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Abstract

While flat representations of dialogue

states can be useful for machine learn-

ing approaches to human-robot interac-

tion, there is still a role for structured dia-

logue states classification, particularly for

domains with little data. To address this,

we propose a novel types-as-classifiers ap-

proach to dialogue processing for robots

using probabilistic type judgements. In

our proposal, incoming sensory data is

converted to a world belief Type Theory

with Records (TTR) record type in real

time, and then derived beliefs such as in-

tention attribution to a user, or the predic-

tion of the affordances of visible objects,

are made as record type judgements of

that record type. The world belief record

type can be updated dynamically like a di-

alogue state, allowing information of dif-

ferent perceptual sources to be easily com-

bined using simple composition mecha-

nisms using standard probability theoretic

axioms.

1 Introduction

The combination of computer vision and natu-

ral language processing is now popular. Thanks

to increased computing power and the devel-

opment of new deep learning techniques, huge

strides forward have been made in several

tasks, including: automatic image retrieval from

key words, reference resolution of objects in

photographs from textual referring expressions

(Kennington and Schlangen, 2015), generating re-

ferring expressions to objects given probabilistic

estimation of object properties (Mast et al., 2016),

caption generation and visual question answering

(Antol et al., 2015).

A more challenging task, beyond the use of

single sentences with images, is designing dia-

logue systems for real-world human-robot interac-

tion (HRI) which combine probabilistic informa-

tion encoding visual and physical properties of ob-

jects and information about the interaction which a

dialogue system would encode in a dialogue state.

This uniform approach not only requires the use of

complex visual information and semantic parsing,

but also needs to permit fluid interaction with a

collaborative robot to help a user complete a man-

ual task. This requires an incrementally and dy-

namically evolving dialogue state which encodes

the robot’s own action state as well as its estima-

tion of the user’s intentions in real time. While

flat structures can be used to encode dialogue sys-

tem states, to cover relations between objects and

hierarchical robot states, particularly when only a

small amount of training data is available, hier-

archical structure can help as a starting point for

more efficient learning and greater flexibility.



SCENE:

OBJECTS (segmentation and visual classifiers):
obj 0:

yellow = 0.9627010226249695

blue = 0.0000065658565517

..

position x = 349.3824768066406

position y = 230.4832458496094

position z = 21.07515907287598

obj 1:

yellow = 0

blue = 0.9758355617523193

...

position x = 521.5785522460938

position y = 405.300048828125

position z = 42.72132110595703

...

USER SPEECH (current user utterance):
‘put the left green apple in the basket’

ROBOT ACTION AND TASK STATE:

task

arm

robot

Figure 1: A typical state according to the robot. Objects are segmented and properties can be obtained

for each object. The robot’s internal action state is controlled by a Hierarchical State Machine (HSM)

In this paper we address this challenge by for-

mulating a simple interaction state for a manip-

ulator robot with natural language understanding

capability using concepts from Type Theory with

Records (TTR) (Cooper, 2005). We characterize

the robot’s world belief as a constantly updating

record type, and use type classifiers of different

kinds which operate on the state record type to

make type judgements on the world belief. Once a

judgement is made, this can be added to the world

belief for further classification and update. Our

approach allows a variety of different classifica-

tion techniques to be used, but for classifier com-

position we use a combination of lattice theory and

probabilistic TTR (Cooper et al., 2014). Inspired

by the recent work using TTR for perceptual

classification (Dobnik et al., 2012; Yu et al., 2016;

Larsson, 2018) and Kennington and Schlangen

(2015)’s simple and elegant words-as-classifiers

model to reference resolution of objects in real-

world scenes, here we propose a more general

types-as-classifiers approach to interactive robots

with natural language understanding capability.

For the remainder of the paper we give the tech-

nical backbone to the types-as-classifiers approach

in Section 2 and distinguish two different types

of classifier and explain them, namely extensional

classifiers in Section 3 and intensional classifiers

in Section 4. In Section 5 we show a detailed ex-

ample application in a real-world scenario and dis-

cuss how our system can deal with ambiguity and

conclude in Section 6.

2 Types-As-Classifiers for human-robot

interaction

For the kinds of robot we are concerned with,

namely collaborative pick-and-place robots, an ex-

ample snapshot of the robot’s internal state in

terms of its incoming raw perceptual input is as

in Fig. 1. The left side shows a camera feed, and

computer vision based segmentation and track-

ing of objects as described by Ückermann et al.

(2014a,b). The example also displays the x,y and

z coordinates for the centroid of the position of

the objects, and the results of real-valued percep-

tual classifiers applied to each object, such as that

for ‘yellow’, classifying the degree to which an

object has a particular perceptual property in the

range [0, 1]– while these can be taken as raw in-

put to our system, a types-as-classifiers foundation

for these will be explained below in Section 3.1.

The current words recognized by the robot’s auto-

matic speech recognizer (ASR) are also added to

the state as they arrive. On the right side, the di-

agram shows how the robot tracks its own current

task state and action state of its arm through a Hi-



erarchical State Machine (HSM), where the dark

areas are currently active states.

2.1 Probabilistic TTR

In this paper we use TTR record types as the prin-

ciple mathematical object of interest. We will

briefly overview TTR, though see Cooper (2005)

for details. Each record type consists of a set of

fields, where each field consists of a pair of a la-

bel and a type and is notated l : T denoting the

judgement that an object labelled l is of type T ,

where T can be either an atomic type, a predi-

cate type with arguments of other typed objects,

or an embedded record type. All types are of

type Type (including record types), and the whole

type lattice is ordered by the subtype relation ⊑,

has the meet relation ⋗ (merge operation, union

of fields for record types) and the join relation

⋖ (minimal common supertype, intersection of

fields for record types) and with these two rela-

tions, they obey the laws of idempotency, commu-

tativity, associativity, absorption, and distributivity

(Hough and Purver, 2017).

For probabilistic type judgements following

Cooper et al. (2014), the probability judgements

of the form p(a : T ) are the real-valued probability

that object a is of type T . For record type judge-

ments, the standard product rule and Bayes’ rule

hold using the ⋗ operation in place of a conjunc-

tion, and the sum rule holds using disjunction of

types (though the disjunction of types is not equiv-

alent to the ⋖ relation)– see Hough and Purver

(2017) for details.

2.2 Encoding the robot’s sensory state as an

updating TTR record type

Key to our types-as-classifiers approach is encod-

ing the robot’s current internal state as a record

type which can then undergo further type judge-

ments. We characterize the perceived state of the

robot in the interaction as a world belief record

type wb– for an in-robot control system for our

purposes it will be of the format in (1).1

wb :





































objects :









obj 0 :
[

... : ...
]

obj 1 :
[

... : ...
]

... : ...
obj n :

[

... : ...
]









robot :





arm :
[

... : ...
]

task :
[

... : ...
]

intention :
[

... : ...
]





human :









c−utt :

[

parse : ...
words : ...

]

status : ...
intention :

[

... : ...
]













































(1)

For HSMs as in the right-hand side of Fig. 1,

we can formulate the state at a given time as a

record type with a recursive structure. The record

type gets constructed from the highest level down-

wards, whereby each parallel, concurrent state,

such as the task and arm sub-states of robot in

Fig. 1, are encoded as separate sister fields in the

record type. If the current active state is an em-

bedded substate, for example the emptyHand and

holdsObject substates within the idle substate of

the arm state in Fig. 1, that will be encoded in

the record type structure as an embedded record

type (a record type within a record type). When a

given field in the state has a value which is non-

decomposable or ‘atomic’, that will be encoded as

a single value in the record type with no further

sub-record type. Using this recursive formulation,

the robot’s current action and task state in the ex-

ample snapshot, shown by the darkened areas in

Fig. 1, can be formulated as in (2). This is an effi-

cient way of encoding this part of the state, as the

inactive substates as shown in the statechart need

not be encoded explicitly in state updates.

[

robot :

[

task :
[

idle : curious
]

arm :
[

idle : emptyHand
]

] ]

(2)

The continuous, incremental interpretation pro-

cess of our system is a probabilistic state update,

whereby wb is updated using a conditional prob-

ability judgement at each time-step. This judge-

ment is the likelihood that wb at time t is of record

type i from within a set of possible disjunctive

(mutually exclusive, or clashing) record types I ,

conditioned by evidence record type e from the

last recorded time-step t−1. In a traditional ma-

chine learning classification set-up e can be seen

1This is an example record type where many of the labels
and values are just represented by ‘...’ to indicate at least one
such field would be present in the full representation.



wb0 wb1 wb2

e0 …

…

⋗

Sensor updates

i0 e1 i1 e2 i2

⋗

⋗ ⋗

sd1

⋗

sd2

⋗

sd3

Interpretation of evidence

Figure 2: Illustration of the continuous world be-

lief update process. Sensor updates sd update the

previous current world belief wbi−1, then evidence

type e is made of wbi which is then classified as

record type i, which is then merged into override

matching fields in wbi.

as the ‘instance’ of data being classified, however

here we assume that e constitutes part of (a super-

type of) wb which is independent of the rest of wb

such that the resulting judgement of e applies to

the whole of wb– that is to say the judgement is

incremental in the sense of Sundaresh and Hudak

(1991) where the part is classified independently

without affecting the rest of the record type.

The core process of interest is classification fol-

lowed by a dynamic update to wb using the out-

put of that classification. The new classifications

are triggered by a new incoming sensor update

sdt, whose field values override the correspond-

ing ones in wb from the previous time-step (so at

this point in the update process sdt will now be

a supertype of wbt). The classification then takes

place on this updated wb where new type judge-

ment override the old ones. Formally, the gen-

eral update procedure is therefore as in the two

steps in (5), where ⋗ is TTR asymmetric merge

(Dobnik et al., 2012; Hough, 2015).2 The update

dynamics to wb over time using these two recur-

rent steps can be seen illustratively as in Fig. 2.

1. wbt :=

{

sdt if t = 0

wbt−1 ⋗ sdt otherwise
(5)

2. wbt := wbt ⋗ arg max
i∈I

p(wbt : i|wbt : e)

Note the time-step subscripts will be suppressed

from here onwards, as they do not add any useful

information in explaining the update process, but

they are included here to make it explicit that the

classification for the current state is done based on

the last state that is recorded.

In Sections 3-4 we outline different perceptual

classifiers which operate on different values for

e (supertypes of wb relating to different parts of

it) to get the conditional probability judgement

that wb is of a given type. In Section 5 we will

show how this can be done recursively– once a

type judgement is made (by a particular type of

classifier). The way in which the set I is defined

for a given conditioning RT e, and the conditional

probability value for each i in I is calculated de-

pends on the classifier being used. Before we out-

line those specific classifiers we give the technical

background to the composition of classifiers and

how probabilistic functions are used.

2.3 Composing classifiers and independence

assumptions

With a number of different types of classifier at our

disposal as will be described below, the state is up-

dated as they are applied to and update wb accord-

ing to the update protocol in (5). Depending on the

type of classifier, the probability values of their ap-

plication are computed in different ways. We are

first concerned with what we will call extensional

type classifiers, those from independent classifi-

cation judgements from the real world sense data

2The asymmetric merge operator returns the union of the
fields of an ordered pair of two RTs, but where there are clash-
ing field values for the same field label, the value from the RT
on the right-hand side of the operator take precedence over
the left-hand RT. Formally, this is as follows for two RTs L
and R, where the − sign is set difference, whereby for any
two sets S and T , S–T = {s | s ∈ S and s /∈ T}:

L ⋗ R = (fields(L)− fields(R)) ∪ fields(R)



p(r :





x : e
A : A(x)
B : B(x)



) =p(r :

[

x : e
A : A(x)

]

| r :

[

x : e
B : B(x)

]

)× p(r :

[

x : e
B : B(x)

]

)

=p(r :

[

x : e
B : B(x)

]

| r :

[

x : e
A : A(x)

]

)× p(r :

[

x : e
A : A(x)

]

) (3)

p(r :





x : e
A : A(x)
B : B(x)



) =p(r :

[

x : e
A : A(x)

]

)× p(r :

[

x : e
B : B(x)

]

) (4)

Figure 3: Product Rule for classifiers– the general rule in (3) and the rule for independent classifiers in

(4).

sd. We do not deal with extensional type judge-

ments which are dependent on one another in this

paper, but, as shown in Fig. 3, consistent with stan-

dard probability theory, the general product rule

for two classifiers A and B being applied to the

same instance x within a record type is as in (3),

and if A and B are independent of each other, as

we assume of the extensional classifiers in this pa-

per, the product of their probability is calculated

by simple multiplication as in (4). Furthermore,

if two types T1 and T2 are not dependent on each

other, including if they are record types, then we

also assume independence as in (6):

p(r :

[

r2 : T2
r1 : T1

]

) = p(r :
[

r1 : T1
]

) × p(r :
[

r2 : T2
]

) (6)

2.4 Type Function classifiers

Before explaining the probabilistic type functions,

the non-probabilistic type function we assume is a

mapping of the judgement an object is of a given

type to the judgement of it being of a (possibly

different) type. For some type function λx : Td.x :
Tr we assume we have a set of domain types which

are all a subtype of some type Td and a range type

Tr, so that for some object r, an application of λx :
Td.x : Tr gives (7) :

(λx : Td.x : Tr)(r) =

{

r : Tr iff r ⊑ Td

abort otherwise
(7)

To generalize this to probabilistic type func-

tions we enhance this with a probability function

δTd , with a similar function to a conditional prob-

ability table in Bayesian networks, assigning the

conditional probability value to the range type Tr

given the domain input Td. These assignments

are consistent with the lattice-theoretic proper-

ties of type lattices observed by Hough and Purver

(2017). This gives the formulation in (8):

p((λx : Td.x : Tr)(r)) =

{

p(r : Tr) = δTd (Tr) iff r ⊑ Td

0 otherwise
(8)

For example, take object r as being judged to be

a subtype of grassWet, and we want to get the re-

sulting type judgement and probability of the func-

tion λx : grassWet.x : rained being applied to

r, given the probability distribution δgrassWet is as

follows:

rained ¬rained

grassWet 0.7 0.3

Given r is a subtype of grassWet, the result-

ing probability judgement after application of the

function would be p(r : rained) = 0.7.

This simple formulation is sufficient for our

purposes. The domain and range types will be

complex, record types (denoted short hand in

the above), but all rely on the subtype checking,

which, if passed, give a probability judgement of

the range type.

In the following sections we will present the dif-

ferent type classifiers and type function classifiers

we use in our system, explaining how the proba-

bilities are computed. While we suggest a pipeline

here by presentation order, we are not committed

to a specific classification ordering or algorithm

for inter-leaving these processes, using a simple

method here, and leaving investigation into alter-

natives for future work.

3 Extensional classifiers

First we consider extensional classifiers, those that

directly apply to the incoming sensory data sd, we



consider judgements on objects in the visual scene

and also the action state of the robot (i.e. in our

case the position of the arm).

3.1 Grounding atomic type judgements on

sensory data

While as in Fig. 1 we show example inputs already

at the level of basic type judgements on raw input

data, we outline briefly how the lowest level clas-

sifiers can characterized in our types-as-classifiers

framework. Atomic probability judgements from

the sensory data, such as those single type judge-

ments on single objects in the visual scene, can

be either discriminative or generative classifiers

which extract features from objects with a feature

vectorizer function feat. For example, a logistic

regression classifier which yields the degree be-

tween [0, 1] which an object x is classified as blue

by the classifier cLRblue, where objects in question

have m features, uses the record type in (9), where

β0 to βm are coefficients, with βi for i ≥ 1 corre-

sponding to features yielded from the feat func-

tion.

p(r :

[

x : e

cblue : blue(x)

]

) = p(r :



















x : e

f : feat(x)
β0 : R

β1 : R

... : ...

βm : R

cLR
blue : blue(f, β0...βm)



















)

=
1

1 + e
−(r.β0+

∑m
i=1

r.βir.fi)
(9)

An equivalent classification formula for a Naive

Bayes classifier for blue cNB
blue would be as follows:

p(r :

[

x : e

cblue : blue(x)

]

) = p(r :





x : e

f : feat(x)

cNB
blue : blue(f)



)

= p(r : B)
m
∏

i=1

p(fi ∈ r.f | r : B)

where B =

[

x : e

cblue : blue(x)

]

(10)

We note we could also scale this to neural clas-

sifiers, but for now we are concerned with classi-

fiers with more readily interpretable models which

allow relatively simple modes of composition.

3.2 Grounding classifiers to sets of objects

While the classifiers just explained apply to sin-

gle objects, in this paper we deal with plurals and

quantification, allowing multiple objects to be re-

ferred to. When a type judgement applies to a

set of objects, we assume independence and use

the product of the probability of each member

of the set being of a given type. Here we also

introduce the notion of the type judgement be-

ing grounded into the set of objects, in line with

the natural language grounding motivations (Roy,

2005; Larsson, 2018). To denote grounding pred-

icate type judgements, we introduce the predicate

G(a, s) which means for a given type a and given

set of perceived objects or events s, we are judging

those objects to be of type a, i.e. grounding them.

The full set classifier is as in (11):

p(r :





s : set
a : Type
g : G(a, s)



) =
∏

obj∈r.s

p(obj : r.a) (11)

An example usage of this grounding classifier

for the object set {obj 1, obj 2} is as follow for

the joint likelihood of both objects in the set be-

ing classified as blue. Note we do not commit to

the lower level classification method of the objects

here, as it could be a variety of discriminative or

generative classifiers as exemplified in (9) or (10):

p(r :







s : {obj 1, obj 2}

a :

[

x : e
cblue : blue(x)

]

g : G(a, s)






) =

∏

obj∈r.s

p(obj : r.a)

(12)

3.3 Complex relational extensional classifiers

for relative position

Complex sensory type classifiers which take argu-

ments such as ‘x to the left of y’ are also exten-

sional, as in their input is directly from the sen-

sory data, but they take multiple inputs. Here we

simply use the concatenation of the feature vectors

from the two objects involved into f , meaning the

use of left of applied to two objects x and x1 in

the logistic regression classifier is in (13).

p(r :





x : e

x1 : e

clo : left of(x, x1)



) = p(r :























x : e

x1 : e

f : feat(x) ⊕ feat(x1)
β0 : R

β1 : R

... : ...

βm : R

cLR
lo : left of(f, β0...βm)























)

=
1

1 + e
−(r.β0+

∑m
i=1

r.βir.fi)

(13)

We do not commit to the feat function for

relative position classification only using spatial

features, as we would hope the relevant features

would be learned, as was shown successfully in



p(wb :

[

objects.obj 1 :

[

x : e
c graspable : graspable(x)

] ]

| wb :



 objects.obj 1 :





pos.x : 145
pos.y : 499
pos.z : 303







) = 0.57

Figure 4: A conditional record type judgement involving the affordance judgement of how graspable an

object is.

the equivalent words-as-classifiers models for spa-

tial descriptions using logistic regression classi-

fiers (Kennington and Schlangen, 2015) and also

the perceptron classification approach to position

classification by Larsson (2015).

3.4 Object affordance classification

Before we go on to describe intention recogni-

tion, a pre-intentional classification of the situa-

tion is the robot’s perception of object properties

based on incoming sensory information, which

is vital for complex interaction with the human

user. Particularly for manipulator robots, the per-

ception of object affordances (Gibson, 2014), i.e.

the possible actions associated to the objects (e.g.

graspable), is crucial for the robot to be able to

manipulate them (Jamone et al., 2016). Recently,

probabilistic computational models of affordance

perception have been proposed, using Bayesian

Networks (Gonçalves et al., 2014) and variational

auto-encoders (Dehban et al., 2016)- these can be

used to obtain the probability of an object hav-

ing different affordances from visual and linguis-

tic features. In our model, affordance prediction

is part of the probabilistic type judgement of wb,

such that the probabilities of each object having

each affordance property are part of the available

type judgements.

We make no commitment to a particular model,

though Gonçalves et al. (2014)’s Bayesian net-

work approach is most easily intergrated into our

model here. An example of the probabilistic

judgement involved would be as in Fig. 4.

4 Intensional type classifiers

We now describe intensional classifiers whose

probability values on application are derived from

the lower-level classifiers described in the previ-

ous section. For the natural language understand-

ing part of the system, classifiers are used ac-

cording to the structures produced by the parser,

which will be briefly described first, and then used

to classify the user’s intention by grounding type

judgements into user intention record types such

as i in Fig. 5. The human intentions our sim-

ple robot computes consist simply of the action

type, the objects being manipulated, and the goal,

which encodes the end target location of the ob-

jects, further specified by a landmark set of object

lm and a relative location of the target to that land-

mark rel loc.

4.1 Parsing

The record types from the human.c−utt.parse

field of the world belief record type wb are pop-

ulated by the Dylan (‘DYnamics of LANguage’)

parser (Purver et al., 2011).3 The parser ful-

fills the criteria for incremental semantic con-

struction outlined in Hough et al. (2015): it con-

sumes words one-by-one and outputs a maximal

semantic record type (RT) based on a pre-defined

Dynamic Syntax-TTR (DS-TTR) grammar– see

Eshghi et al. (2011) for full details. The types

from the parse are entities e, predicate types t,

events es and integers N. A parse for ‘put the red

apple in the big basket’ is in Fig. 6.

4.2 Incremental intention classification

including grounded reference resolution

As DyLan’s DS-TTR parser provides RTs word-

by-word incrementally, the user’s intention can

also be estimated word-by-word as wb is updated

in this fine-grained manner. Given a set of pos-

sible user intention record types I , where a typ-

ical intention may look like i in Fig. 5, and the

conditioning evidence e, a record type represent-

ing a sub-part of wb as described above, we char-

acterize a standard Maximum Likelihood multi-

class probabilistic classifier to estimate the best

prediction for the human.intention field and

its probability (or confidence) in its prediction

Ev(human.intention) by the standard arg max

3Available from https://bitbucket.org/

dylandialoguesystem/dsttr
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Figure 5: A user intention record type to effect the movement of an object.
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Figure 6: A DyLan parse record type.

and max functions in (14) and (15), respectively.

human.intention = arg max
i∈I

p(wb : i|wb : e) (14)

Ev(human.intention) = max
i∈I

p(wb : i|wb : e) (15)

In our current implementation, e simply con-

sists in judgements on the human.c−utt.parse

and objects fields of wb, but it can be more than

these, and in future, we plan to learn which parts

are relevant for estimating user intentions.

In our current implementation, to calculate the

conditional likelihood p(wb : i |wb : e) for two

given RTs i and e, we create a directed graph of

the current parse RT based on its field dependen-

cies, beginning from the head event field e=PUT

(which determines the action), and recursively tra-

verse all fields which depend on it, applying the

relevant type classifiers. We match the field val-

ues in the embedded entity restrictor RTs (labelled

r, r1 etc. within the parse record types like (6))

such as apple(x), to the low-level classifier results

encoded in the objects field of wb. If the rele-

vant type judgement (e.g. apple(x)) appears in the

parse, the corresponding low-level classification

(e.g. capple(x)) for each object will be used. An

example of the probability judgement of obj 9 be-

ing classified as type apple with probability 0.75

whilst grounding that object as the sole object in

the set intention.objects of a candidate intention

is as follows:

p(wb :









parse :

[

r :

[

x : e

p=apple(x) : t

] ]

intention :

[

objects : {obj 9}
g : G(objects, parse.r)

]









) = 0.75

(16)

When multiple classifiers are applied to enti-

ties, the product rule is used to multiply the prob-

ability of the relevant fields for a given object,

assuming independence as described. The over-

all likelihood of wb : i is calculated recursively,

beginning with the likelihood of the embedded

RTs such as intention.goal and the target objects

intention.objects. The likelihood of the judge-

ments of each of the embedded fields is multiplied

together to get the overall probability of the inten-

tion, as in Fig. 7 for combing the red and apple

classifier judgements to obj 9.

This grounding process described for atomic

type judgements is applied throughout the inten-

tion classification steps, where, typically for the

example parse in (6), if x2 is resolved to obj 2
as shown in Fig. 1 and x1 is resolved to obj 9,

then, adding the grounding predicates, the final

intention field of wb would be as follows:
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goal :
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]
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
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













(17)

4.2.1 Quantification classifiers and

cardinality of sets

As we showed in Section 3.2, for type judgements

involving sets (set types), the probability of a type

judgement that a certain field’s value has a certain

set of members, in general the probability is equiv-

alent to the product of each member of the set be-

ing a member of it, as in (11). However, we as-

sume all expressions involving objects in this do-

main are quantified, even if implicitly. We pro-

vide three different quantification classifiers for

definite/unique quantification, existential quantifi-

cation and universal quantification. For each of
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Figure 7: Combining probabilities for independent extensional classifiers to compute the probability of

a given restrictor record type referring to a given object.

these we include cardinality of the object set as

part of the classification process.

In (18) we define the ι-quantification function

classifier for definite noun phrases in instructions

like ‘pass the three apples’ where k=3 or for non-

plural references such as in ‘pass the apple’ we

implicitly assume k=1. The function simply takes

a domain of type judgement on a set of objects

which is grounded, then overrides that grounding

to an ι predicate which specifies the cardinality k.

1 is returned if the cardinality of the set is k, else

0 is returned.

p((

λx :





s : set

a : Type

g : G(a, s)



 .

x : x ⋗





k : N

x : ι(a, k)
g : G(x, s)





)(r)) =

{

1 if |r.s|=k

0 otherwise
(18)

When we combine the application of this sim-

ple function classifier with the probabilistic type

judgements themselves we get (19).

p(r :











s : set
a : Type
k : N

x : ι(a, k)
g : G(x, s)











) =







0 if |s|!=k
∏

obj∈s

p(obj : a) otherwise

(19)

This new classifier calculates the probability a

given definite numerically quantified expression

refers to a given object set s given the parse and

a size k. 0 is returned if the cardinality of the set

is not k, else it returns the product of the prob-

abilities for each object in the set s being of the

restrictor record type a.

For existential ǫ-quantification, we formulate a

classifier in (20) for the indefinite noun phrases

within such instructions as ‘pass (any) three ap-

ples’ where k=3 or ‘pass an apple’ where as we

did for the ι classifier we assume k=1 and for ‘pass

some apples’ we assume implicitly that k ≥ 2.

The classifier calculates the probability of an ex-

istentially (ǫ) quantified expression from a parse

referring to a given object set s which has cardi-

nality k. Again, 0 is returned if the cardinality of

the set is not k, but the difference to the ι classi-

fier is that 0 is returned if a, the restrictor record

type, is judged to have a probability of referring to

some obj ∈ s of under θ, a confidence threshold

determined experimentally. If both these condi-

tions are not fulfilled, then it returns the product

of the probabilities for each object in the set s be-

ing of the restrictor record type a. This formula-

tion with the θ threshold allows the robot to ques-

tion whether there is an example of the restrictor

type judgement in the scene of the user. In future,

we would like to experiment with active learning

by adjusting θ if no suitable set of objects can be

found.

p(r :











s : set

a : Type

k : N

x : ǫ(a, k)
g : G(x, s)











) =















0 if |s|!=k

0 if ∃obj ∈ s.p(obj : a) < θ
∏

obj∈s

p(obj : a) otherwise

(20)

Finally, in (21) we formulate a universal τ -

quantification classifier for noun phrases such as

that in ‘pass all the apples’, where the classi-

fier calculates the probability of a universally (τ )

quantified expression from a parse referring to a

given object set s. There is no cardinality require-

ment, however, like the ǫ classifier, 0 is returned if

there is an object obj in s for which p(obj : a) is

under θ, a confidence threshold determined exper-

imentally, else it returns the product of the proba-

bilities that a refers to each object in the set.

p(r :









s : set

a : Type

x : τ(a)
g : G(x, s)









) =







0 if ∃obj ∈ s.p(obj : a) < θ
∏

obj∈s

p(obj : a) otherwise

(21)

5 Example application in a real system

In Fig. 8 we show the entire computation graph for

computing the probability of the world belief be-

ing of the top record type, including the parse for
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goal :
[

lm : {obj 2}
]

g1 : G(goal.lm, parse.r1)

]









= 0.77









parse :

[

r1 :

[

x : e

p1=big(x) : t

] ]

intention :

[

goal :
[

lm : {obj 2}
]

g1 : G(goal.lm, parse.r1)

]









= 0.8

Figure 8: Graph for computing the probability of the world belief being of the top record type given

parse for “Put the red apple in the big basket”. Atomic child node probabilities are multiplied together.

Lambda functions (left child) application probabilities are conditional on argument nodes (right child).



put the apple in front of the banana ... in the basket

Figure 9: Syntactic ambiguity causing the system changing its top hypothesis about the user’s intention.

the utterance “Put the red apple in the big basket”.

Here we show the conditional probability p(wb :
i | wb : e) where i is the intention in Fig. 5 and

e simply consists of the human.c−utt.parse and

objects fields of wb. The candidate type judge-

ment is first decomposed into its different type

judgements from the top-down in the way shown

before the probabilities are calculated. We only

include the relevant low-level extensional classi-

fier probability outputs rather than the raw features

at the bottom nodes of the graph. The probabili-

ties are calculated bottom up. One can see for non

functional type judgements, the child node prob-

abilities are multiplied together, as was shown in

Fig. 7.

The two ι function classifier applications oper-

ate simply as in (18), outputting 1, as the cardinal-

ity of the sets of the objects and goal.lm fields of

the intention frame matched the values shown in

the parse, both being 1.

For the function application involving the re-

lation INTO, the probability of application to

its argument record type behaves like a condi-

tional node in a Bayesian network behaves with

regards to its differing possible input values, ef-

fecting a conditional probability function or ta-

ble as explained in Section 2.4. In this particular

case, the function takes as a domain the two e-type

fields in the parse x1 and x2 grounded into the

intention such that they are grounded references

to the objects in the objects and goal.lm fields re-

spectively. This function maps that domain to the

part of the parse containing the ev=PUT : es field

being grounded into the actual action PUT and

the ev1=INTO : es field being grounded into the

goal.rel loc : INTO judgement of the intention.

We formulate this as a simple classifier which re-

turns 1 if the application is possible, based on the

position and size properties of the objects, and 0

otherwise. Here obj 2 is judged to be a legiti-

mate landmark for obj 9 to be placed into, so the

resulting conditional probability of goal.rel loc :
INTO is 1. It is possible to turn these into fully

fledged real-valued conditional probability func-

tions, but we only present their potential for com-

plex functions and leave this for future work.

5.1 Processing ambiguous instructions

The example showed how the system applies to a

single parse and a single candidate intention which

in this case is the most likely one for the parse and

the world belief. In practice, the system is contin-

uously maintaining a disjunction of probabilistic

record type judgements, including for a beam of

the top parses from the DyLan parser.

Given that the parsing hypothesis and the inten-

tion classification interact, our system in fact al-

lows the different processes to help each other. For

example the online disambiguation of parsing at-

tachment ambiguity such as that in Fig. 9, where

the first ‘in front of the banana’ is taken to be a

goal location argument and not a modifier to ‘the

apple’ because the parse is the most likely, but this

decision is reversed once the user continues talk-

ing as ‘in the basket’ is then taken to be a goal lo-

cation argument and the original most likely parse

is removed from the top spot.

6 Conclusion

We have given an overview of a types-as-

classifiers approach to dialogue processing

in human-robot interaction. We believe our

approach is complementary to the words-as-

classifiers approach to reference resolution

(Kennington and Schlangen, 2015), and we be-

lieve it brings several advantages. Firstly, it is

not constrained by individual word classifiers

alone, but can use the structure from a parser to

compute likelihood of complex intentions, all the

while maintaining word-by-word incrementality.



Secondly, it gives a uniform way to process

different multimodal information such as robotic

task and action states and visual and physical

properties of objects within a dialogue state.

In terms of the general advantages over other

machine learning systems, we claim that we would

rather have interpretable, decomposible classi-

fiers than uninterpretable flat representations– our

approach allows for greater modularity, domain

transferability and human understanding of the

processing involved.
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