Relational schema for SQL queries

EMPLOYEE (FNAME, MINIT, LNAME, SSN, BDATE, ADDRESS, SEX, SALARY, #SUPERSSN, #DNO)

DEPARTMENT (DNAME, DNUMBER, #MGRSSN, MGRSTARTDATE)

DEPT_LOCATIONS (#DNUMBER, DLOCATION)

PROJECT (PNAME, PNUMBER, PLOCATION, #DNUM)

WORKS_ON (#ESSN, #PNO, HOURS)

DEPENDENT (#ESSN, DEPENDENT_NAME, SEX, BDATE, RELATIONSHIP)
SQL queries

Query 0
Retrieve the birthdate and address of the employee(s) whose name is ‘John B Smith’

```sql
SELECT BDATE, ADDRESS
FROM EMPLOYEE
WHERE FNAME = 'John' AND MINIT = 'B' AND LNAME = 'Smith';
```

Query 1
Retrieve the name and address of all employees who work for the ‘Research’ department

```sql
SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME = 'Research' AND DNUMBER = DNO;
```

Query 1A
Ambiguous attribute names

```sql
SELECT FNAME, EMPLOYEE.NAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT.NAME = 'Research' AND DEPARTMENT.DNUMBER = EMPLOYEE.DNUMBER;
```

Query 1B
Aliasing

```sql
SELECT E.FNAME, E.NAME, E.ADDRESS
FROM EMPLOYEE E, DEPARTMENT D
WHERE D.NAME = 'Research' AND D.DNUMBER = E.DNUMBER;
```

Query 1C
Retrieve all the attribute values of EMPLOYEE tuples who work in department number 5

```sql
SELECT *
FROM EMPLOYEE
WHERE DNO = 5;
```

Query 1D
Retrieve all the attributes of an EMPLOYEE and the attributes of the DEPARTMENT he or she works in for every employee of the ‘Research’ department

```sql
SELECT *
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME = 'Research' AND DNO = DNUMBER;
```

Query 2
For every project located in ‘Stafford’, list the project number, the controlling department number and the department manager’s last name, address and birthdate

```sql
SELECT PNUMBER, DNUM, LNAME, ADDRESS, BDATE
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM = DNUMBER AND MGRSSN = SSN AND PLOCATION = 'Stafford';
```
Query 3
Retrieve the name of each employee who works on all the projects controlled by department number 5.

```sql
SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE (
    SELECT PNO
    FROM WORKS_ON
    WHERE SSN = ESSN
) CONTAINS
    (SELECT PNUMBER
     FROM PROJECT
     WHERE DNUM = 5);
```

Query 3A
Reformulation of query 3.

```sql
SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE NOT EXISTS
    (SELECT PNUMBER
     FROM PROJECT
     WHERE DNUM = 5)
    EXCEPT
    (SELECT PNO
     FROM WORKS_ON
     WHERE SSN = ESSN);
```

Query 3B
Reformulation of query 3 using two-level nesting.

```sql
SELECT LNAME, FNAME
FROM EMPLOYEE
WHERE NOT EXISTS
    (SELECT *
     FROM WORKS_ON B
     WHERE B.PNO IN
         (SELECT PNUMBER
          FROM PROJECT
          WHERE DNUM = 5)
    )
    AND
    NOT EXISTS
    (SELECT *
     FROM WORKS_ON C
     WHERE C.ESSN = SSN
     AND
     C.PNO = B.PNO));
```
Query 4

Make a list of project numbers for projects that involve an employee whose last name is ‘Smith’, either as a worker or as a manager of the department that controls the project

(SELECT DISTINCT PNUMBER
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM = DNUMBER AND MGRSSN = SSN AND LNAME = ‘Smith’)

UNION

(SELECT DISTINCT PNUMBER
FROM PROJECT, WORKS_ON, EMPLOYEE
WHERE PNUMBER = PNO AND ESSN = SSN AND LNAME = ‘Smith’);

Query 4A

Reformulation of query 4 using nested queries

SELECT DISTINCT PNUMBER
FROM PROJECT
WHERE PNUMBER IN (SELECT PNUMBER
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM = DNUMBER AND MGRSSN = SSN AND LNAME = ‘Smith’)

OR

PNUMBER IN (SELECT PNO
FROM WORKS_ON, EMPLOYEE
WHERE ESSN = SSN AND LNAME = ‘Smith’);

Query 5

Retrieve the names of all employees who have two or more dependents

SELECT LNAME, FNAME
FROM EMPLOYEE
WHERE (SELECT COUNT (*)
FROM DEPENDENT
WHERE SSN = ESSN) >= 2;

Query 6

Retrieve the names of employees who have no dependents

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE NOT EXISTS (SELECT *
FROM DEPENDENT
WHERE SSN = ESSN);
Query 7
List the names of managers who have at least one dependent

```
SELECT  FNAME, LNAME
FROM    EMPLOYEE
WHERE   EXISTS (SELECT * 
               FROM    DEPENDENT 
               WHERE   SSN = ESSN)
AND     EXISTS (SELECT * 
               FROM    DEPARTMENT 
               WHERE   SSN = MGRSSN);
```

Query 8
For each employee, retrieve the employee’s first and last name, and the first and last name of his or her immediate supervisor.

```
SELECT  E.FNAME, E.LNAME, S.FNAME, S.LNAME
FROM    EMPLOYEE AS E, EMPLOYEE AS S 
WHERE   E.SUPERSSN = S.SSN;
```

Query 8A
Reformulation of query 8 to retrieve the last name of each employee and his or her supervisor, while renaming the resulting attribute names as EMPLOYEE_NAME and SUPERVISOR_NAME

```
SELECT  E.LNAME AS EMPLOYEE_NAME, S.LNAME AS SUPERVISOR_NAME
FROM    EMPLOYEE AS E, EMPLOYEE AS S 
WHERE   E.SUPERSSN = S.SSN;
```

Query 9
Select all EMPLOYEE SSNs in the database

```
SELECT  SSN
FROM    EMPLOYEE;
```

Query 10
Select all combination of EMPLOYEE SSN and DEPARTMENT DNAME in the database

```
SELECT  SSN, DNAME 
FROM    EMPLOYEE, DEPARTMENT;
```

Query 10A
Select the CROSS PRODUCT of the EMPLOYEE and DEPARTMENT relations

```
SELECT  * 
FROM    EMPLOYEE, DEPARTMENT;
```

Query 11
Retrieve the salary of every employee

```
SELECT ALL  SALARY
FROM    EMPLOYEE;
```
Query 11A
Retrieve all distinct salary values

SELECT DISTINCT SALARY
FROM EMPLOYEE;

Query 12
Retrieve all employees whose address is in Houston, Texas

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE ADDRESS LIKE '%Houston,TX%';

Query 12A
Find all employees who were born during the 1950s

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE BDATE LIKE '_ _ _ _ _ _ _ 70';

Query 13
Show the resulting salaries if every employee working on the ‘ProductX’ project is given a 10 percent raise

SELECT FNAME, LNAME, 1.1*SALARY
FROM EMPLOYEE, WORKS_ON, PROJECT
WHERE SSN = ESSN AND PNO = PNUMBER AND PNAME = 'ProductX';

Query 14
Retrieve all employees in department 5 whose salary is between £30,000 and £40,000

SELECT *
FROM EMPLOYEE
WHERE (SALARY BETWEEN 30000 AND 40000) AND DNO = 5;

Query 15
Retrieve a list of employees and the projects they are working on, ordered by department and, within each department, ordered alphabetically by last name, first name

SELECT DNAME, LNAME, FNAME, PNAME
FROM DEPARTMENT, EMPLOYEE, WORKS_ON, PROJECT
WHERE DNUMBER = DNO AND SSN = ESSN AND PNO = PNUMBER
ORDER BY DNAME DESC, LNAME ASC, FNAME ASC;

Query 16
Retrieve the name of each employee who has a dependent with the same first name and same sex as the employee

SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E
WHERE E.SSN IN (SELECT ESSN
FROM DEPENDENT
WHERE E.FNAME = DEPENDENT_NAME AND E.SEX = SEX);
Query 16A
Reformulation of query 16 as single block query

SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E, DEPENDENT AS D
WHERE E.SSN = D.ESSN AND E.SEX = D.SEX AND E.FNAME = D.DEPENDENT_NAME;

Query 16B
Reformulation of query 16 using EXISTS

SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E
WHERE EXISTS (SELECT *
 FROM DEPENDENT
 WHERE E.SSN = ESSN AND E.SEX = SEX AND E.FNAME = DEPENDENT_NAME);

Query 17
Retrieve the social security numbers of all employees who work on project number 1, 2 or 3

SELECT DISTINCT ESSN
FROM WORKS_ON
WHERE PNO IN (1,2,3);

Query 18
Retrieve the names of all employees who do not have supervisors

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE SUPERSSN IS NULL;

Query 19
Find the sum of the salaries of all employees, the maximum salary, the minimum salary, and the average salary

SELECT SUM (SALARY), MAX (SALARY), MIN (SALARY), AVG (SALARY)
FROM EMPLOYEE;

Query 20
Find the sum of the salaries of all employees of the ‘Research’ department, as well as the maximum salary, the minimum salary, and the average salary in this department

SELECT SUM (SALARY), MAX (SALARY), MIN (SALARY), AVG (SALARY)
FROM EMPLOYEE, DEPARTMENT
WHERE DNO = DNUMBER AND DNAME = 'Research';

Query 21
Retrieve the total number of employees in the company

SELECT COUNT (*)
FROM EMPLOYEE;
Query 22
Retrieve the number of employees in the ‘Research’ department

```
SELECT COUNT (*)
FROM EMPLOYEE, DEPARTMENT
WHERE DNO = DNUMBER AND DNAME = ‘Research’;
```

Query 23
Count the number of distinct salary values in the database

```
SELECT COUNT(DISTINCT SALARY)
FROM EMPLOYEE;
```

Query 24
For each department, retrieve the department number, the number of employees in the department, and their average salary

```
SELECT DNO, COUNT (*), AVG (SALARY)
FROM EMPLOYEE
GROUP BY DNO;
```

Query 25
For each project, retrieve the project number, the project name, and the number of employees who work on that project

```
SELECT PNUMBER, PNAME, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER = PNO
GROUP BY PNUMBER, PNAME;
```

Query 26
For each project on which more than two employees work, retrieve the project number, the project name, and the number of employees who work on the project

```
SELECT PNUMBER, PNAME, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER = PNO
GROUP BY PNUMBER, PNAME
HAVING COUNT(*) > 2;
```

Query 27
For each project, retrieve the project number, the project name, and the number of employees from department 5 who work on the project

```
SELECT PNUMBER, PNAME, COUNT (*)
FROM PROJECT, WORKS_ON, EMPLOYEE
WHERE PNUMBER = PNO AND SSN = ESSN AND DNO = 5
GROUP BY PNUMBER, PNAME;
```
Query 28

For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than £40,000

```sql
SELECT DNUMBER, COUNT (*)
FROM DEPARTMENT, EMPLOYEE
WHERE DNUMBER = DNO AND SALARY > 40000 AND
  DNO IN (SELECT DNO
           FROM EMPLOYEE
           GROUP BY DNO
           HAVING COUNT(*) > 5)
GROUP BY DNUMBER;
```
Update statements

Update 1
Add a new tuple to the EMPLOYEE relation

INSERT INTO EMPLOYEE

Update 1A
Enter a tuple for a new employee for whom only FNAME, LNAME, DNO AND SSN attributes are known

INSERT INTO EMPLOYEE (FNAME, LNAME, DNO, SSN)
VALUES (‘Richard’, ‘Marini’, 4, ‘653298653’);

Update 2
Rejected if referential integrity constraint enforced by DBMS and no department tuple with DNUMBER 2 exists

INSERT INTO EMPLOYEE (FNAME, LNAME, SSN, DNO)
VALUES (‘Robert’, ‘Hatcher’, ‘980760540’, 2);

Update 2A
Rejected if NOT NULL checking enforced by DBMS (SSN not present)

INSERT INTO EMPLOYEE (FNAME, LNAME, DNO)
VALUES (‘Robert’, ‘Hatcher’, 5);

Update 3A / B
Create a temporary table that has the name, number of employees and total salaries for each department

CREATE TABLE DEPTS_INFO
(DEPT_NAME VARCHAR(15),
NO_OF_EMPS INTEGER,
TOTAL_SAL INTEGER);

INSERT INTO DEPTS_INFO
SELECT DEPT_NAME, COUNT(*), SUM(SALARY)
FROM (DEPARTMENT JOIN EMPLOYEE ON DNUMBER = DNO)
GROUP BY DNAME;

Update 4A
Deletion of tuples

DELETE FROM EMPLOYEE
WHERE LNAME = ‘Brown’;

Update 4B
Deletion of tuples

DELETE FROM EMPLOYEE
WHERE SSN = ‘123456789’;
Update 4C
Deletion of tuples

\[
\text{DELETE FROM EMPLOYEE WHERE DNO IN (SELECT DNUMBER FROM DEPARTMENT WHERE DNAME = 'Research')}\]

Update 4D
Deletion of tuples

\[
\text{DELETE FROM EMPLOYEE}
\]

Update 5
Change the location and controlling department number of project number 10

\[
\text{UPDATE PROJECT SET PLOCATION = 'Bellaire', DNUM = 5 WHERE PNUMBER = 10;}
\]

Update 6
Give all employees in the Research department a 10% raise in salary

\[
\text{UPDATE EMPLOYEE SET SALARY = SALARY * 1.1 WHERE DNO IN (SELECT DNUMBER FROM DEPARTMENT WHERE DNAME = 'Research')}\]
View statements

View 1

CREATE VIEW WORKS_ON1
AS SELECT FNAME, LNAME, PNAME, HOURS
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE SSN = ESSN AND PNO = PNUMBER;

View 1A

DROP VIEW WORKS_ON1;

View 2

CREATE VIEW DEPT_INFO (DEPT_NAME, NO_OF_EMPS, TOTAL_SAL)
AS SELECT DNAME, COUNT (*), SUM (SALARY)
FROM DEPARTMENT, EMPLOYEE
WHERE DNUMBER = DNO
GROUP BY DNAME;

Query view 1

Retrieve first name and last name of all employees who work on ‘Project X’

SELECT FNAME, LNAME
FROM WORKS_ON1
WHERE PNAME = ‘ProjectX’;

Update view 1

Update the PNAME attribute of ‘John Smith’ from ‘ProductX’ to ‘ProductY’

UPDATE WORKS_ON1
SET PNAME = ‘ProductY’
WHERE LNAME = ‘Smith’ AND FNAME = ‘John’ AND PNAME = ‘ProductX’;

A

UPDATE WORKS_ON
SET PNO = (SELECT PNUMBER
FROM PROJECT
WHERE PNAME = ‘ProductY’)
WHERE ESSN IN (SELECT SSN
FROM EMPLOYEE
WHERE LNAME = ‘Smith’ AND FNAME = ‘John’)
AND PNO IN (SELECT PNUMBER
FROM PROJECT
WHERE PNAME = ‘ProductX’);

B

UPDATE PROJECT
SET PNAME = ‘ProductY’
WHERE PNAME = ‘ProductX’;
Update view 2

Does not make sense because TOTAL_SAL is the sum of individual employees' salaries

```
UPDATE DEPT_INFO
SET TOTAL_SAL = 100000
WHERE DNAME = 'Research';
```