
Proposals to generalise Dynamic

Syntax for wider application

Julian Hough,1 Arash Eshghi,2

Matthew Purver1 and Graham White1

1Queen Mary University of London
2Heriot-Watt University

2nd DS Conference, April 2018



The problem: academic sociology

DS is fantastic!

We deserve more recognition.



The problem: academic sociology

DS is fantastic!

We deserve more recognition.

We model interactive phenomena like no other

‘grammar formalism’.

We’d like more users!



The problem: academic sociology

DS is fantastic!

We deserve more recognition.

We model interactive phenomena like no other

‘grammar formalism’.

We’d like more users!

5 proposals!



1 Make it clear what DS is all about: Dynamics

2 Generalize the composition calculus: lambda

3 Liberalise permissible node types

4 Liberalise permissible semantic representation languages

5 Use it!



1 Make it clear what DS is all about: Dynamics

2 Generalize the composition calculus: lambda

3 Liberalise permissible node types

4 Liberalise permissible semantic representation languages

5 Use it!



Dynamic Syntax (DS)

DS is primarily about how a representation is built up

over time, with at least a word-by-word granularity, by

natural language utterances.

DS grammar encodes the word-by-word incremental

growth of semantic representations directly as tree

building actions.

No independent layer of syntactic processing.

Grammaticality is defined in terms of left-right

parseability.



Dynamic Syntax (DS)

Monotonic connected tree building- good for dialogue

inference.

DS is bidirectional, i.e. generation is parasitic on

parsing. Self-monitoring comes for free.

Parsing actions (lexical and computational actions)

are first class citizens of the grammar.



DS-TTR

Recent DS variant uses TTR record types on the

trees [Purver et al., 2011].

Record type compilation for partial trees

[Hough, 2011] allows strong incremental

interpretation [Milward, 1991].

Incrementally constructed structures can be

compared to domain concepts and generation goals

in word-by-word subtype relation checking.

[Hough, 2011]



DS vs DS-TTR vs DS-X

Let’s focus on the similarities between DS proper,

DS-TTR, DS-Tensor etc.

Let’s look at the parsing dynamics.



DS vs DS-TTR vs DS-X

Let’s focus on the similarities between DS proper,

DS-TTR, DS-Tensor etc.

Let’s look at the parsing dynamics.

Spot the difference...



Incremental DS parsing

Parsing Ruth arrives:



Incremental DS parsing

Parsing Ruth arrives:

♦?Ty(t),



Incremental DS parsing

Parsing Ruth arrives:

?Ty(t),

♦?Ty(e), ?Ty(e → t),



Incremental DS parsing

Parsing Ruth arrives:

Ruth

?Ty(t),

♦Ty(e),
Ruth′

?Ty(e → t),



Incremental DS parsing

Parsing Ruth arrives:

Ruth

♦?Ty(t),

Ty(e),
Ruth′

?Ty(e → t),



Incremental DS parsing

Parsing Ruth arrives:

Ruth

?Ty(t),

Ty(e),
Ruth′

♦?Ty(e → t),



Incremental DS parsing

Parsing Ruth arrives:

Ruth arrives

?Ty(t),

Ty(e),
Ruth′

Ty(e → t),
♦λx .arrive′(x)



Incremental DS parsing

Parsing Ruth arrives:

Ruth arrives

♦Ty(t), arrive′(Ruth′)

Ty(e),
Ruth′

Ty(e → t),
λx .arrive′(x)



Incremental DS-TTR parsing

Parsing Robin arrives:



Incremental DS-TTR parsing

Parsing Robin arrives:

♦?Ty(t),
[

p : t
]



Incremental DS-TTR parsing

Parsing Robin arrives:

Robin

♦?Ty(t),

[

x : e
p : t

]

Ty(e),
[

x : e
]

?Ty(e → t),
λr :

[

x : e
]

[

x=r .x : e
p : t

]



Incremental DS-TTR parsing

Parsing Robin arrives:

Robin

?Ty(t),

[

x : e
p : t

]

♦Ty(e),
[

x : e
]

?Ty(e → t),
λr :

[

x : e
]

[

x=r .x : e
p : t

]



Incremental DS-TTR parsing

Parsing Robin arrives:

Robin

?Ty(t),

[

x=robin : e
p : t

]

♦Ty(e),
[

x =robin : e
]

?Ty(e → t),
λr :

[

x : e
]

[

x=r .x : e
p : t

]



Incremental DS-TTR parsing

Parsing Robin arrives:

Robin

?Ty(t),

[

x=robin : e
p : t

]

Ty(e),
[

x =robin : e
]

♦?Ty(e → t),
λr :

[

x : e
]

[

x=r .x : e
p : t

]



Incremental DS-TTR parsing

Parsing Robin arrives:

Robin arrives

♦Ty(t),

[

x=robin : e
p=arrive(x) : t

]

Ty(e),
[

x =robin : e
]

Ty(e → t),
λr :

[

x : e
]

[

x=r .x : e
p=arrive(x) : t

]



Incremental DS-TTR generation

Generating Robin arrives:



Incremental DS-TTR generation

Generating Robin arrives:

GOAL :
[

x=robin : e

p=arrive(x) : t

]

SUBTYPE ?Ty(t),

[

x : e

p : t

]

♦?Ty(e),
[

x = : e
]

?Ty(e → t),
λr :

[

x : e
]

[

x=r .x : e

p : t

]



Incremental DS-TTR generation

Generating Robin arrives:

Robin
GOAL :

[

x=robin : e

p=arrive(x) : t

]

SUBTYPE ?Ty(t),

[

x=robin : e

p : t

]

♦Ty(e),
[

x =robin : e
]

?Ty(e → t),
λr :

[

x : e
]

[

x=r .x : e

p : t

]



Incremental DS-TTR generation

Generating Robin arrives:

Robin
GOAL :

[

x=robin : e

p=arrive(x) : t

]

SUBTYPE ?Ty(t),

[

x=robin : e

p : t

]

Ty(e),
[

x =robin : e
]

♦?Ty(e → t),
λr :

[

x : e
]

[

x=r .x : e

p : t

]



Incremental DS-TTR generation

Generating Robin arrives:

Robin arrives
GOAL :

[

x=robin : e

p=arrive(x) : t

]

MATCHES! ♦Ty(t),

[

x=robin : e

p=arrive(x) : t

]

Ty(e),
[

x =robin : e
]

Ty(e → t),
λr :

[

x : e
]

[

x=r .x : e

p=arrive(x) : t

]



DS lexical actions

Michael: ‘Did you burn’

Ruth: ‘myself?’

myself :

IF ?Ty(e)
THEN put(Ty(e)),

put(Ruth′)

ELSE abort



DS-TTR lexical actions

Context dependent values can be formally defined

now in DS lexical actions [Purver et al., 2010]

myself :

IF ?Ty(e), r :



 ctxt :





u : utt

x : e

p=spkr(u,x) : t







,

↑0↑1∗↓0 r1 :
[

cont :
[

x1=r .ctxt.x : e
] ]

THEN put(Ty(e)),

put(r ⋗

[

cont :
[

x=r .ctxt.x : e
] ]

)
ELSE abort

Use of dependent record types. Use of paths.



What is important for DS?

Is the difference between the representation

language on the nodes important?



What is important for DS?

Is the difference between the representation

language on the nodes important?

It depends what you do with the representation

language– nothing in the representation per se

matters.



What is important for DS?

Is the difference between the representation

language on the nodes important?

It depends what you do with the representation

language– nothing in the representation per se

matters.

Perhaps time to get back to the original:

“The emphasis is on the process of establishing

some structure as interpretation, rather than just

specifying the RESULT, which is the structure itself.”

[Kempson et al., 2001]



What is important for DS?

If the result is not the object is of interest, then what

is?



What is important for DS?

If the result is not the object is of interest, then what

is?

How we get there, word-by-word.



What is important for DS?

If the result is not the object is of interest, then what

is?

How we get there, word-by-word.

Processing context characterized as an action graph.



What is important for DS?

If the result is not the object is of interest, then what

is?

How we get there, word-by-word.

Processing context characterized as an action graph.

Inspired by the notion of context as a triple

< T ,W ,A >, [Sato, 2011] showed how this could be

a Directed Acyclic Graph (DAG) with search.

Models garden-path sentence processing. ‘Cotton

clothing is made of grows in Mississippi’



Action graphs for dynamics

[Sato, 2011]

September 1, 2010

���

��

���

E x am p l es:

2a. C ot t on c l o t h i n g i s m ad e of g r ow s i n

M i ssi ssi p p i .

2b. C ot t on c l o t h i n g sh op s b u y i s m ad e of

g r ow s i n M i ssi ssi p p i .

2c. C ot t on c l o t h i n g sh op s b u y gr ow s i n

2h. C ot t on c l o t h i n g i s m ad e of t h e

f a r m er gr ow s i n M i ssi ssi p i .

2i . C o t t on c l o t h i n g sh op s b u y i s m ad e of

g r ow s i n M i ssi ssi p p i .

2j . C o t t on c l o t h i n g w h o l esa l er s b u y



Action graphs for dynamics

[Purver et al., 2011] defined DyLan which modelled

the process as two graphs

Input word graph and the more fine-grained action

graph grounded in the word graph.

Concept graph [Hough, 2015]



DyLan parsing

John



DyLan parsing

John



DyLan parsing

John



DyLan parsing

John arrives



DyLan parsing

John arrives



DyLan parsing

John arrives



DyLan parsing

John arrives



Phenomena DS/DyLan can cover

[Hough, 2011] modelled self-repair in DyLan in terms

of backwards-search and re-constructing the

right-frontier of the word graph.



Phenomena DS/DyLan can cover

[Hough, 2011] modelled self-repair in DyLan in terms

of backwards-search and re-constructing the

right-frontier of the word graph.

[Purver et al., 2014] on compound contributions/split

utterances.



Phenomena DS/DyLan can cover

[Hough, 2011] modelled self-repair in DyLan in terms

of backwards-search and re-constructing the

right-frontier of the word graph.

[Purver et al., 2014] on compound contributions/split

utterances.

[Eshghi et al., 2015] modelled clarification interaction

and other-repair, and backchannels on this graph but

with two graph pointers.



Phenomena DS/DyLan can cover

[Hough, 2011] modelled self-repair in DyLan in terms

of backwards-search and re-constructing the

right-frontier of the word graph.

[Purver et al., 2014] on compound contributions/split

utterances.

[Eshghi et al., 2015] modelled clarification interaction

and other-repair, and backchannels on this graph but

with two graph pointers.

[Kempson et al., 2018] model ellipsis by re-running

(copying edges) from the action graph.



Interpreting disfluencies incrementally

Given we have a graph with a counter n as an ID for

the last node added, a pointed node current , and

incoming word W :

ParseWithSelfRepair(W ):

IF parse(W ) from current successful

THEN

add a new edge with new sink node Sn

current := Sn

ELSE:

current := parent(current)
ParseWithSelfRepair (W )



“John”

< John >













cont =









x1 : e

x=John : e

e : es

p=subj(e,x) : t









ctxt = [Assert(User , cont)]















“John” “likes”

< John >< likes >

















cont =













x1 : e

x=John : e

e=likes : es

p1=obj(e,x1) : t

p=subj(e,x) : t













ctxt = [Assert(User , cont)]



















“John” “likes” “uh”

< John >< likes >< edit >





















cont =













x1 : e

x=John : e

e=likes : es

p1=obj(e,x1) : t

p=subj(e,x) : t













ctxt =
[Assert(User , cont),
FwdProblem(User , cont)]























“John” “likes” “uh” “loves”

< John >< likes >< edit >
? < loves >





















cont =













x1 : e

x=John : e

e=likes : es

p1=obj(e,x1) : t

p=subj(e,x) : t













ctxt =
[Assert(User , cont),
FwdProblem(User , cont)]























“John” “likes” “uh” “loves”

< John >

< likes > < edit >

< loves >

repair

























cont =













x1 : e

x=John : e

e=loves : es

p=obj(e,x1) : t

p=subj(e,x) : t













ctxt =

[Assert(User ,cont),

Revoke(User ,[e=likes : es ]
∧¬[e=loves : es ])]



























“John” “likes” “uh” “loves” “Mary”

< John >

< likes > < edit >

< loves >

repair

< Mary >

























cont =













x1=Mary : e

x=John : e

e=loves : es

p=obj(e,x1) : t

p=subj(e,x) : t













ctxt =

[Assert(User ,cont),

Revoke(User ,[e=likes : es ]
∧¬[e=loves : es ])]



























Ellipsis in repair though action re-running

“to” “Paris” “on” “Monday” “sorry” “London”

< to >

< Paris >

< on >< Monday >

< London >

repair
REGENERATION

< on >< Monday >



Interpreting disfluencies incrementally

“the”



Interpreting disfluencies incrementally

“the” “yell-”



Interpreting disfluencies incrementally

“the” “yell-” “uh”



Interpreting disfluencies incrementally

“the” “yell-” “uh” “purple”



Interpreting disfluencies incrementally

“the” “yell-” “uh” “purple”



Interpreting disfluencies incrementally

“the” “yell-” “uh” “purple”



Interpreting disfluencies incrementally

“the” “yell-” “uh” “purple” “square”



Interpreting disfluencies incrementally

“the”

⊤



Interpreting disfluencies incrementally

“the” “yell-”

⊤ Y



Interpreting disfluencies incrementally

“the” “yell-” “uh”

⊤ Y ⊤



Interpreting disfluencies incrementally

“the” “yell-” “uh” “purple”

⊤ Y ⊤

?



Interpreting disfluencies incrementally

“the” “yell-” “uh” “purple”

⊤

Y ⊤

?
¬Y



Interpreting disfluencies incrementally

“the” “yell-” “uh” “purple”

⊤

Y ⊤

¬Y ∧ P



Interpreting disfluencies incrementally

“the” “yell-” “uh” “purple” “square”

⊤

Y ⊤

¬Y ∧ P

PSq



What is important for DS?

Actions- lexical and computational, the words that

triggered them, and their graphs.



What is important for DS?

Actions- lexical and computational, the words that

triggered them, and their graphs.

Typed trees with under-specification through

requirements.

Functional application and variable renaming in

application (β-reduction, α-conversion.)

The pointer ♦.

Subsumption ⊑.



1 Make it clear what DS is all about: Dynamics

2 Generalize the composition calculus: lambda

3 Liberalise permissible node types

4 Liberalise permissible semantic representation languages

5 Use it!



What should we compose with?

λ-calculus is fairly general.

Functional application through β-reduction a general.

Variable re-naming with α-conversion gives more

flexibility.



What should we compose with?

λ-calculus is fairly general.

Functional application through β-reduction a general.

Variable re-naming with α-conversion gives more

flexibility.

Do we need the ǫ-calculus?

In DS-TTR we don’t really need it as we restrict terms

within record types.



1 Make it clear what DS is all about: Dynamics

2 Generalize the composition calculus: lambda

3 Liberalise permissible node types

4 Liberalise permissible semantic representation languages

5 Use it!



Go beyond...

The usual suspects: e, t , cn, es



Go beyond...

The usual suspects: e, t , cn, es

To all and any types.



Go beyond...

The usual suspects: e, t , cn, es

To all and any types.

RecordType, Tensor , Integer , Python program,

banana etc.



Go beyond...

The usual suspects: e, t , cn, es

To all and any types.

RecordType, Tensor , Integer , Python program,

banana etc.

In DS (standard) we are building propositions (type t).

In DS-TTR we are building record types (not really

type t !).

We should try to be consistent with our typing.



Have we been getting node types right?

Parsing Robin arrives:

Robin arrives

♦Ty(t),

[

x=robin : e
p=arrive(x) : t

]

Ty(e),
[

x =robin : e
]

Ty(e → t),
λr :

[

x : e
]

[

x=r .x : e
p=arrive(x) : t

]



Have we been getting node types right?

Parsing Robin arrives:

Robin arrives

♦Ty(RecordType),

[

x=robin : e
p=arrive(x) : t

]

Ty(RecordType),
[

x =robin : e
]

Ty(RecordType → RecordType),
λr :

[

x : e
]

[

x=r .x : e
p=arrive(x) : t

]



1 Make it clear what DS is all about: Dynamics

2 Generalize the composition calculus: lambda

3 Liberalise permissible node types

4 Liberalise permissible semantic representation languages

5 Use it!



Go beyond...

We’ve already got:

DS-ǫ

DS-FOL

DS-TTR

DS-Tensor



Go beyond...

We’ve already got:

DS-ǫ

DS-FOL

DS-TTR

DS-Tensor

Why not DS-Python, DS-G-code, DS-etc.?



DS-Python

IF ?Ty(int)
THEN put(Ty(int))

‘ten’ put(10)

ELSE abort



DS-Python

♦,Ty(python),
range(1,11)

Ty(int),
10

Ty(int → python),
λx .range(1,x + 1)

Ty(int),
1

Ty(int → (int → python)),
λy .λx .range(y,x + 1)



1 Make it clear what DS is all about: Dynamics

2 Generalize the composition calculus: lambda

3 Liberalise permissible node types

4 Liberalise permissible semantic representation languages

5 Use it!



Use it!

No excuse not to do great stuff!



Use it!

No excuse not to do great stuff!

Linguistic analysis!

Formulae for theorem proving!

Dialogue systems!

Human-Robot Interaction systems (embodied)!



Human-Robot interaction live ambiguity resolution

put the apple in front of the banana



Human-Robot interaction live ambiguity resolution

... in the basket



Learning

We can define arbitrary < utterance, formula > pairs.

Induce an incremental grammar in the style of

[Eshghi et al., 2013].



Learning

We can define arbitrary < utterance, formula > pairs.

Induce an incremental grammar in the style of

[Eshghi et al., 2013].

We could learn useful regularities across domains.

We could learn ‘put’ as a distributional lexical action

across different putting situations.

‘red’ may have a perceptual lexical action grounded

in machine vision.

Otherwise we will always have to go through a

pipeline from DS → X - why not be more direct?



1 Make it clear what DS is all about: Dynamics

2 Generalize the composition calculus: lambda

3 Liberalise permissible node types

4 Liberalise permissible semantic representation languages

5 Use it!



Thanks!

especially to:

- DUEL project (Bielefeld University and Paris 7, DFG

and ANR)



Eshghi, A., Howes, C., Gregoromichelaki, E., Hough, J., and Purver, M. (2015).

Feedback in conversation as incremental semantic update.
In Proceedings of the 11th International Conference on Computational Semantics, pages 261–271, London,
UK. ACL.

Eshghi, A., Purver, M., and Hough, J. (2013).

Probablistic induction for an incremental semantic grammar.
In 10th International Conference on Computational Semantics (IWCS), Potsdam, Germany.

Hough, J. (2011).

Incremental semantics driven natural language generation with self-repairing capability.
In Proceedings of the Student Research Workshop associated with RANLP 2011, pages 79–84, Hissar,
Bulgaria.

Hough, J. (2015).

Modelling Incremental Self-Repair Processing in Dialogue.
PhD thesis, Queen Mary University of London.

Kempson, R., Gregoromichelaki, E., Edhghi, A., and Hough, J. (2018).

Ellipsis in dynamic syntax.
In Oxford Handbook of Ellipsis. OUP.

Kempson, R., Meyer-Viol, W., and Gabbay, D. (2001).

Dynamic Syntax: The Flow of Language Understanding.
Blackwell, Oxford.

Milward, D. (1991).

Axiomatic Grammar, Non-Constituent Coordination and Incremental Interpretation.
PhD thesis, University of Cambridge.

Purver, M., Eshghi, A., and Hough, J. (2011).

Incremental semantic construction in a dialogue system.
In Bos, J. and Pulman, S., editors, Proceedings of the 9th International Conference on Computational
Semantics, pages 365–369, Oxford, UK.



Purver, M., Gregoromichelaki, E., Meyer-Viol, W., and Cann, R. (2010).

Splitting the ‘I’s and crossing the ‘You’s: Context, speech acts and grammar.
In Łupkowski, P. and Purver, M., editors, Aspects of Semantics and Pragmatics of Dialogue. SemDial 2010,
14th Workshop on the Semantics and Pragmatics of Dialogue, pages 43–50, Poznań. Polish Society for
Cognitive Science.

Purver, M., Hough, J., and Gregoromichelaki, E. (2014).

Dialogue and compound contributions.
In Stent, A. and Bangalore, S., editors, Natural Language Generation in Interactive Systems, pages 63–92.
Cambridge University Press.

Sato, Y. (2011).

Local ambiguity, search strategies and parsing in Dynamic Syntax.
In Gregoromichelaki, E., Kempson, R., and Howes, C., editors, The Dynamics of Lexical Interfaces, pages
205–233. CSLI.


	Make it clear what DS is all about: Dynamics
	Generalize the composition calculus: lambda
	Liberalise permissible node types
	Liberalise permissible semantic representation languages
	Use it!

