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Abstract

Head movement, and head nods in particular,
are important communicative signals in face
to face conversations. Listeners’ head nods
can be characterised as acknowledgements to
the speaker or as showing support when the
speaker encounters problems in completing
their turn. Speakers’ head movement, on the
other hand, is often explained as mimicry.
These different explanations of the same ob-
served phenomena are rarely compared, and
often contradict each other. This study com-
pares models of head nods in free conversation
based on three theories: mimicry, backchan-
nels, and listener responses to speaker trou-
ble. Pairs of participants freely conversed for
15 minutes while fitted with a motion capture
system. Head nods where automatically ex-
tracted from the data, and compared to pre-
dictions by the models. The results highlight
the differences between head nod patterns of
speakers and listeners, and suggest that the
theories are not mutually exclusive. Compar-
ing the theories yield inconclusive results and
fail to determine which one best explains head
nods. Lastly, the vast majority of the observed
head nods are not accounted by any of the
investigated models, implying that mimicry,
backchannels, and responses to speech disflu-
encies alone cannot explain head nods exhaus-
tively.

Face-to-face conversations are multimodal in na-
ture. Verbal and non-verbal communication both
contribute to the content of the conversation and
coordinate its structure. Research of non-verbal
communication shows a number of coordinating
phenomena: listeners gesture to demonstrate their
attendance to the speaker (Goffman, 1955); speak-
ers respond to listeners gaze, and often change who
they are looking at depending on eye-contact with
their addressees (Goodwin, 1979); when listeners
fail to provide the expected listening behaviours

speakers get confused (Bavelas et al., 2000).
This study aims to compare three theories that ex-

plain head nods in conversation: nods as backchan-
nels, nods as mimicry, and nods as listener re-
sponses to speaker trouble (specifically, disfluency).
There are many studies about backchannels and
mimicry, but to our knowledge, comparisons of
these as competing explanations for the same ob-
served phenomena are rare. Whereas two of these
theories (backchannels and responses to speaker
trouble) are specific to listeners, mimicry theory is
agnostic to conversational roles. In other words,
the mimicry literature in general ignores speaker-
hearer roles. Whereas some studies investigate how
speakers mimic listeners (Bailenson and Yee, 2005;
Vrijsen et al., 2010) others look at listener mimicry
of speakers (Maatman et al., 2005; Leander et al.,
2012; Hale et al., 2018), while both apply the same
reasoning and theory.

In this study we aim to test how well these theo-
ries explain observed head nods in free conversa-
tions in respect to speaker-hearer roles. We also
address the question of overlap between the theo-
ries, and whether or not they provide an adequate
account for head nods.

We conducted a study with pairs of participants
having free dialogues, while fitted with a motion
caption system. Their head movement was anal-
ysed for head nods and these were compared to the
predicted behaviour according to models based on
the three theories above.

The rest of the paper is as follows: Section 1
overviews the theoretical and empirical basis of the
models of head nods in dialogue we implement;
Section 2 describes our interactive head nod predic-
tion models; Section 3 describes the methods we
use for data collection and the automatic techniques
we use for testing our model; Section 4 gives and
discusses the results of applying our models to our
data, before we conclude in Section 5.



1 Related work

1.1 Backchannels
Natural and engaging conversations rely on the
ability of the interlocutors to achieve common
ground. This process often involves feedback from
listeners for their understanding, or misunderstand-
ing. Timed listener responses, known as backchan-
nels (Yngve, 1970), can be non-verbal (e.g. head
nods), or para lingual (e.g. utterances like “uh-
huh”). They are crucial for the speaker to assess the
listener engagement and adapt to it (Bavelas et al.,
2000), and can mediate turn-taking in conversation
(Duncan et al., 1979).

Surface features like speaker-listener eye con-
tact and speech prosody are often enough to model
backchannels. Ward and Tsukahara (2000) sug-
geste a backchannel prediction model that is based
on the speaker’s prosody alone. Their model, sum-
marised in Table 1, provides a set of simple hand-
crafted rules that use the speaker “vocalisation
state” (speaking or silent) and pitch, to predict
listeners’ backchannels. Later studies often rely
on this model, either as a component for conver-
sational systems (Maatman et al., 2005), or as a
reference point for an alternative, sometimes more
complex, backchannel predictor (Morency et al.,
2008; Poppe et al., 2010).

1.2 Mimicry
A well known hypothesis is that conversational part-
ners often mimic each other’s postures, gestures,
use of language, facial expression, and more. It is
commonly claimed that mimicry in conversation
has persuasive power and can increase likeability,
empathy, and feeling of closeness (for a review see
Chartrand and Lakin, 2013).

The automatic tendency to imitate others in
social interactions is often described as the
“chameleon effect” (Chartrand and Bargh, 1999). It
is usually explained by the perception-behaviour
link: a cognitive mechanism that link together per-
ception and action and suggests that we have to act
in order to perceive. This implies that mimicry is
an unconscious automatic behaviour that is a by
product of our ability to process social encounters.

The temporal properties of mimicry have been
studied extensively. Early research in mimicry
with virtual reality reported that head movement
mirroring by a virtual agent, with a 4 second lag,
increases rapport (Bailenson and Yee, 2005). A
recent study (Hale et al., 2018) challenged this 4

second mimicry lag from Bailenson’s work (Bailen-
son et al., 2004; Bailenson and Yee, 2005). The
authors highlight that a 4 second lag implies that
mimicry is not a reactive process and it relies on
memory to operate, which is rather unlikely. One
alternative model describes mimicry as a predictive
process, similar to the mechanism that allows mu-
sicians to coordinate their playing, and implies no
time lag. The third alternative describes mimicry
as an immediate reactive response to other people,
thus implies a time lag on the order of 300-1000
milliseconds. They used motion capture to mea-
sure the head pitch in dyadic conversations and
found that listeners’ low-frequency head movement
follows the speaker’s head movement after a 600
milliseconds delay.

1.3 Responses to speaker’s troubles and
disfluencies

The interactive nature of face-to-face conversations
suggests that all of the participants in a conversa-
tion involve in the effort to keep it going. Therefore,
listeners responses are especially important when
the speaker encounters problems in producing a
turn, as happen commonly in free conversations
(Schegloff, 1992).

Disfluencies are often described as a 3-part struc-
ture of reparandom, interregnum, and repair (the
terms were proposed by Shriberg, 1994). This
structure is presented in the example bellow.

John Mary}

 reparandum

likes }

interregnum

uh }

repair

loves

A study exploring head movement after disfluent
utterances found that addressees tend to nod more
between 1 to 3 second after a disfluency (Healey
et al., 2013). In addition, listeners gesture more
when the speaker is disfluent, and their gestures
tend to become similar to those of the speaker
(Healey et al., 2015).

2 Models implementation

2.1 Backchannels
Ward and Tsukahara (2000) suggest a prosody-
based backchannels prediction model. This model,
summarised in Table 1, provides a set of simple
hand-crafted rules that use the pitch of the speaker’s
voice, and the timing they started or stopped speak-
ing, to predict hearers’ backchannels. It is impor-
tant to highlight that the original model was de-
signed to predict verbal backchannels. Neverthe-



Provide a backchannel feedback upon detection of:
P1 a region of pitch less than the 26th-percentile pitch level and
P2 continuing for at least 110ms,
P3 coming after at least 700ms of speech,
P4 provided that no backchannel has been output within the preceding 800ms,
P5 after 700ms wait.

Table 1: Ward and Tsukahara (2000) backchannels prediction algorithm (copied from Poppe et al., 2010).

less, several studies have used it to predict non-
verbal backchannels, and specifically head nods
(e.g. Morency et al., 2008; Poppe et al., 2010),
based on the assumption that verbal and non-verbal
backchannels are generally interchangable (Bave-
las et al., 2000).

This model was chosen for its simplicity and
ease of interpretation. While machine learning
based models often out-perform it (e.g. Morency
et al., 2008), they are usually harder to inter-
pret. The interpretability of the model is espe-
cially important when comparing competing mod-
els that represent theoretically different non-verbal
behaviours.

The model used here has a slight deviation from
the one in the original paper. The original model
waits for a region of pitch with less than the 26th-
percentile pitch level (rule P1 in table 1). This
assumes access to the pitch data of the entire con-
versation, and therefore implies a non incremental
operation. To adapt the algorithm to incremental
processing appropriate for real-time applications
a rotating 10 seconds buffer was introduced. This
buffer always keeps the pitch profile of the last 10
seconds. Percentile calculation is done against this
rotating buffer.

The model is implemented in the program-
ming language PureData (Puckette, 1996)1 and
utilises the voice activation detection application
py-webrtcvad2 to decide if there is speech in the
audio data or not (rule P3 in table 1). One instance
of the model is run for each participant. It analyses
the audio stream from the participant’s microphone
and predicts backchannels for their conversational
partner.

1The backchannels detection server is available
online at https://github.com/Nagasaki45/
backchannels.

2https://github.com/wiseman/
py-webrtcvad

2.2 Mimicry

To tackle the question of mimicry lag two mimicry
models were implemented. They predict head nods
for one participant 600 milliseconds (following
Hale et al., 2018) and 4 seconds (following Bailen-
son and Yee, 2005) after a head nod by their partner.
These models rely on a head nod detector that is
described in detail in Section 3.2.

Note that the mimicry models use head nod
mimicry, and not head movement mimicry as most
mimicry studies suggested. There are two rea-
sons for this decision: firstly, we aim to compare
mimicry and backchannels as possible explanations
for communicative head movement. Therefore,
to obtain a meaningful comparison, both models
should operate on the same physical movement.
Second, the mimicry literature implies that mimicry
is a general phenomenon that should operate on
multiple levels. If the perception-behaviour link is
a fundamental cognitive mechanism, as mimicry
research suggests (Chartrand and Bargh, 1999), it
should also operate on head nods. Furthermore,
even when head movement mimicry is investigated,
scholars often conclude that head nods are mim-
icked in conversation. For example, Hale et al.
(2018) concluded that “the cognitive mechanisms
generating mimicry of head nods act with a con-
stant lag of around 0.588 msec”.

2.3 Disfluency

Speech disfluencies are detected using IBM
Watson’s speech-to-text service, and the
“deep disfluency” software, a state-of-the-art
incremental model that tags disfluencies in
transcripts (Hough and Schlangen, 2017). The
audio from each participant’s microphone is sent to
IBM Watson. The returned transcription is passed
through the deep disfluency tagger. Interregnum
and edit term tags (<e/>) and repair start tags
(<rpS/>) are interpreted as disfluencies.

https://github.com/wiseman/py-webrtcvad
https://github.com/Nagasaki45/backchannels
https://github.com/Nagasaki45/backchannels
https://github.com/wiseman/py-webrtcvad
https://github.com/wiseman/py-webrtcvad


3 Methods

3.1 Participants
Thirteen pairs of native English speakers that knew
each other in advance (14 women, 12 men), age
18-26 (mean: 20.8, std: 1.9) participated in the
study. Most of the participants were undergraduate
and master students in STEM, who were recruited
through university mailing lists. Each of them re-
ceived £10 compensation for their participation.

3.2 Apparatus
Two participants at a time participated in the study.
They were seated in the same room, two metres
apart, facing each other. Each participant was
recorded by a dash microphone and a video camera.

To track their head movement the participants
wear baseball caps fitted with HTC Vive trackers3

on their visors. They also held HTC Vive hand-
held controllers4 that tracked their hands move-
ment. Usually, the HTC Vive controllers and track-
ers work alongside the HTC Vive headset. Because
the headsets were not necessary for this study they
were set aside at a table near the participants and
their movement data wasn’t recorded. The logged
movement data includes the head and hands posi-
tion (Cartesian X, Y, and Z values), and rotation
(Euler angles X, Y, and Z), sampled at the frame
rate of the motion data capture application5, which
varies between 60Hz and 90Hz.

Head nods are detected based on the vertical po-
sition of the head tracker. To guarantee a constant
rate, the vertical head position is up-sampled, lin-
early, to 100Hz. These samples are then filtered
with two second order Butterworth filters: a low-
pass at 4Hz followed by an high-pass at 1Hz. The
model predicts a head nod if the result is smaller
than -4 millimetres. The system won’t report an-
other head nod until the movement stabilise (a sam-
ple between -2 and 2 millimetres). This technique
is based on Healey et al. (2013): “low frequency
movements (1Hz and below) and high frequency
movements (4Hz and above) were eliminated ...
head nods were identified as vertical movements
at a speed >0.3 mm/frame”. The above study pro-
cessed data at 60 frames per second, that is 0.18 mil-
limetre per millisecond, or, translated to our 100hz

3https://www.vive.com/us/vive-tracker/
4https://www.vive.com/us/accessory/

controller/
5The application for running this study is avail-

able online at https://github.com/Nagasaki45/
F2F-study/tree/study-4.

Interactant with 
max(RMS) is
floor holder

Filter
(low pass @ 0.35Hz)

RMS
(root mean square)

if (max(RMS) - min(RMS) > 0.1)
Threshold

20ms
buffers

Previously reported
interactant is
floor holder

Filter
(low pass @ 0.35Hz)

RMS
(root mean square)

False True

Figure 1: Schematic diagram of the floor control detec-
tion model.

sample rate, 1.8 millimetres per sample. This value,
of 1.8 millimetres per sample, seemed too sensitive.
We fine tuned it manually until the system was sen-
sitive enough to detect most head nods but not too
sensitive to be triggered by other movement.

Recording the participants’ voices in one room
introduced a significant audio bleed. That is, the
microphone of one participant recorded a signif-
icant portion of their partner’s voice. Therefore,
and because of the models’ dependency on audio,
the iZotope RX 6 De-bleed6 software was used to
reduce the bleed as much as possible. The reduc-
tion strength was set to maximum and the artefact
smoothing to 0. No other settings were tested. The
reduction in bleed was not tested exhaustively, but
a few measurements suggest that the bleed was re-
duced by up to 40dB. This version of the audio files
was used instead of the original audio files for the
floor control detection model (described next), and
the backchannels and disfluency models.

A simple and accurate floor control detection
6https://www.izotope.com/en/

products/repair-and-edit/rx/
features-and-comparison/de-bleed.html

https://www.vive.com/us/vive-tracker/
https://www.vive.com/us/accessory/controller/
https://www.vive.com/us/accessory/controller/
https://www.vive.com/us/vive-tracker/
https://www.vive.com/us/accessory/controller/
https://www.vive.com/us/accessory/controller/
https://github.com/Nagasaki45/F2F-study/tree/study-4
https://github.com/Nagasaki45/F2F-study/tree/study-4
https://www.izotope.com/en/products/repair-and-edit/rx/features-and-comparison/de-bleed.html
https://www.izotope.com/en/products/repair-and-edit/rx/features-and-comparison/de-bleed.html
https://www.izotope.com/en/products/repair-and-edit/rx/features-and-comparison/de-bleed.html
https://www.izotope.com/en/products/repair-and-edit/rx/features-and-comparison/de-bleed.html


model (Gurion et al., Unpublished) processed the
audio from the participants’ microphones to deter-
mine the floor holder at any given moment. This
model, presented in Figure 1, relies on simple au-
dio processing techniques of filters and thresholds
to operate. Audio from the microphones of the
two interactants is processed in buffers of 20 mil-
liseconds. For each buffer the root mean square
(RMS) value is calculated. These values are fil-
tered by low pass filters with a cutoff frequency
of 0.35Hz. If the difference between the minimal
and the maximal filtered RMS values is larger than
0.1 the interactant with the maximal filtered RMS
value is the floor-holder. Otherwise the previously
reported floor-holder is the floor-holder again.

Lastly, the backchannels, mimicry, and disflu-
ency models described earlier logged predictions
for partner nods.

3.3 Procedure

First, the participants filled a demographic ques-
tionnaire, followed by a questionnaire about their
social relationship. Then they were introduced to
the Dream Apartment design task (described in de-
tail in Hough et al., 2016), in which they are asked
to discuss the design of an apartment for them to
share. The participants were then fitted with the
motion capture system, discussed the task for 15
minutes, until the experimenter asked them to stop.

4 Results and discussion

4.1 Head nods frequency

First, head nods frequency was calculated sepa-
rately for floor holders and non floor holders. For
each participant, the number of head nods while
holding the floor was divided by the total time they
held the floor to find the nodding frequency. Nod-
ding frequency for non floor holders was calcu-
lated in a similar fashion. Comparing these val-
ues suggest that floor holders nod more frequently
(M=0.27Hz, SD=0.14) than non floor holders (M:
0.18Hz, SD=0.09; t(25) = 4.11, p < 0.001).

4.2 Overlap between models

Here we address the question of whether the mod-
els actually differ from each other. Whereas they
are driven by different theories, there is no reason
to assume that the models produce different predic-
tions.

To test that we calculated the overlap for every
combination of 2, 3, or all 4 models. A window of

400 milliseconds is defined around each prediction.
The overlap for a combination of models is defined
as the percentage of time for which the windows
intersect, plus the percentage of time for which no
window is reported (i.e. an XNOR logical opera-
tion on the windows). Let us consider an example
with two models and a total duration of one second.
If model A predicts a head nod at 0.2 seconds and
model B predicts a head nod at 0.4 seconds the
400 milliseconds windows intersect on the interval
0.2-0.4 seconds and no window is reported for the
interval 0.6-1 seconds. Therefore, they agreed on
60% of the time, and this is their overlap.

For each combination of models a chance over-
lap is also calculated. This is the overlap that is
expected from models that output windows with the
same summed duration as the windows produced
by the actual models, but at random timestamps.

Figure 2 shows the difference between the over-
lap and the overlap expected by chance for all com-
binations of models. Each dot indicate a partici-
pant to visualise the distribution. Most of the com-
binations of models produce higher overlap than
chance. Significantly higher than chance combi-
nations are indicated with an asterisk (assessed by
t-tests with Bonferroni correction for multiple tests
thus α < 0.05

11 ).
The significant overlap between the backchan-

nels and the disfluency models can be interpreted
in a few ways. First, these models use speech au-
dio as an input and design to predict head nods by
listeners. The calculated chance, on the other hand,
ignores conversational roles completely. Another
possible explanation for the higher than chance
overlap is that disfluencies shares prosodic char-
acteristics with the backchannels model. This is
discussed in depth by the authors that proposed the
backchannels model (Ward and Tsukahara, 2000).
Furthermore, they claim that disfluencies elicit
backchannels.

The overlap between the mimicry600 and the dis-
fluency models is also significantly above chance
level. This finding is in line with previous stud-
ies that found increased gestures’ similarity in free
conversations during disfluent utterances (Healey
et al., 2015).

We couldn’t find a theoretical explanation, nor
an explanation based on the models implementa-
tion, for the higher than chance overlap for the
mimicry600 ∩ mimicry4000 combination. Lastly,
given the overlaps found between combinations of



Figure 2: The difference between overlap and overlap expected by chance for combinations of models, per partici-
pant. Model combinations with overlap significantly higher than chance are marked with an asterisk.

two models, it is not surprising that combinations
of 3 and 4 models also overlap.

4.3 Models comparison

We used precision, recall, and F1-scores (the har-
monic mean of precision and recall), per partici-
pant, to assess how well the models perform. Be-
cause the models’ predictions and the detected head
nods are timed events we had to adapt the usual
precision and recall definitions as follows.

• True positives: A prediction is correct if a
head nod is detected in the 400ms window
around it, as suggested by (Poppe et al., 2010).
To make sure not to inflate the number of true
positives no more than 1 true positive per head
nod was allowed.

• Precision: Number of true positives divided
by the number of predictions.

• Recall: Number of true positives divided by
the number of detected nods.

This method is common for backchannel models
evaluation (de Kok, 2013), and because the predic-
tions here are similar (temporal point processes)
we believe that this method is appropriate.

Figure 3 shows the precision, recall, and F1-
score of the models while predicting for partici-
pants while holding and not holding the floor. The
results suggest that there are no major differences
between precision values for the different models.
On the other hand, all models achieve higher preci-
sion when predicting speaker head nods than when
predicting hearer head nods. This effect can be
explained by the higher frequency of head nods
while holding the floor, as discussed before, as this

increase the chance of a prediction to match an
actual head nod.

The backchannels and disfluency models achieve
higher recall for hearers versus speakers. These
models are designed for hearers, so it makes sense
that they would perform better in that case. In addi-
tion, unlike the other models these rely on speech
information to operate. The same input is also
used to determine the floor holder. By relying on
the same input for the models and for analysis the
model can achieve arbitrary high recall. For exam-
ple, predicting head nods in a high rate for hearers
and none at all for speakers can produce an almost
perfect recall for hearers and zero for speakers.
Therefore, conclusions based on recall about the
performance of the backchannels and disfluency
models in relation to conversational role should be
taken cautiously.

The mimicry600 model also has a higher recall
for participants not holding the floor compared to
floor holders. It might suggest that mimicry of
speakers is more common than mimicry of hearers.
Another possible explanation is the increased nod-
ding frequency for floor holders discussed earlier.
Because the head nods frequency of floor holders
is higher than non floor holders, more predictions
are generated for non floor holders, and therefore
more detected head nods match with a prediction,
inflating the recall value. The mimicry4000 model
is not expected to be affected by this, as the aver-
age turn duration is 4.35 seconds. In other words,
the predictions of the mimicry4000 model often
happen beyond the turn that triggered them, so the
influence of the floor on this model’s recall is neg-
ligible.

Figure 4 can help explaining the differences in re-
call values between the models. The left bar graph



Figure 3: Precision, recall, and F1-score for the models’ predictions for participants holding or not holding the
floor. The error bards indicate a 95% confidence interval of the mean.

Figure 4: Recall performance of each model (left) and number of predictions generated by each model per partic-
ipant, when holding and not holding the floor (right). The error bards indicate a 95% confidence interval of the
mean.

shows the recall values of the models, for floor
holders and non floor holders (same as the middle
panel of Figure 3), while the right bar graph show
the count of predictions in each of these conditions.
For a fixed number of detected head nods, a higher
number of predictions will result in an increased
recall value. The similarity between the graphs
suggests that the differences between the models
in terms of their recall values is a direct result of
the number of predictions in each condition. This
might disprove the suggestion that different models
capture speaker and hearer head nods behaviour
better than others, as these differences could be due
to prediction frequency alone.

4.4 Accounted head nods

Here we assess how many of the detected head nods
are accounted by any of the models. A union of
all four models is defined by all of the predictions
of the models. Considering the definition of recall
from the previous section, the recall of this union
model indicates how many of the detected head

nods are predicted by any of the models.
The average union model recall across all par-

ticipants is 0.29. This low value indicates that the
vast majority of the detected head nods are not ac-
counted by any of the models we investigated. The
recall for floor holders is 0.20 and for non floor
holders is 0.38. As two out of the four models, the
backchannels and disfluency models, are desgined
specifically for listeners, the union recall for non
floor holders is expected to be higher. Nevertheless,
even for non floor holders most of the head nods in
the data are left unexplained.

One possible explanation to this low number
of accounted head nods is the 400 milliseconds
window used for deciding if a prediction is cor-
rect. As discussed earlier, this value is common in
backchannels research (Poppe et al., 2010), but it
is on the shorter side of the spectrum in the liter-
ature (de Kok, 2013, page 70). A longer window
should increase this number, though the window
size choice should not be decided by this result.
Another possibility is that the head nods detection



picks movements that are not necessarily head nods.
This general issue with the current study is dis-
cussed further in the next section. Lastly, although
the models discussed here cover a few different the-
ories that are extensively studied, we are sure that
they do not cover the entire range of head move-
ment and head nods found in free conversations.
As shown earlier, speakers nod more than listeners,
and no model here is designed to address this nod-
ding behaviour. A theory that specifically deals
with speakers’ head movement and nods might
shed a light on the head nods that our models failed
to predict.

4.5 Limitations

This study relies on an automatic head nod detector.
This detector was never validated properly and it
seems that it is a source of significant noise and in-
accuracies in the analysis. Even on the theoretical
level, there is no agreement on what head move-
ments should be considered a head nod (e.g. is it
related to pitch or height of head). Further research
is required to either come up with a verified model
or, perhaps, a broader definition of head nods that
fits a concrete form of head movement.

In addition, this research relies on a method to
evaluate predictions for timed events that does not
produce precision and recall as commonly used,
but a slight variations of them. The method looks
for predictions around detected nods to estimate
true positive, and derive the precision and recall
from it. It was used before for similar task (Poppe
et al., 2010), to our knowledge the method, and the
window choice, were never properly evaluated.

5 Conclusion

This study compares predictions of models inspired
by three theories to head nods of floor holders and
non floor holders observed in free dialogues as an-
notated automatically by a head nod detector. Ac-
cording to our detector, the head nod frequency of
floor holders is higher than that of non floor holders.
We discover significant overlaps between the mod-
els, suggesting that the same head nods can often be
explained adequately by multiple theories. The dif-
ferences between the models and their performance
for different conversational roles is not conclusive.
Whereas some theories achieve higher recall for
specific conversational roles the difference is usu-
ally a result of more predictions generated for these
roles. Lastly, most of the observed head nods in

the data went undetected by any of the models we
investigated. This can be a result of technically
insufficient methods of detecting head nods and
matching these with predictions. Alternatively, it
might suggest that the theories we investigate here
are not enough to explain head nods by speakers
and listeners in free conversation.
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