Given the DA classifi-
cation, the state machine is queried to see if transitioning
away from the current state is possible.

If a successful state change is achieved and UserGoal has
changed or been instantiated in the process, a new ActionRe-
questIU is made available in the module’s right buffer, where
the payload is a frame with the dialogue act type, the action
type (TAKE or PLACE) and optional arguments target_piece
and target_location.

Robot State Machine.
The robot state machine module partially consists of the

Robot grounding statechart in Fig. 1, having access to trig-
gering conditions involving the User’s state through Action-
RequestIUs in its input buffer. When the User state is
user_showing_commitment_to_goal, the RobotGoal is set
to UserGoal, and through a simple planning function, Ac-
tionIUs are created to achieve it. It sends these as RSB mes-
sages to the robotic actuation module and once confirmed,
also via RSB, that the action has begun, the ActionIU is
committed and the robot’s action state, orthogonal to its
grounding state, is set to one of the following, with super-
states in brackets:

{stationary_without_piece |
moving_without_piece |
moving_to_piece (taking) |
over_target_piece (taking) |
grabbing_piece (taking) |
stationary_with_piece(placing) |
moving_with_piece (placing) |
over_target_location (placing) |
dropping_piece (placing)}

For estimation of its own grounding state, we define the
robot’s strength-of-evidence function as in (7):

Ev(RobotGoal) =


1 if over target piece,
1 if over target location,
0.5 if taking ∧ legible(RobotGoal),
0.5 if placing ∧ legible(RobotGoal),
0 otherwise

(7)

Here we take legible to be a very simple characteristic:
that the elapsed time from the beginning of the current ac-
tion is over 50% of the expected duration of the entire action.
The simplistic function (7) embodies the assumption that
there is absolute certainty that the robot’s goal has been
demonstrated when its arm is directly over the target pieces
and locations, else if it is legibly moving to these positions,
there is some evidence, else there is none. While sufficient
for our purposes, more sophisticated approaches can be seen
in [5]. In this paper, based on experimentation we set the
threshold ε which (7) must reach to be 0.5 [10].

Robot actuation module.
The module controlling the robotic actuation of the

ShapeOKO arm is a Python module with an Arduino board
G-code interface to the arm. This sends RSB feedback mes-
sages to the robotic control module to the effect that ac-
tions have been successful or unsuccessfully started, and
with their estimated finishing time.

5. EXPERIMENT: AN ONLOOKER
STUDY ON INFERRING UNCERTAINTY

To test our model of grounding uncertainty in our imple-
mentation with users we carry out an onlooker experiment
with two versions of our model in PentoRob. Both versions
have the same model of internal uncertainty as described
above, however they differ as to how they ground this un-
certainty with the user in the following ways:

Uncertainty through repair only: only grounds un-
certainty by allowing repairs to change its goal and
therefore change its action. The maximum speed of
movement is the same for every action, and it has a
default waiting time over its goal pieces and locations
of 1.5 seconds.

Uncertainty through movement: also allows repairs to
change its goal but also exhibits its own level of con-
fidence about its goal through its speed of movement
and waiting time before acting. Its speed is propor-
tional to its confidence about the piece or target loca-
tion being referred to, according to equation (4), and
its waiting time over target pieces and areas is inversely
proportional to this confidence, with a maximal wait
time λ seconds before taking the initiative with action
a and a degradation down to 0 (no wait) according to
(8) below. In this study we set λ to 3 seconds.

WaitTime(a) = λ× (1− Ev(UserGoal)) (8)

The aim of the study was to evaluate our model for its
ability to ground system internal measures of understand-
ing and confidence, and whether altering simple parameters
of the action execution can communicate the degree of un-
certainty. Our concrete hypotheses were:

H1 Our grounding model allows observers to rate the
robot’s level of understanding reliably without the
robot knowing whether it had successfully achieved
the user’s goal. Due to this measure being based on
grounding efficiency in terms of number of state tran-
sitions (as in eq. (3)) there should be no difference
between the two settings.
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Figure 5: Setting 1 (top) and 2 (bottom).

H2 In our uncertainty through movement setting, users
would be able to rate the robot’s perceived level of
confidence more closely to its internal measure of con-
fidence (as in eq. (4)) than in the uncertainty through
repair only setting. Given the former system maps its
confidence onto parameters of its actions, this should
be noticeable to users.

5.1 Method
We conducted a video observation experiment with 12 par-

ticipants who were undergraduate aged students (4 male, 8
female), all of whom understood German (9 native). The
participants rated videos of our robot interacting with an
undergraduate aged female native German speaker. The in-
struction giver was not visible in the video as it was captured
via a camera placed at her head level, so effected a ‘point-
of-view’ shot where her voice could be heard – see Fig. 5.
Each video showed the robot placing a number of pieces as
instructed by the instruction giver. Direct interaction with
the robot was not used to avoid the difficulty of giving rat-
ings during the interaction in a way that was natural. We
understood from the outset that this was not direct HRI,
but believe it still has concrete implications for it.

Participants watched and rated four videos in total. The
study was a within-subjects design in that participants
watched videos in two halves, where they were told the first
two videos showed the robot controlled by one system, and
the final two showed the robot being controlled by a different
system. Both pairs of videos had the same task and starting
configurations for two different situations as shown in Fig 5:

1 The initial scene consists of 5 Pentomino pieces: 3
green, 2 red, where there are distractors in terms of
shape, with two T-shaped pieces in each colour (in-
troducing human-like uncertainty). The green Z and
M pieces according to our computer vision module are
confusable (introducing robot-specific uncertainty). All
5 pieces are to be placed in specified numbered boxes
at the bottom of the screen.

2 The initial scene consists of 6 Pentomino pieces: 3
green, 3 blue. While there are no distractors in terms
of shape, our computer vision module often confuses
green and blue. The first 3 pieces, all green, are to be
placed in the specified numbered boxes.

For all four interactions, the words recognized, dialogue
acts classified, grounding state changes, robotic action re-
quests and callbacks, understanding and confidence mea-
sures were logged by our system. These were used to test
our hypotheses.

Participants watched both situations in the same order
but with a randomly selected order of the system presenta-
tions. The experimenter, not co-present, paused the video
after each piece was placed in its target location. During the
pause, participants would rate the robot’s behaviour during
the clip they had just observed under two dimensions of Un-
derstanding and Confidence on a scale from 1 to 7, writing
them down on a form. Before the experiment the meanings
of the two ratings dimensions were explained as follows:

• Understanding- to what degree did you feel the robot
understood what it had to do?

• Confidence- to what degree did you feel the robot had
confidence in its decisions to act?

The purpose of the clip-by-clip rating, rather than using
overall interaction-final impressions, is that we wanted to
get close to the live monitoring of understanding and uncer-
tainty required in performing joint tasks with robots, in line
with our motivation in §2. We separate understanding and
confidence ratings in order to see how well our model’s in-
ternal measures of both dimensions correlate with the users’
perceptions, emphasizing these as separate aspects, rather
than conflating the ratings into one.

5.2 Results
One participant did not follow the instructions, so his re-

sults were discarded. For the remaining 11 participants,
we performed Z-score normalization over their ratings, and
then correlated these Z-scores with the internal understand-
ing and confidence ratings for each of the 8 clips.

For understanding, the internal values of the system’s un-
derstanding for each clip as given in (3) correlated very
strongly with user ratings of perceived understanding for
both systems. The uncertainty through movement setting
correlating linearly (Pearson’s R) very strongly at 0.921
(n=88 for this and all results below, p<0.0001), and in
a non-parametric Spearman’s rank correlating strongly at
0.832 (p<0.0001). Our uncertainty through repair only
system’s internal understanding for each clip also cor-
related strongly linearly and non-parametrically (Pear-
son’s R= 0.841 (p<0.0001) and Spearman’s rank = 0.765
(p<0.0001))– see Fig 6 (top). According to a Fisher r-to-z
transformation, the two Spearman’s rank correlations were
not significantly different (z=1.210. p=0.226). This result
gives evidence for H1 being the case in our simple domain.

For confidence, the inverse of uncertainty which we are
investigating, there is a different pattern, in that while the
uncertainty through movement setting’s internal confidence
correlates strongly with the observer judgements (Pearson’s
R=0.726, p<0.0001; Spearman’s rank = 0.704, p<0.0001),
the uncertainty through repair only setting only does so mod-
erately (Pearson’s R=0.398, p<0.001; Spearman’s rank =
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Figure 6: Top: plot of the internal understanding measures of the system (x-axis) vs. observed rated level of
understanding by participants (y-axis). Bottom: internal confidence measure of the system (x) vs. observed
rated confidence (y). Left-hand plots are uncertainty through movement system, right-hand repair only.

0.4018, p<0.001)– see Fig. 6 (bottom). A Fisher r-to-z trans-
formation on the Spearman’s rank coefficients shows the un-
certainty through movement ’s correlation was significantly
stronger (z=2.93, p<0.01). This gives some evidence to
supporting H2, that the uncertainty is more easily ground-
able through mapping it onto real-valued parameters in the
robot’s movement.

5.3 Discussion
We can tentatively conclude that uncertainty can be rec-

ognized in the movement system more reliably than the re-
pair only system, given the stronger correlation between in-
ternal confidence values and the ratings of confidence. The
correlation suggests people can not only perceive the pres-
ence of uncertainty, but its degree. Given the repair only
system ‘hides’ its uncertainty in its action, this result is
what we would expect, and serves as evidence that one can
systematically ground levels of certainty through simple pa-
rameter changes in robotic movement alone.

There are several limitations to the study. Firstly, due to
the fact video-recorded interactions were rated, one can only
tentatively draw conclusions for actual HRI. It is difficult to
design scenarios where users could rate the robot’s levels of
understanding and confidence online while they carry out
a time-critical task with the robot, however other measures
of uncertainty derivable from sensory information could be
used. Various options such as gaze data or acoustic measures
from the user’s speech could be used in a further study. A
future study could also be designed where uncertainty is
contingent on some aspects of interactive success for the
user, such as perceived rapport and trust with the robot.

Secondly, the study could be scaled to a bigger participant
pool. Using crowd sourcing could potentially be useful for

informing our grounding model with enough data. In spite
of this limitation, from our proof-of-concept we can draw
positive conclusions that on-lookers can perceive uncertainty
with some reliability.

6. CONCLUSION
We have presented a grounding model for HRI and show

how, when implemented in a simple robot, it can communi-
cate a robot’s levels of uncertainty, in terms of understand-
ing and confidence, purely through the robot’s task actions.
While parameterization of robotic movement by confidence
levels has been used in previous studies for giving extra time
for sensing [19], here we do this for communicative purposes.

Our study has some pleasing potential consequences for
HRI with simple robots in general. Any system with ad-
justable parameters in its actions could in principle adopt
our grounding model. The choice of the strength-of-evidence
functions and thresholds will vary with the affordances of the
robot and its primary tasks. However, provided the robot
has the ability to monitor the ongoing progress of its actions,
and provided those actions are interruptible, our model can
be adapted to novel cases.
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