
Incrementality and HPSG: Why not?

Jonathan Ginzburg and Robin Cooper and
Julian Hough and David Schlangen

1 Introduction

Incremental processing at least as fine grained as word-by-word has long been
accepted as a basic feature of human processing of speech (see e.g., Schlesewsky
and Bornkessel (2004)) and as an important feature for design of spoken dialogue
systems (see e.g., Schlangen and Skantze (2011), Hough et al. (2015)).1

The ability to deal with incrementality has for many years been a selling
point of Categorial Grammar in both its versions CCG (Ades and Steedman
(1982), Steedman (1996)) and TLG (Morrill (2000)), and in LTAG (Demberg
et al. (2013)). It has also served as the motivation for new formalisms, e.g.,
Dynamic Dependency Grammar (Milward (1994)) and, more recently Dynamic
Syntax (Kempson et al. (2001)). Over the years there has been some work on
incremental versions of HPSG, e.g., (Güngördü (1997)) and recently (Haugereid
and Morey (2012)). Nonetheless, on the whole, incrementality in HPSG has
been viewed as a performance issue—see e.g., Sag and Wasow (2015):

‘The locality of the constraints maximizes the information available
in partial structures and supports a variety of processing regimes
(top-down, bottom-up, left-corner, probabilistic, etc.). Hence, this
property of our sign-based model of grammar is useful in modeling
the incrementality of processing (our italiscs—JG,RC).’ (Sag and
Wasow (2015), p. 53)

Over the last few years, several works have appeared detailing the view that
grammars should be viewed as systems that classify an utterance as it occurs
in conversation see e.g., (Ginzburg (2012), Ginzburg and Poesio (2016), Kemp-
son et al. (2016), Cooper (2016)). Thus, Ginzburg and Poesio (2016) argue
that phenomena such as disfluencies, non sentential utterances, quotation, and
co–speech gestures are as rule-governed as binding, control, and dislocation—
traditional sentence-level phenomena captured in formal grammars. Given the
existence of formal accounts for all these conversational phenomena within
frameworks such as KoS (Ginzburg (2012)), PTT (Poesio and Rieser (2010)),
SDRT (Asher and Lascarides (2003)), Dynamic Syntax (Kempson et al. (2016))

1This work is dedicated with friendship to Danièle Godard. Portions of this work were
presented at Sinn und Bedeutung 2016, held in September 2016 in Edinburgh and at the
workshop to honour Danièle, held at the Hôtel de Lauzon in February 2017.

1



and other related frameworks, this suggests the need for a new view wherein
grammar is a means for directly characterising speech events, abolishing the per-
formance/competence distinction (though recasting this in a way that allows
maintaining a distinction between the linguistic phenomena from the specific
details of how they get processed.).

Indeed, with respect to incrementality, once one examines ongoing conversa-
tional data even in a fairly cursory fashion, as we exemplify below, one discovers
the pervasive nature of phenomena whose analysis requires incremental semantic
composition.

Consequently, we believe that such data push any grammar formalism that
aspires to handle conversation, and this includes without doubt HPSG, to adapt
and offer means of handling incremental semantic composition. However, this
does not, as we will suggest, force one to radically redesign one’s formalism,
as long as one allows for a sufficiently tight coupling between grammar and
conversational context.

We start, therefore in section 2 with a cursory examination of phenomena
from conversation that requires incremental semantic composition and draw
from this basic specifications for incremental semantics. In section 3 we present
the necessary background concerning KOS and TTR, a type theory with records,
the frameworks we employ for representing dialogue, grammar, and semantics.
In section 4, we sketch an account of dialogical incremental processing, which
we apply to some of the data from section 2 in section 5.

2 Incremental Composition: Data and Initial
specification

Example (1) exemplifies the fact that at any point in the speech stream of A’s
utterance B can interject with an acknowledgement whose force amounts to B
understanding the initial segment of the utterance (Clark (1996)):

(1) A: Move the train . . . B: Aha A: . . . from Avon . . . B: Right A: . . . to
Danville. (Trains corpus)

(1) requires us to be able to write a lexical entry for ‘aha’ and ‘yeah’ (and
their counterparts cross linguistically, e.g., French: ‘ouais’, ‘mmh’,. . . , ) whose
context is/includes “an incomplete utterance”. (2a,b,c) exemplify a contrast
between three reactions to an ‘abandoned’ utterance: in (2a) B asks A to elabo-
rate, whereas in (2b) she asks him to complete her unfinished utterance; in (2c)
B indicates that A’s content is evident and he need not spell it out:

(2) a. A(i): John . . . Oh never mind. B(ii): What about John/What hap-
pened to John? A: He’s a lovely chap but a bit disconnected.

b. A(i): John . . . Oh never mind. B(ii): John what? A: burnt himself
while cooking last night.

2



c. A: Bill is . . . B: Yeah don’t say it, we know.

(2a,b,c) requires us to associate a content with A’s incomplete utterance
which can either trigger an elaboration query (2a), a query about utterance
completion (2b), or an acknowledgement of understanding (2c). (3) is an at-
tested example of an abandoned utterance in mid-word:

(3) [Context: J is in the kitchen searching for the always disappearing
scissors. As he walks towards the cutlery drawer he begins to make his
utterance, before discovering the scissors once the drawer is opened.]
J: Who took the sci-. . .

(3) requires us to integrate within-utterance and (in this case, visual) dia-
logue context processing.

(4) exemplifies two types of expressions—filled pauses and exclamative interjections–
that can in principle, be inserted at any point in the speech stream of A’s utter-
ance; the interjection ‘Oh God’ here reacts to the utterance situation conveyed
incrementally.

(4) Audrey: Well it’s like th- it’s like the erm (pause) oh God! I’ve forgot-
ten what it’s bloody called now? (British National Corpus)

(4) requires us to enable the coherence of a question about what word/phrase
will follow, essentially at any point in the speech stream; It also requires us
to enable the coherence of an utterance expressing negative evaluation of the
current incomplete utterance. (5a-e) illustrate that an incomplete clause can
serve as an antecedent for a sluice, thereby going against the commonly held
assumption that sluicing is an instance of ‘S–ellipsis’:

(5) a. The translation is by—who else? —Doris Silverstein (The TLS, Feb
2016)

b. He saw—can you guess who?—The Dude;

c. Queen Rhonda is dead. Long live . . . who? (New York Times, Nov
2015);

d. A: A really annoying incident. Some idiot, B: Who? A: Not clear. B:
OK A: has taken the kitchen scissors.

e. (From a live blog:) On 2nd & 4, Brady finds, who else?, Damon Amen-
dola who stretches out to make a touchdown catch that gives the Pa-
triots the lead.

(5) requires us to enable either incomplete argument frames or QNPs imme-
diately after their utterance to trigger sluices.

3



Dialogue Gameboard
component type keeps track of
Spkr Individual Turn
Addr Individual ownership
utt-time Time
Facts Set(propositions) Shared assumptions
VisualSit Situation Visual scene
Moves List(Locutionary propositions) Grounded utterances
QUD Partially ordered Live

set(〈question, FEC〉) issues
Pending List(Locutionary propositions) Ungrounded utterances

Table 1: Dialogue Gameboard

3 Background

3.1 KoS

For our dialogical framework we use KoS (Ginzburg (1994), Larsson (2002),
Purver (2006), Ginzburg (2012))). KoS provides a cognitive architecture in
which there is no single common ground, but distinct yet coupled Dialogue
GameBoards, one per conversationalist. The structure of the dialogue game-
board (DGB) is given in table 1. The Spkr and Addr fields allow one to track
turn ownership; Facts represents conversationally shared assumptions; VisualSit
represents the dialogue participant’s view of the visual situation and attended
entities; Pending, the nature of which we explicate in more detail below, rep-
resents moves that are in the process of being grounded and Moves represents
moves that have been grounded; QUD tracks the questions currently under dis-
cussion, though not simply questions qua semantic objects, but pairs of entities
which we call InfoStrucs: a question and an antecedent sub-utterance.2 This
latter entity provides a partial specification of the focal (sub)utterance, and
hence it is dubbed the focus establishing constituent (FEC). This is similar to
the parallel element in higher order unification–based approaches to ellipsis res-
olution e.g. Gardent and Kohlhase (1997); and to Vallduv̀ı (2015), who relates
the focus establishing constituent with a notion needed to capture contrast.

3.2 TTR

The logical underpinnings of KoS is TTR, a type theory with records (Cooper,
2012, Cooper and Ginzburg, 2015). TTR is a framework that draws its inspira-
tions from two quite distinct sources. One source is Constructive Type Theory
for the repertory of type constructors, and in particular records and record
types, and the notion of witnessing conditions. The second source is situation

2Extensive motivation for this view of QUD can be found in (Fernández, 2006, Ginzburg,
2012), based primarily on semantic and syntactic parallelism in non-sentential utterances such
as short answers, sluicing, and various other non-sentential utterances.

4



semantics (Barwise (1989)) which TTR follows in viewing semantics as ontology
construction. This is what underlies the emphasis on specifying structures in a
model theoretic way, introducing structured objects for explicating properties,
propositions, questions etc. It also takes from situation semantics an emphasis
on partiality as a key feature of information processing. This aspect is exempli-
fied in a key assumption of TTR—the witnessing relation between records and
record types: the basic relationship between the two is that a record r is of type
T if each value in r assigned to a given label li satisfies the typing constraints
imposed by T on li:

(6) record witnessing

The record:
l1 = a1
l2 = a2
. . .

ln = an


is of type:

l1 : T1
l2 : T2(l1)

. . .

ln : Tn(l1, l2, . . . , ln−1)


iff a1 : T1, a2 : T2(a1), . . . , an : Tn(a1, a2, . . . , an−1)

This allows for cases where there are fields in the record with labels not men-
tioned in the record type. This is important when e.g., records are used to
model contexts and record types model rules about context change—we do not
want to have to predict in advance all information that could be in a context
when writing such rules.

For what follows, we require use of an analog to priority unification for record
types in asymmetric merge (Cooper, 2012, Hough, 2015) defined as: given two
record types R1 and R2, R1 ∧. R2 will yield a record type which is the union

of all fields with labels not shared by R1 and R2 and the asymmetric merge of
the remaining fields with the same labels, whereby R2’s type values take priority
over R1’s fields, yielding a resulting record type with R2’s fields only in those
cases.

(7) Asymmetric Mergea:T1
b:T2
c:T3

 ∧. [
b:T2
c:T4

]
=

a:T1
b:T2
c:T4


3.2.1 Conversational Rules

Context change is specified in terms of conversational rules, rules that specify
the effects applicable to a DGB that satisfies certain preconditions. This al-
lows both illocutionary effects to be modelled (preconditions for and effects of

5



greeting, querying, assertion, parting etc.), interleaved with locutionary effects.
We mention here one rule that we use subsequently. QSPEC is KoS’ version
of Gricean Relevance—it characterizes the contextual background of reactive
queries and assertions. QSPEC says that if q is QUD–maximal, then subse-
quent to this either conversational participant may make a move constrained to
be q–specific (i.e. either a partial answer or sub–question of q).3

(8) QSPEC

pre =

[
qud =

〈
i, I
〉
: poset(InfoStruc)

]

effects = TurnUnderspec ∧.


r : AbSemObj

R: IllocRel

LatestMove = R(spkr,addr,r) : IllocProp

c1 : Qspecific(r,i.q)




Update procedure: Using asymmetric merge, we employ the following

update process for a dialogue context C and for some rule R, a record of type
(9).

(9)

[
pre : RecType
effects : RecType

]
When updating from one context Ci to the next Ci+1 with rule R:

(10) If Ci : TCi and TCi is a subtype of R.pre,
then R licenses the conclusion that:
Ci+1 : TCi

∧. R.effects

The updates operate on various levels of information which can be arbitrar-
ily fine-grained (even phonetic). This gives us the requisite apparatus for the
incrementality discussed in section 2.

3.3 Grounding/Clarification interaction Conditions

Much recent work in dialogue has emphasized two essential branches that can
ensue in the aftermath of an utterance:

• Grounding: the utterance is understood, its content is added to common
ground, uptake occurs.

• Clarification Interaction: some aspect of the utterance causes a prob-
lem; this triggers exchange to repair problem.

3We notate the underspecification of the turn holder as TurnUnderspec, an abbrevia-
tion for the following specification which gets unified together with the rest of the rule:
PrevAud =

{
pre.spkr,pre.addr

}
: Set(Ind)

spkr : Ind

c1 : member(spkr, PrevAud)

addr : Ind

c2 : member(addr, PrevAud) ∧ addr 6= spkr



6



KoS’s treatment of repair involves two aspects. One is straightforward, draw-
ing on an early insight of Conversation Analysis, namely that repair can involve
‘putting aside’ an utterance for a while, a while during which the utterance is
repaired. That in itself can be effected without further ado by adding further
structure to the DGB, specifically the field introduced above called Pending.
‘Putting the utterance aside’ raises the issue of what is it that we are ‘putting
aside?’. In other words, how do we represent the utterance? The requisite
information needs to be such that it enables the original speaker to interpret
and recognize the coherence of the range of possible clarification queries that
the original addressee might make. Ginzburg (2012) offers detailed arguments
on this issue, including considerations of the phonological/syntactic parallelism
exhibited between CRs and their antecedents and the existence of CRs whose
function is to request repetition of (parts of) an utterance. Taken together with
the obvious need for Pending to include values for the contextual parameters
specified by the utterance type, Ginzburg concludes that the type of Pending
combines tokens of the utterance, its parts, and of the constituents of the con-
tent with the utterance type associated with the utterance. An entity that
fits this specification is the locutionary proposition defined by the utterance.
A locutionary proposition is a proposition whose situational component is an
utterance situation, typed as in (11a) and will have the form of record (11b):

(11) a. LocProp=def

[
sit : Sign

sit-type : RecType

]
b.
[

sit = u

sit-type = Tu

]
Here Tu is a grammatical type for classifying u that emerges during the pro-

cess of parsing u. It can be identified with a sign in the sense of HPSG (Pollard
and Sag, 1994). This is operationalized as follows: given a presupposition that u
is the most recent speech event and that Tu is a grammatical type that classifies
u, a record pu of the form (11b), gets added to Pending. The two branches lead
to the following alternative updates:

• Grounding, utterance u understood: update MOVES with pu and respond
appropriately (with the second half of an adjacency pair etc.)

• Clarification Interaction:

1. pu remains for future processing in PENDING;

2. CQ(u), a clarification question calculated from pu, updates QUD and
CQ(u) becomes a discourse topic.

4 An incremental perspective on grounding and
clarification

4.1 Incrementalizing dialogue processing

The account in section 3.3 was extended to self-repair in Ginzburg et al. (2014):
the basic idea is simply to incrementalize the perspective from the turn level

7



to the word level: as the utterance unfolds incrementally there potentially arise
questions about what has happened so far (e.g. what did the speaker mean with
sub-utterance u1?) or what is still to come (e.g. what word does the speaker
mean to utter after sub-utterance u2?). These can be accommodated into the
context if either uncertainty about the correctness of a sub-utterance arises
or the speaker has planning or realizational problems. Overt examples for such
accommodation are provided by self-addressed questions (She saw the . . . what’s
the word?, Je suis comment dire?), as explained below.

The account of Ginzburg et al. (2014) exemplified some incremental con-
tents and explained a significant conceptual change that would need to be
assumed—that Pending would have incremental utterance representations. It
did not, however, begin to spell out concretely the nature of such representa-
tions, which are crucial in a third option a speaker has apart from grounding
and (self)clarifying, namely prediction (see examples (2) and (3) above).

We can summarize this picture of processing as in (12), the monitoring
and update/clarification cycle is modified to happen at the end of each word
utterance event, and in case of the need for repair, a repair question gets accom-
modated into QUD.

(12) a. Ground: continue (Levelt (1983)).

b. Predict: stop, since content is predictable.

c. (Self)Clarify: generate CR given lack of expected utterance.

In the rest of this section we sketch an account of incremental utterance
representations, including in particular incremental semantic contents.

4.2 Update Rules for specifying syntax

An essential presupposition of our approach (already in its non-incremental
version, see above) is a view of syntax as speech event classification by an
agent. For a very detailed exposition of such a view see Cooper (2016), a précis
of which can be found in Cooper (2013). Starting at the word level—if Lex(Tw,
C ) is a sign type4 which is one of the lexical resources available to an agent A
and A judges an event e to be of type Tw, then A is licensed to update their

4e.g., Lex(‘Beethoven’, NP) representing something like

s-event :



e-loc : Loc
sp : Ind
au : Ind
e : “Beethoven”
cloc : loc(e,e-loc)
csp : speaker(e,sp)
cau : audience(e,au)


syn :

[
cat=np : Cat
daughters=ε : Sign∗

]
cont=Beethoven′ : Cont


where ‘Beethoven′’ is whatever your theory gives you as the content of the proper noun
Beethoven.

8



DGB with the type Lex(Tw,C). Intuitively, this means that if the agent hears an
utterance of the word “composer”, then they can conclude that they have heard
a sign which has the category noun. This is the beginning of parsing, which
Cooper shows how to assimilate to a kind of update akin to that involved in
non-linguistic event perception. The licensing condition corresponding to lexical
resources like (12) is given in (13). We will return below to how this relates to
gameboard update. (13) says that an agent with lexical resource Lex(T , C) who
judges a speech event, u, to be of type T is licensed to judge that there is a sign
of type Lex(T , C) whose ‘s-event.e’-field contains u.

(13) If Lex(T , C) is a resource available to agent A, then for any u, u :A T
licenses :A Lex(T , C) ∧.

[
s-event:

[
e=u:T

]]
Strings of utterances of words can be classified as utterances of phrases. That

is, speech events are hierarchically organized into types of speech events in a way
akin to the complex event structures needed to model non-linguistic activities.
Agents have resources which allow them to reclassify a string of signs of certain
types (“the daughters”) into a single sign of another type (“the mother”). For
instance, a string of type Det_N (that is, a concatenation of an event of type
Det and an event of type N) can lead us to the conclusion that we have observed
a sign of type NP whose daughters are of the types Det and N respectively.

The resource that licences this is a rule which is modelled as the function in
(14a) which we represent as (14b)

(14) a. λu : Det_N . NP ∧.
[
syn:

[
daughters=u:Det_N

]]
b. RuleDaughters(NP, Det_N )

‘RuleDaughters’ is to be the function in (15). Thus ‘RuleDaughters’, if
provided with a subtype of Sign+ and a subtype of Sign as arguments, will
return a function which maps a string of signs of the first type to the second
type with the restriction that the daughters field is filled by the string of signs:

(15) λT1 : Type .
λT2 : Type .
λu : T1 . T2 ∧.

[
syn:

[
daughters=u:T1

]]
4.3 Semantic Composition using asymmetric merge

As we mentioned on p. 5, we use asymmetric merge to integrate utterances into
the DGB. We postulate as the denotation associated with the root of the tree
the type illocutionary proposition, which is hence compatible with declarative,
interrogative and imperative utterances. This gets refined as each word gets
introduced using asymmetric merge, which enables us to effect a combinatory
operation that synthesises function application and unification.

We exemplify how this works in explicating the evolution of the speaker’s
information state in example (3), repeated here as (16).

9



(16) [Context: J is in the kitchen searching for the always disappearing
scissors. As he walks towards the cutlery drawer he begins to make his
utterance, before discovering the scissors once the drawer is opened.]
J: Who took the sci-. . .

(17) InfState0 : T0 where T0 is[
private:

[
agenda=〈ask(speaker,q0)〉:〈Type〉
vis-sit:NoScissors

]]
Here we use NoScissors to represent a type of types, T , such that for any type,
T , T : T iff there is no relabelling, T ′, of the type (18) such that T v T ′.

(18)

[
x : Ind
e : scissors(x)

]
That is, the speaker judges the visual situation to be one which does not show
any evidence of scissors. For discussion of the relabelling of types see Cooper
(2016).

We assume that an utterance, u, of an interrogative NP such as who results
in the update of the type of the current information state, T0, in (19).

(19) InfState1 : T0 ∧.DGB.Pending =


sit =u : Sit

sit-type=

[
phon : who

cont = w: (Ppty→WhPQ)

]
:RecType

: RecType


Here Ppty is the type given in (20).

(20) (
[
x:Ind

]
→RecType)

The content associated with the utterance involves projection in a sense we
explicate shortly. Here it is projected to be a question of type WhPQ.

(21) (

[
x:Ind
c:person(x)

]
→RecType)

The function, w, in (20) which might be seen as serving as the incremental
content (cf. Milward and Cooper, 1994) of who is given in (22), though we could
also regard it as a straightforward static content in a compositional semantics.5

(22) w = λP :Ppty . λr:

[
x:Ind
c:person(x)

]
.
[
e:P (r)

]
5Milward and Cooper (1994) offer an explicit procedure that converts such lambda terms

to existentially quantified propositions. Their fragment considered only declarative utter-
ances. In the current work we could adapt their procedure to yield existentially quantified
illocutionary propositions by converting functions to record types, in this case, for example:

P : Ppty

r :

[
x : Ind
c : person(x)

]
e : P(r)



10



We posit the content of the verb took to be (23a) (ignoring tense) of type
(23b). We represent this content as ‘take′’.

(23) a. take′ = λr1:
[
x:Ind

]
. λr2:

[
x:Ind

]
.
[
e:take(r2.x, r1.x)

]
b. (

[
x:Ind

]
→Ppty)

Thus the incremental content of who took can be computed in line with
Milward and Cooper (1994) as (24a) which can be expressed with reference to
InfState1 as (24b).

(24) a. λr:
[
x:Ind

]
. w(take′(r))

b. λr:
[
x:Ind

]
. InfoState1.DGB.Pending.sit-type.cont(take′(r))

We abbreviate (24b) as wt . We can compute a type for InfState2 as in (25).

(25) InfState2 : T1 ∧.DGB.Pending =


sit =u2:Sit

sit-type=

[
phon : who took

cont = wt : (
[
x:Ind

]
→WhPQ)

]
:RecType

:RecType


We use T2 to represent the type computed in (25). J opens the drawer and
sees the scissors there. This updates the type of the visual situation so that it
now requires the presence of scissors. This, in turn, implies that no one took the
scissors, and hence, given the existence of a resolving answer to the question,
the original motivation for asking it is eliminated. We can now compute a type
for the next information state in which the agenda is empty.

What we have sketched here is an approach to incrementality like that in
Milward and Cooper (1994) which is similar to that which can be taken in a cat-
egorial grammar framework such as CCG (Demberg, 2012). Another approach
to incrementality is to use something similar to charts in chart parsing, which
we sketch in the next section. We believe that, ultimately, the two approaches
need to be combined to provide a complete treatment of incremental semantics.

4.4 Pending and charts

Information included in the ‘Pending’-field of the dialogue gameboard includes
a type that represents the agent’s view of the ongoing parse as the utterance un-
folds. We call this type a chart-type because we appeal to a notion of chart pars-
ing for this purpose, though as will become clear our approach is compatible with
various other approaches for such representations, for instance Hough’s graph-
based representation (Hough, 2015) which synthesizes a graph-based Dynamic
Syntax view of parsing (Sato, 2011) with the Incremental Unit (IU) framework
of Schlangen and Skantze (2011) for incremental processing.

The type of Pending remains LocProp, as in (26). The issue that remains is
how to explicate Tchart in order to understand how incremental content arises.

11



(26)
[

sit = s

sit-type = Tchart

]

We present here the briefest sketch of chart parsing as it is used in com-
putational linguistics; for a recent textbook introduction to chart parsing see
Jurafsky and Martin (2009), Chap. 13, whereas for its implementation in TTR
see Cooper (2016). The idea of a chart is that it should store all the hypotheses
made during the processing of an utterance which in turn allow us to compute
new hypotheses to be added to the chart. Charts can be updated incrementally
for each word and they can represent several live possibilities in a single data
structure. We will say that a chart is a record and we will use our resources to
compute a chart type on the basis of utterance events.

4.5 Charts: a simplified example

Suppose that we have so far heard an utterance of the word who. At this point
we will say that the type of the chart is (27)

(27)

[
e1 : “who”
e :

[
e1:start(e1)

]
_
[
e1:end(e1)

] ]
The main event of the chart type (represented by the e-field) breaks the

phonological event of type “who” down into a string of two events, the start
and the end of the “who”-event.6 Thus (27) records that we have observed an
event of the phonological type “who” and an event consisting of the start of
that event followed by the end of that event. Given that we have the resource
LexWH(“who”) available which yields the sign type for an utterance of “who”,
we can update (27) to (28):

(28)


e1 : “who”

e2 : LexWH(“who”) ∧.
[
s-event:

[
e=e1:Phon

] ]
e :

[
e1:start(e1)
e2:start(e2)

]
_

[
e1:end(e1)
e2:end(e2)

]


That is, we add the information to the chart that there is an event (labelled
‘e2’) of the type which is the sign type corresponding to “who” and that the
event which is the speech event referred to in that sign type is the utterance
event, labelled by ‘e1’. Furthermore the duration of the event labelled ‘e2’ is the
same as that labelled ‘e1’.

The type LexWH(“who”) is a subtype of NP. Thus the event labelled ‘e2’
could be the first item in a string that would be appropriate for the function
which we have abbreviated as (29a), which has the type (29b).

(29) a. S −→ NP VP | NP ′(VP ′)

b. (NP_VP → Type)

6These starting and ending events correspond to what are standardly called vertices in the
chart parsing literature.

12



Cooper (2016) argues for an analogy between non-linguistic event prediction
and the prediction that occurs in parsing.7 So on observing a noun-phrase event
one can predict that it might be followed by a verb phrase event thus creating
a sentence event. We add a hypothesis event to our chart which takes place at
the end of the noun-phrase event as in (30).8

(30)



e1 : “who”

e2 : LexWH(“who”) ∧.
[
s-event:

[
e=e1:Phon

] ]
e3 :

rule=S −→ NP VP | NP ′(VP ′):(NP_VP → Type)
fnd=e2:Sign
req=VP :Type
e:required(req,rule)


e :

[
e1:start(e1)
e2:start(e2)

]
_

e1:end(e1)e2:end(e2)
e3:start(e3)

_end(e3)




In the e3-field the ‘rule’-field is for a syntactic rule, that is, a function from a

string of signs of a given type to a type. The ‘fnd’-field is for a sign or string of
signs so far found which match an initial segment of a string of the type required
by the rule. The ‘req’-field is the type of the remaining string required to satisfy
the rule as expressed in the ‘e’-field. This hypothesis event both starts and ends
at the end of the event of the noun-phrase event e2.

5 Incremental Dialogue Processing: principles
and examples

With a basic means of representing utterances in progress, we can now formulate
certain principles which will use to explicate several of the phenomena discussed
in section 2.

5.1 Utterance Projection

The first principle we introduce corresponds to the ‘stop option’ in our utterance
protocol (12b)—it says that if one projects that an utterance will continue in
a certain way, then one can actually use this prediction to update one’s DGB.
This is of course a dangerous principle to apply in an unconstrained fashion,
and would ideally be formulated using probabilities about the projection, for
instance using the framework of Cooper et al. (2015), though we do not do so
here. (31) is an update rule which moves a locutionary proposition from pending
to LatestMove. (r∗ represents the previous information state which is required
to be of the type labelled ‘preconds’.)

7Indeed he suggests that this might extend to non-linguistic event prediction among non-
humans, e.g., the prediction by a dog playing Fetch that it should run after a stick which is
held up.

8In terms of the traditional chart parsing terminology this corresponds to an active edge
involving a dotted rule. The fact that the addition of this type to the chart type is triggered
by finding something of an appropriate type to be the leftmost element in a string the would
be an appropriate argument to the rule corresponds to what is called a left-corner parsing
strategy.

13



(31) Utterance Projectionpreconds =

[
pending.sit : Sign

pending.sit-type.proj : Type

]
effects = TurnUnderspec ∧.

[
LatestMove = r∗ : LocProp

]


5.2 Forward-Looking Disfluencies

Forward-looking disfluencies are disfluencies where the moment of interruption
is followed not by an alteration, but just by a completion of the utterance which
is delayed by a filled or unfilled pause (hesitation) or a repetition of a previously
uttered part of the utterance (repetitions). As we mentioned with respect to
example (4) and in our discussion in section 4.1, we need a means of enabling
at any point in the speech stream the emergence of a question about what is
still to come in the current utterance. Forward Looking Disfluencies involve the
update rule in (32)—given a context where an initial segment of utterance by
A has taken place, the next speaker—underspecified between the current one
and the addressee—may address the issue of what A intended to say next by
providing a co-propositional utterance:

(32) Forward Looking Utterance Rule:

preconds =


spkr : Ind

addr : Ind

pending.sit-type :

[
fnd : Sign

req: Sign

]


effects = TurnUnderspec ∧.



MaxQud =q = λx:Ind . MeanNextUtt(r∗.spkr,r∗.fnd,x)

fec =
{} : InfoStruc

LatestMove : LocProp

c2: Copropositional(LatestMovecontent,MaxQud)




A consequence of (32), is that it offers the potential to explain cases like

(33). In the aftermath of a filled pause an issue along the lines of the one we
have posited as the effect of the conversational rule (32) actually gets uttered:

(33) a. Carol 133 Well it’s (pause) it’s (pause) er (pause) what’s his name?
Bernard Matthews’ turkey roast. (BNC, KBJ)

b. They’re pretty ... um, how can I describe the Finns? They’re quite an
unusual crowd actually.
http://www.guardian.co.uk/sport/2010/sep/10/small-talk-steve-backley-interview

On our account such utterances are licensed because these questions are co-
propositional with the issue ‘what did A mean to say after u0?’. This suggests
that a different range of such questions will occur depending on the identity
of (the syntactic/semantic type of) u0. This expectation is met, as discussed

14



in Tian et al. (2017), who also discuss cross-linguistic variation with SAQs in
English, Chinese, and Japanese.

6 Conclusions and further Work

That people process linguistic input incrementally is a widely shared view. But
does this mean that the “competence grammar” must be formulated in a way
that enables incremental (minimally word by word and even mid-word) semantic
composition to be effected? Various frameworks have responded affirmatively
to this question, but HPSG has over the years resisted such a conclusion, pre-
ferring to assume that incrementality is merely an aspect of performance. In
this paper we have reiterated the view that grammars should be viewed as sys-
tems that classify an utterance as it occurs in conversation, a view that has
recently been articulated in some detail (Ginzburg (2012), Ginzburg and Poesio
(2016), Kempson et al. (2016)). Once one examines ongoing conversational data
even in a fairly cursory fashion one discovers the pervasive nature of phenom-
ena whose analysis requires incremental semantic composition. In the paper we
sketch how this can be done in a way that allows one to utilize existing ‘non–
incremental’ grammars such as HPSG as long as they interface in a radical way
with the conversational context. This approach has parallels to Dynamic Syn-
tax (Kempson et al., 2001), and particularly recent dialogue-friendly versions
(Purver et al., 2011, Kempson et al., 2016), where the central idea is online,
incremental construction of meaning representations. However, the incremental
account presented here not only allows the representation of utterances, but the
internal state of a dialogue agent, including background beliefs and the events
in the situated context, to be updated online for entire interactions.

In a more detailed presentation we will present a small grammar/context
fragment. In future work we hope to investigate experimentally the processing
of data of the kind presented here.

References

Ades, Antony and Mark Steedman. 1982. On the order of words. Linguistics
and Philosophy 6:517–558.

Asher, Nicholas and Alex Lascarides. 2003. Logics of Conversation. Cambridge:
Cambridge University Press.

Barwise, Jon. 1989. The Situation in Logic. CSLI Lecture Notes. Stanford:
CSLI Publications.

Clark, Herbert. 1996. Using Language. Cambridge: Cambridge University Press.

Cooper, Robin. 2012. Type theory and semantics in flux. In R. Kempson,
N. Asher, and T. Fernando, eds., Handbook of the Philosophy of Science, vol.
14: Philosophy of Linguistics. Amsterdam: Elsevier.

15



Cooper, Robin. 2013. Update conditions and intensionality in a type-theoretic
approach to dialogue semantics. Proceedings of SemDial pages 15–24.

Cooper, Robin. 2016. Type theory and language: From perception to linguistic
communication. Book Draft.

Cooper, Robin, Simon Dobnik, Staffan Larsson, and Shalom Lappin. 2015.
Probabilistic type theory and natural language semantics. Linguistic Issues
in Language Technology 10.

Cooper, Robin and Jonathan Ginzburg. 2015. Type theory with records for
natural language semantics. In C. Fox and S. Lappin, eds., Handbook of
Contemporary Semantic Theory, second edition. Oxford: Blackwell.

Demberg, Vera. 2012. Incremental Derivations in CCG. pages 198–206.

Demberg, Vera, Frank Keller, and Alexander Koller. 2013. Incremental, pre-
dictive parsing with psycholinguistically motivated tree-adjoining grammar.
Computational Linguistics 39(4):1025–1066.

Fernández, Raquel. 2006. Non-Sentential Utterances in Dialogue: Classification,
Resolution and Use. Ph.D. thesis, King’s College, London.

Gardent, Claire and Michael Kohlhase. 1997. Computing parallelism in dis-
course. In IJCAI , pages 1016–1021.

Ginzburg, Jonathan. 1994. An update semantics for dialogue. In H. Bunt, ed.,
Proceedings of the 1st International Workshop on Computational Semantics.
Tilburg: ITK, Tilburg University.

Ginzburg, Jonathan. 2012. The Interactive Stance: Meaning for Conversation.
Oxford: Oxford University Press.

Ginzburg, Jonathan, Raquel Fernández, and David Schlangen. 2014. Disfluen-
cies as intra-utterance dialogue moves. Semantics and Pragmatics 7(9):1–64.

Ginzburg, Jonathan and Massimo Poesio. 2016. Grammar is a system that
characterizes talk in interaction. Frontiers in Psychology 7:1938.

Güngördü, Zelal. 1997. Incremental constraint-based parsing: An efficient ap-
proach for head-final languages .

Haugereid, Petter and Mathieu Morey. 2012. A left-branching grammar design
for incremental parsing. In Proceedings of the 19th international conference
on head-driven phrase structure grammar, chungnam national university dae-
jeon, pages 181–194.

Hough, Julian. 2015. Modelling Incremental Self-Repair Processing in Dialogue.
Ph.D. thesis, Queen Mary, University of London.

16



Hough, Julian, Casey Kennington, David Schlangen, and Jonathan Ginzburg.
2015. Incremental semantics for dialogue processing: Requirements, and a
comparison of two approaches. In Proceedings of the 11th International Con-
ference on Computational Semantics (IWCS).

Jurafsky, Daniel and James H. Martin. 2009. Speech and Language Processing .
New Jersey: Prentice Hall, 2nd edn.

Kempson, Ruth, Ronnie Cann, Eleni Gregoromichelaki, and Stergios Chatzikyr-
iakidis. 2016. Language as mechanisms for interaction. Theoretical Linguistics
42(3-4):203–276.

Kempson, Ruth, Wilfried Meyer-Viol, and Dov Gabbay. 2001. Dynamic Syntax:
The Flow of Language Understanding . Oxford: Blackwell.

Larsson, Staffan. 2002. Issue based Dialogue Management . Ph.D. thesis, Gothen-
burg University.

Levelt, Willem J. 1983. Monitoring and self-repair in speech. Cognition
14(4):41–104.

Milward, David. 1994. Dynamic dependency grammar. Linguistics and Philos-
ophy 17:561–405.

Milward, David and Robin Cooper. 1994. Incremental interpretation: applica-
tions, theory, and relationship to dynamic semantics. In Proceedings of the
15th conference on Computational linguistics-Volume 2 , pages 748–754. ACL.

Morrill, Glyn. 2000. Incremental processing and acceptability. Computational
Linguistics 26(3):319–338.

Poesio, Massimo and Hannes Rieser. 2010. (prolegomena to a theory of) com-
pletions, continuations, and coordination in dialogue. Dialogue and Discourse
1:1–89.

Pollard, Carl and Ivan A. Sag. 1994. Head Driven Phrase Structure Grammar .
Chicago: University of Chicago Press and CSLI.

Purver, M. 2006. Clarie: Handling clarification requests in a dialogue system.
Research on Language & Computation 4(2):259–288.

Purver, Matthew, Arash Eshghi, and Julian Hough. 2011. Incremental semantic
construction in a dialogue system. In J. Bos and S. Pulman, eds., Proceedings
of the 9th IWCS , pages 365–369. Oxford, UK.

Sag, Ivan A and Thomas Wasow. 2015. Flexible processing and the design of
grammar. Journal of psycholinguistic research 44(1):47–63.

Sato, Yo. 2011. Local ambiguity, search strategies and parsing in dynamic
syntax. The Dynamics of Lexical Interfaces pages 205–233.

17



Schlangen, David and Gabriel Skantze. 2011. A General, Abstract Model of
Incremental Dialogue Processing. Dialogue & Discourse 2(1):83–111.

Schlesewsky, M. and I. Bornkessel. 2004. On incremental interpretation: Degrees
of meaning accessed during sentence comprehension. Lingua 114(9).

Steedman, Mark. 1996. Surface Structure and Interpretation. Linguistic Inquiry
Monographs. Cambridge: MIT Press.

Tian, Ye, Takehiko Maruyama, and Jonathan Ginzburg. 2017. Self addressed
questions and filled pauses: A cross-linguistic investigation. Journal of psy-
cholinguistic research 46(4):905–922.

Vallduv̀ı, Enric. 2015. Information structure. In M. Aloni and P. Dekker, eds.,
The Cambridge Handbook of Semantics. Cambridge: Cambridge University
Press.

18


