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ABSTRACT

We present a multimodal coaching system that supports on-
line motor skill learning. In this domain, closed-loop inter-
action between the movements of the user and the action
instructions by the system is an essential requirement. To
achieve this, the actions of the user need to be measured and
evaluated and the system must be able to give corrective in-
structions on the ongoing performance. Timely delivery of
these instructions, particularly during execution of the mo-
tor skill by the user, is thus of the highest importance. Based
on the results of an empirical study on motor skill coaching,
we analyze the requirements for an interactive coaching sys-
tem and present an architecture that combines motion anal-
ysis, dialogue management, and virtual human animation in
a motion tracking and 3D virtual reality hardware setup. In
a preliminary study we demonstrate that the current sys-
tem is capable of delivering the closed-loop interaction that
is required in the motor skill learning domain.
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1. INTRODUCTION

Artificial coaching systems that support users doing sport
and exercise activities have been around for little over a
decade. Most of these have been motivational in nature:
some involving long-term motivation Human Robot Inter-
action [5] and others an artificial fitness instructor who gives
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instructions and encouragement within the course of a steady-
state exercise like cycling [8, 17] or running [3].

There has also been some work in systems that help users
improve specific bodily movements, facilitating motor skill
learning. While this has involved various types of auditory,
visual and haptic feedback to optimize the learning gain of
the user— see [14] for a review— little attention has been
payed to generating real-time instructions as the motor skill
is being attempted which uses comprehensive motion anal-
ysis, nor to the general verbal and gestural generation re-
quirements of multimodal virtual coaching agents who could
operate in such a domain with access to this detailed knowl-
edge.

In this paper we address this unique challenge for mo-
tor skill coaching by virtual agents, presenting a intelligent
coaching space environment capable of analysing a coachee’s
movement and a virtual coach character that can generate
appropriate instructions as the motor skill is performed. The
paper is organized as follows: In Section 2 we describe the
behavioural and processing requirements of a virtual coach
based on our findings from human-human motor skill coach-
ing interactions. In Section 3 we present the hardware and
software architecture of our system. Section 4 describes an
experiment we carry out addressing different types of in-
struction giving. The results of the experiment are presented
and discussed in Section 5 and we conclude and present an
outlook in Section 6.

2. REAL-TIME COACHING BEHAVIOUR
IN MOTOR SKILL LEARNING

In the real-world domain of motor skill learning, human
coaches exhibit unique online behaviours which present in-
teresting requirements for a virtual coach. In Figure 2 we
show a typical interaction found in a corpus study on a
human-human coaching scenario wherein a coach trains a
coachee to improve their ability at bodyweight squats (those
without a weight or barbell)— full details of the study are re-
ported in [6]. Here, we see a coach instructing on the stance
width of the squat’s preparation phase. In this interaction,
the coach first places himself in parallel with the coachee,
introducing the element of the skill they should carry out
next in (A). He then demonstrates and describes the skill
for the coachee in (B) and uses multimodal instructions (de-
ictic gesture and speech) to communicate the desired stance
width in (C). In (D), the coach repairs the coachee’s stance
width and instructs her to adjust her foot position with ‘a
bit closer together’ until he is satisfied.

While giving feedback after a coachee skill attempt, or
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Figure 1: The critical timing of an adjust act by a human coach

even after a series of them, can be an effective strategy for
skill improvement — see [14] — we see evidence for the reg-
ular need for these kinds of online incremental instructions
in our corpus. We tagged each of the coach’s utterances
for a specialized coaching dialogue act and find that nearly
10% of them consist of these adjust acts. These are partic-
ularly challenging because of their time-critical nature— see
Figure 1 for the temporal representation of a different adjust
act where the coach, constantly monitoring the coachee’s ac-
tion, keeps incrementing his contribution with the adjunc-
tive phrase ‘a bit further’ until the coachee has achieved
the desired foot stance. Aside from adjustment cases, the
interaction between coach and coachee actions is generally
time-critical. We find the mean interval from the end of the
instruction to the start of the skill attempt was negative for
reactions to instructions for the going down phase of the
squat at -0.274s (st.d.=1.204) and even more so for the go-
ing up phase at -0.410s (st.d.=0.510), meaning on average
coachees were moving well before the end of the utterance.
Coachees can take initiative and predict instruction comple-
tions easily, just as fine-grained initiative and prediction is
common in other situated domains.

We assume the coach is attempting to induce in the coachee
a motor program schema [13], and evidence as to whether
the coachee has learned it or not is observed through their
demonstration of the desired outcomes. As a squat has no
easily tangible notion of success, particularly for novices, it
is crucial that feedback on successful learning be relayed to
the coachee to ground the fact it was successful. It is clear
that a mixture of offline and online instructions for teaching
a motor program schema can be used effectively, and the on-
line instructions provide a particular challenge for a virtual
coach.

2.1 Requirements for a virtual motor skill
coaching system

Based on the evidence from real coaching interaction, sev-
eral requirements for a realistic motor skill coaching agent
become evident:

e Inherently multimodal in both directions— both in the
understanding of user’s movements and in generation
via physical demonstration by the virtual coach. Mo-
tor skill acquisition requires detailed monitoring of the
user’s movements, and also requires demonstration of
the skill [4]. The Virtual Agents community takes mul-
timodal generation as a given [10] , however systems
involving learning gain for a motor skill largely rely on
providing disembodied feedback [14].

e Detailed sports and movement science informed online
movement analysis in the visual processing pipeline.
The goal of the system is to reduce the difference be-
tween the observed action and the desired action, so
the error analysis should be paramaterised by a user’s
potential.
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Figure 2: A typical coaching interaction. After the
coach introduces a skill phase multimodally in A-
C, in D he repairs the coachee’s skill attempt and
adjusts her stance until satisfied.

e Motivational and relevant feedback generation to max-
imise the learning gain and naturalness of the coach.

e Tightly connected low latency and incremental pro-
cessing components from input to output to move to-
wards a closed-loop system. Most coaching systems
only offer advice and motivation after the user’s skill
attempt, however we require this to be online and dur-
ing the exercise to simulate a human coach’s behaviour
as described above. The low latency is in fact vital if
the coach is to instruct on and correct a problematic
phase of the skill at the relevant time.

It is the last requirement that we focus on in detail in this
paper, whilst the others are made possible by our architec-
ture as we will explain. Low latency and incrementality in
understanding and generation is key to a motor skill coach,
as the closed-loop between perceiving user actions and gen-
erating feedback is essential. If there is any latency in an
online instruction, this may be interpreted by the coachee as
referring to a different part of the movement than intended.
Low latency incremental versions of interactive systems have
been shown to be preferred to their non-incremental coun-
terparts in simple domains [1, 15], and we use the insight
that incremental systems allow fast and responsive behavior
[12, 10] as a point of departure for our architecture.



3. INTELLIGENT COACHING SPACE

We now describe the components that make up our in-
telligent coaching space. The hardware system consists of
a CAVE environment and a motion capture system; the
software components are composed of a rendering engine,
motion analysis and dialogue system— see Figure 3 for an
overview.

Here the hardware and render engine (Section 3.1), under-
standing (Section 3.2) and decision making and realization
components of the virtual coach character (Section 3.3) are
explained in detail. A more extensive description together
with a technical evaluation of latencies of the core system
can be found in [20].

3.1 CAVE and Graphics Environment

The virtual coaching space is located inside a two-sided
CAVE (L-Shape, 3m x 2.3m for each side) with a resolution
of 2100 x 1600 pixels per side.

Our Render Engine runs on a single computer equipped
with two NVIDIA Quadro K5000 graphics cards. Rendering
runs at approximately 60 fps supporting high quality char-
acter rendering, shadows and post-processing and fulfills our
low latency requirements.

In the virtual coaching space the user, equipped with pas-
sive 3D goggles, is located inside a virtual fitness room, and
following the motivation for enhanced learning in [2], they
stand in front of a wirtual mirror. The system maps the
user’s motion in real time onto an avatar to effect a virtual
reflection. The virtual coach is rendered adjacent to the
mirror. The virtual world, modulo the coach is capable of
providing visual feedback on motor skill performance in two
ways: users are able to observe their own movements inside
the virtual mirror; and the tint of the mirror adapts depend-
ing on the observed performance. In our initial setup, feed-
back was also provided by a summary of the performance as
text overlay inside the virtual world.

In the current setup, in line with our motivation of real-
istic and interactive virtual coaching, information on motor
performance is presented using spoken feedback uttered by
the virtual coach. Additionally, the mirror flashes for a short
time interval to inform users about the successful recognition
of a squat.

3.2 Motion Capture and Analysis

The CAVE is equipped with a 10 camera Prime 13W Op-
tiTrack motion capture system. The Motion Tracker uses
information obtained from passive markers attached to a
motion capture suit to calculate 20 joint angles / positions
of the user. This data is passed on to the Render Engine to
display the user in the Virtual Mirror.

3.2.1 Motor Performance Analysis

We represent movements as a sequence of feature vectors.
This sequence consist of motor actions (e.g. squats) which
are connected by arbitrary transition movements. Motor ac-
tions are a sequence of Movement Primitives (MPs). A MP
describes a homogeneous part of a more complex movement
[21]. The real time analysis system first segments the move-
ment and thus determines which MP the coachee currently
performs. Then, it determines the current quality of motor
performance. We describe the system in detail in [7].

For each motor action, it is specified which features (e.g. joint

angles) are relevant for the definition of the action and its

MPs. For the squat, these are mainly the joints of the lower
body. Then key-postures for the MPs are defined.

Motion segmentation works via using a state machine:
Each motor action and its MPs are represented as states.
As soon as a posture similar enough — reaching a given
threshold — to the first key posture of the first MP of a
motor action is detected, the analyzer switches its state. If
the next posture is still valid for the current state it remains
there. If the posture belongs to the first key posture of the
next MP, it switches its state to the second MP. Otherwise,
it assumes that the motor action has been aborted and re-
turns to the idle state. The state of the motion analyzer
thus reflects the current motor action and the current MP.

After determining the current action and current MP, the
quality of the movement has to be assessed. For our appli-
cation, a detection of performance errors via just comparing
the performed MP to an optimal performance is not suffi-
cient: this would lead to single performance values which
just describe the overall deviation to the norm. Indeed,
we are interested in providing advice on how to correct the
movement. For example, to prevent the user from incor-
rectly distributing the weight, an appropriate feedback is to
instruct the user to move their buttocks back. Thus, we
would like to make use of a grounded specification of pos-
sible error patterns directly connected to the implications
they have for the overall movement, and provide strategies
to prevent the error. Hence, we make use of Prototypical
Style Patterns (PSPs) described in [7]: A PSP describes
movement styles considered as erroneous and is defined by
at least one rule. Each rule returns a quantitative error value
for the incoming motion. For each motor action — the squat
in our case — a list of PSPs is identified. For our feedback
system, we define two types of rules:

Type 1 This rule becomes active (returns a value greater
zero) as soon as a given condition is violated (e.g. the
bending of the neck during a squat performance ex-

ceeds a given interval).
Type 2 This rule stays active as long as a given condition

is not satisfied (e.g. the user does not go down deep
enough during the whole squat).

The following PSPs for non-optimal performances in the
motor skill during squats are detected and later connected
to verbal feedback:

Not deep enough (Type 2) The goal is to achieve an an-
gle of 100 degrees in the thigh position compared to
the user’s rest pose. This pattern is active until the
user reaches the target joint angle. The return value
quantifies the minimal deviation to the 100 degrees,
the coachee reached during the squat.

Too much strain on knees (Type 1) One indicator for
this error is that the knees are in front of the toes.
This error can also be detected via observing the an-
gle of the shin or the ankle. The PSP returns the
largest deviation to the allowed posture the coachee

performed during the squat.

Neck not straight (Type 1) The angle of the skull-base
and the angle at cervical vertebra 7 are important to
detect this pattern: If their angle gets too large, the
pattern is activated and the largest deviation to the
allowed interval of the joints is returned.

All analysis results are transferred to the coaching system

(see Section 3.3) in real time at a frequency of around 120
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Hz, allowing the coach to start planning actions before they
need to be realized in accordance with our incremental pro-
cessing requirement as will be explained. Our approach to
the online motor performance analysis allows a fast detec-
tion (approx. lms for our list of PSPs) and does not need
large amounts of annotated training data.

3.2.2 Pilot Usability Evaluation

To investigate the usability of the core components in a
pilot study, we developed a simple coaching application that
offered squat training by exploration: The correct movement
was shown to a trainee, who also received additional infor-
mation such as which parts of the movement are of special
importance (e.g. “Make sure to keep your neck straight”).
The actual training took place in the above described vir-
tual world, but without the virtual coach. Participants were
instructed to perform squats in six sets with a break in be-
tween. The mirror showed a red tint until the trainee suc-
ceeded in performing a correct squat. To depict the detec-
tion of a squat, the mirror flashed yellow. If a PSP was been
detected, one keyword for the specific pattern which had
been explained to the participant beforehand (e.g.“neck”)
was displayed next to the mirror directly after the perfor-
mance. After the performance of a correct squat, the mirror
changed its color to green. Each set ended as soon as a squat
had been performed correctly according to the given rules
or as soon as a given time limit had been reached.

Among others, simulator sickness (using the questionnaire
by Kennedy et al. [9]) and presence (using a modified ver-
sion of the Slater, Usoh, Steed questionnaire (SUS) [16])
were measured. 22 participants took part in the experi-
ment, which took 5-6 minutes each. No increase of simulator
sickness was reported. The results for presence were at an
intermediate level (M = 3.1, SD = 1.5 on a scale from 0 to
6). The relatively low mean may have been due to the fact
that this preliminary study used only visual feedback and a
very simple virtual environment.
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In terms of learning gain, for PSP not deep enough, par-
ticipants were able to reduce the number of necessary squats
to produce a correct performance significantly over the sets
(Mset1 = 1.8, Mgera = 0.6, p<0.005). For all other PSPs,
participants did not learn to improve their performance.

These results suggest that the virtual environment is tech-
nically sound for measuring error analysis, however the feed-
back was somewhat static, and not conducive to good inter-
action or enhancement of skill. In line with our motivation
from human coaching set out in Section 2, in our next de-
velopment phase we introduce our virtual coach character
into the coaching space to deliver more natural, human-like
instructions during and after the performance of user motor
skill attempts. The architecture which enables the virtual
coach to deliver these instructions is explained in the follow-
ing sections.

3.3 Virtual Coach

Our virtual coach aims to bring incremental situated coach-
ing to our intelligent coaching space hitherto described.

The software architecture of the Virtual Coach consists
of three main components: The Coaching Strategy Man-
ager (CSM) which is responsible for the general structure
of the coaching session, Action Patterns which generate the
behaviour to realize the plans the CSM decides upon, and
finally the Realizer which transfers the behaviour to the Ren-
der Engine. In the following sections these components will
be explained in more detail.

3.3.1 Coaching Strategy Manager

The Coaching Strategy Manager (CSM) is responsible for
making decisions about the overall structure of the interac-
tion. It keeps track of the long term goal of teaching the
motor skill and selects the next coaching action that maxi-
mizes its utility for achieving it. It is currently implemented
as a finite state machine making decisions based on an in-
formation state. This information state is updated by pro-



cessing the incoming user input, in this case the output of
the Motion Analyzer, and also feedback from the Realizer
which informs the Coaching Strategy Manager on the status
of its own behaviour.

The information state keeps track of how many squats
have been performed by the user in the current interaction,
the errors made during each squat and which phase of the
squat the user is currently in.! The CSM makes a decision
each time a new phase of the squat is detected by the Motion
Analyzer or it has completed its previous coaching action.

3.3.2 Action Patterns for Behaviour Generation

For many actions a decision update rate of once every
squat phase or every completed coaching action is too infre-
quent to comply with the incremental system requirements
expressed in Section 2. To address this problem we intro-
duce the concept of Action Patterns.

Action Patterns are dynamic software modules that can
be created, activated and/or stopped at run time. All Ac-
tion Patterns are their own decision makers within their own
expertise that are free to generate behaviour fitting the con-
straints from earlier decision makers, typically the Coaching
Strategy Manager (CSM).

Each Action Pattern can create its own information flow
links to all other parts of our system. For instance, the In-
cremental Instruction pattern directly listens to the out-
put of the Motion Analyzer, bypassing the CSM (see Sec-
tion 4.1.1 for more details). Note that it can still be deacti-
vated by the CSM if it decides on another action.

All Action Patterns are available to the Action Pattern
Manager. This manager keeps track of which Action Pat-
terns are currently active and has the power to start and
stop them if needed. Action Patterns produce behaviours
described in the Behaviour Markup Language (BML) [19].

In the current system each coaching act is implemented as
its own Action Pattern. Greeting, Introduction and Closing
are lexicon-based Action Patterns where behaviour is hard-
coded. The different Action Patterns for Instruction are
explained in more detail in Section 4.1.

3.3.3 Behaviour Planning and Realization

The BML blocks produced by Action Patterns are col-
lected by the Behaviour Planner. This Behaviour Planner
resolves potential conflicts between BML blocks produced by
Action Patterns active in parallel, e.g. if two BML blocks
want to use a certain body part of the coach at the same
time. Currently our system is not rich enough such that
many conflicts occur, and we simply delay BML blocks that
cause conflicts, however we intend to increase the demand on
the behaviour planner in future development in this regard.

The BML blocks are then realized by the AsapRealizer [18].

It transforms the BML blocks into joint rotations and blend
shapes which are passed on to the renderer, resulting in an-
imation of the virtual coach character. The coach’s speech
is synthesized using the CereVoice Engine Text-to-Speech
system (voice Nathan).

4. EXPERIMENT

In our corpus analysis we observed two instruction strate-
gies from the coach which differ in timing: coaches giving

IThe squat is separated into a preparation phase (assuming
the starting position), stroke (going down), strokehold (in
the lowest position) and retraction phase (coming up).
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their instructions either between squats (sequential instruc-
tions) or during squats (incremental instructions) depend-
ing on the situation. Sequential instructions between squats
allow for more elaboration, while incremental instructions
allow for precise timing information. In an experiment we
explore these instruction types to test whether our archi-
tecture can deliver both types successfully and also to gain
insight into the user experience of each instruction type both
subjectively and in terms of objective learning gain.

4.1 Instructions

Here we address three squat PSPs: too much strain on
knees, not deep enough and neck not straight errors (see
Section 3.2.1) and the virtual coach addresses these errors
using two types of instruction: incremental — the instruc-
tions are vocalized during the squat — and sequential — the
instructions are vocalized between squats. We now briefly
detail the interactive effect of these instructions on users
and how they are realized in our architecture.

4.1.1 Incremental Instructions

In the incremental instructions setting the virtual coach
gives its instructions while the participant is doing the stroke
(downward phase) of the squat. The instructions given are
short, but occur as soon as the coach becomes aware of the
error and has time to produce the instruction. These in-
structions were generated by an Action Pattern that takes
as input the output of the Motion Analyzer at 120 Hz — to
detect errors — and the BML feedback from the Realizer — to
know when a previous instruction is finished. Instructions
were pre-planned [11], meaning that all possible instructions
are already submitted to the Realizer in order to pre-process
the text-to-speech. They would start playing once an acti-
vation signal has been sent to the Realizer.

When no errors occurred the coach would say the follow-
ing default instructions: “Deeper. Go on. A bit more. A
bit more...”. It would do so until the PSP not deep enough
was no longer present. It would then interrupt this sequence
by saying “Stop” as soon as possible, interrupting ongoing
instructions. If one of the other two errors are detected it
would selected that instruction over one of the default in-
structions, where too much strain on knees — instructed
by saying “Hips back more” — had priority over neck not
straight — “Watch your neck”, a priority observed in our
corpus analysis.

Figure 4 shows an example of the incremental instruc-
tions. At time point 1 the squat exercise is first detected by
the motion analyzer. At that time not deep enough is the
only error that is detected, so the action pattern vocalizes
an instruction to correct this error, in this case “Deeper”.
When the coach is finished uttering the instruction and a
minimum of 200 ms has passed the next instruction is vo-
calized (time point 2). At time point 3 the error neck not
straight is detected. Note that this error is not vocalized
until time point 4, after the previous instruction is finished
and a minimum amount of silence between instructions has
passed. In response to the instruction, the user corrected the
neck error (see the adjusted neck angle in skeleton 5), so at
time point 5 the coach continues encouraging the coachee to
go deeper. At time point 6 the desired deepness of the squat
is reached and “Stop” is uttered. Note that this interrupts
the ongoing adjust instruction “A bit more”.

After each squat the system would ask for another slow
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Figure 4: Incremental instructions generated by the virtual coach in response to a user’s squat. As soon as a
squat is detected (Time point 1) the coach utters instructions to correct the errors detected. Note how the
user adjusts the neck angle in response to the instruction “Watch your neck”. As soon as the stroke of the
squat is completed (Time point 6) the “Stop” instruction interrupts any ongoing instructions.

squat by saying “Okay. Give me another slow one.” We ask
for a slow squat in this configuration to allow the system
to express more instructions. A regular squat only provides
enough time to say “Deeper” and “Stop”.

4.1.2 Sequential Instructions

In the sequential instructions configuration the virtual
coach gives its instructions after the participant completes
the entire squat. These instructions were more verbose than
the incremental instructions and were generated by an Ac-
tion Pattern that takes as input from the Coaching Strategy
Manager a summary of the squat, indicating which errors
occurred in which phases. If errors occurred in the squat
the coach would say between squats: “Okay. Give me one
more, but this time (keep your neck straight / push your
hips back more / go a bit deeper)?” or say: “Perfect. Give
me one more like that” when no errors occurred.

4.2 Participants and Procedure

Our experiment had 16 participants (9 female, 7 male,
age 20-45, mean 26). Participants were recruited through
university wide advertisement and were paid 8 Euros or
awarded course credit for their time. All but one had done
squats before, 7 reported doing squats at least once a week.

After a brief welcome the participants read an explanation
of the study and signed a consent form for the data record-
ings. Then the participant put on the motion capturing suit
and tracking markers were attached. When the participants
first entered the CAVE a calibration session followed to en-
sure that all the markers were in place and the tracking was
correctly configured. The participants were briefed again
about the interactions that would follow.

The participants interacted twice with our virtual coach-
ing system, each time with a different instructions configu-
ration. In each interaction the system would ask for a squat

2 All three or only a subset were generated depending on the
errors in the squat.
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20 times. The coach gives (incremental or sequential) in-
structions on each uneven squat. The even squats are used
to measure the performance. Between the two sessions the
participants were allowed to take a break as long as they
needed. The order of the experimental conditions was bal-
anced between subjects.

After the two interactions with the system a questionnaire
(see 4.3) was filled out. In total the experiment lasted be-
tween 30 and 45 minutes, depending on calibration time.

4.3 Measures

The questionnaire included items about demographics (gen-
der, age), sport and squat experience (3 items) and 10 items
asking to compare the two interactions in terms of several
adjectives. These items were 7-point Likert scale items with
the low end being instruction DURING squats and the high
end instruction AFTER squats. A value of 4 indicates no
difference. The 10 adjectival properties used were: helpful,
responsive, human-like, friendly, polite, efficient, clear, in-
telligent, tiring and preferred. This list was inspired by the
questionnaire used by Skantze and Hjalmarsson [15]. Finally
there was an open feedback field where they could share their
thoughts and remarks about the experiment.

We also measured performance of the squats with the mo-
tion analysis explained in Section 3.2.1 applied. For each
PSP, one overall performance value was obtained, where
a smaller value indicates a better performance. This was
done for the PSPs too much strain on knees, not deep
enough and neck not straight.

S. RESULTS AND DISCUSSION

5.1 Performance

In order to find out whether the instructions of our coach-
ing system resulted in learning gain, for each PSP we inves-
tigate whether the error was corrected in subsequent squat
or severance of the violation decreased.
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Only three participants performed PSP not deep enough
during squats (two in the sequential instructions condition,
one during the incremental instructions). All of them were
able to correct the error in the subsequent squats. Here,
the feedback was quite detailed, combined with a precise
instruction (“Go a bit deeper” or a clear “Stop”) thus, all
were able to fix the error.

Too much strain on the knees was performed by many
of the participants and most were unable to fix it. For the
incremental instructions, most participants did not leave
the coach enough time for expressing the relevant instruc-
tion, forcing the coach to generate “Stop” when the desired
angle for the PSP not deep enough was reached. For the
sequential instructions, some participants were able to im-
prove their performance. Figure 5 shows the development
of the maximum error value of the squats of one participant
who nearly managed to fix PSP too much strain on the
knees by the end of the session. Some of the participants
started reducing the error, but at some point the results
became worse again (see Figure 6). Some participants com-
plained that they were not informed about getting better,
and thus lost motivation to try and improve.

For neck not straight we also observed no learning gain.
Participants were aware of the error and tried to fix it (see
Figure 4 for on example in the incremental instructions
configuration). However, the provided instruction was not
detailed enough. Since no information was provided on
whether the neck was over- or under-stretched, participants
where unsure on how to fix the error.

In summary, while promising, the formulation of the in-
structions should be improved significantly to result in guar-
anteed learning gain. We need to give more detailed instruc-
tions to help users identify their errors and improve their
motor program schema.

Another issue was that we tried to address three errors
simultaneously. Especially in the incremental instructions
configuration, this led to incomplete, insufficiently precise
instructions given the time constraints of the condition (2-3
seconds for an average squat time).

5.2 Questionnaire

Table 1 presents the results of the questionnaire. The
7-point Likert scale values were condensed to preference for
incremental (values 1-3), no difference (value 4) and sequen-
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learning, assumed due to exhaustion and lacking
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Preference for

Incr. No Diff Seq. wu(o)
Helpful 9 3 4 3.38 (1.54)
Responsive 8 3 5 3.31 (1.92)
Humanlike 8 4 4 3.38 (1.70)
Friendly 4 6 6 4.19 (1.62)
Polite 4 6 6 4.38 (1.62)
Efficient 6 4 6 3.75 (1.93)
Clear 8 4 4 3.31(1.82)
Intelligent 8 7 1 2.94 (1.50)
Tiring 9 3 4 3.43(2.16)
Preference 7 2 7 3.94 (2.45)

Table 1: Results of the questionnaire.

tial (values 5-7) (columns 2-4). The mean and standard
deviation values are presented in the final column.

The incremental instructions were found to be signifi-
cantly more Intelligent (B(9,0.5),p < 0.05). More partic-
ipants also found that configuration more Helpful, Respon-
sive, Humanlike and Clear. Most also found the incremental
instructions more Tiring. We attribute this to the fact that
the system asked for slower squats. The overall Preference
was polarizing, half of them preferred incremental instruc-
tion, while the other half preferred sequential instructions.
9 out of 14 also chose the most extreme value (1 or 7) to
express this preference.

6. CONCLUSION AND FUTURE WORK

In this paper we have introduced the challenging domain
of motor skill learning through the results of an empirical
study and have presented a hard- and software architecture
capable of creating the closed-loop interaction that the do-
main requires.

The system architecture was evaluated by users interact-
ing with two different configurations of the system teaching
the motor skill squats. The system gave incremental in-
structions on how to improve during the squat or sequential
instructions after the squat.

The instructions are not yet accurate or clear enough to
result in learning gain for the more complex error patterns.
For not deep enough both the sequential and incremental
instructions were effective in correcting the rare occurrences
of the error pattern. For neck not straight and too much



strain on knees the incremental instructions provided tim-
ing information on when the errors occurred, however with-
out clear directive instructions on how to correct the error
pattern, learning proved difficult. This was also the case in
the sequential instructions.

Despite the mixed results in terms of learning gain, from
a technical viewpoint the interactions were satisfactory, and
we fulfill our desiderata of online movement analysis, incre-
mentality and multimodality. The incremental instructions
were delivered in a timely manner, such that corrections
could be made during skill execution (see neck adjustment
between skeleton 4 and 5 in Figure 4), an ability which was
a likely factor in leading participants to perceive the incre-
mental instruction setting as more intelligent. In future work
we will explore more complex generation strategies, includ-
ing the effect of our coach demonstrating a skill, to move
towards truly interactive multimodal strategies for artificial
coaching.
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