How to generate efficient code for new hardware?

Greta Yorsh
Queen Mary University of London
Software tuning for micro-architecture

• **Goal:** best performance out of hardware

• Production compilers
 • open source: gcc, llvm,...
 • proprietary: icc, armcc, visualc...

• Highly optimized
 • generate efficient code for existing CPUs
 • keeping compilation times low enough to be used productively in large software projects
Software tuning for micro-architecture

• Compiler optimizations - register allocation, instruction selection, instruction scheduling
 • pipeline description: integer, floating point, vector
 • cost of branch and conditional execution
 • cost of addressing modes
 • preload strategy
 • load/store multiple and double
 • vector operations
 • compiler intrinsics

• Library routines - handcrafted assembly
 • memory: memcpy, memset, memchr, ...
 • strings: strcmp, strchr, strlen, ...
 • math: integer division, arithmetic, directed rounding, ...

• Operating system and applications
Fine-tuning production compiler for new CPU

• Changes to code generation and libraries
• Development process: implement, validate, and benchmark
• Even simple changes may take many months of expert compiler engineer's time
• Varying impact on performance of different benchmarks
• Hard to justify such changes in a production compiler

• Compilers not changing fast enough to keep up with
 • variety of hardware designs
 • fast-paced design cycles
Software tuning for micro-architecture

• Goal: best performance out of hardware

• Practice: “just make it go faster”

• Unrealized potential performance gains
Can it be fixed for the next version?

• Hardware designers have many constraints when working on new microarchitectures and revising existing ones

• Hardware: optimize common instruction sequences

• Compilers: don’t emit instructions that are slow
Code generation and optimization

• Given code p, generate code s such that

• **Correctness**: s correctly implements p
 • the observable behaviors of s are a subset of the observable behaviors of p

• **Optimality**: the cost of s is minimal with respect to cost function c
 • $c(s) = \min\{c(s') \mid s' \text{ implements } p\}$
Example

```c
int sign (int x)
{
    if (x < 0) return -1;
    if (x > 0) return 1;
    return 0;
}
```

```asm
CMP   R0, #0   ; input value in R0
MOVGT R0, #1
MOVLT R0, #-1  ; return value in R0
```
Superoptimizer \((p, a)\) // \(p\) is straightline code
Tests := ∅
for \(n := 0, 1, 2, \ldots\) do
 for each \(s \in I^n\) do
 if check\((s, \text{Tests})\) then
 \(\phi := \text{encode}(p, s)\)
 if not satisfiable\((\phi)\) then return \(s\)
 cex ← getModel\((\phi)\)
 Tests := Tests \(\cup\) getTests\((p, cex)\)
Unbounded Superoptimizer

\[\chi := \text{encodeCorrectness}(p, a) \]

if not satisfiable(\(\chi \)) then return FAIL
repeat
 \(m := \text{getModel}(\chi) \)
 \(\chi := \chi \land \text{encodeBound}(m, c) \)
until not satisfiable(\(\chi \))
s := \text{getCode}(m)
return \(s \)
Unbounded Superoptimizer (p,a,c)

$\chi := \text{encodeCorrectness}(p,a)$

if not satisfiable(χ) then return FAIL

repeat
 $m := \text{getModel}(\chi)$
 $\chi := \chi \land \text{encodeBound}(m,c)$
until not satisfiable(χ)

$s := \text{getCode}(m)$
return s
Encoding Correctness

\[\chi \] = instruction sequences \(s \) that correctly implement \(p \) in \(a \)

\[\chi = \forall x, x', y, y'. p \land a \land o \]

- **IR constraints**
 semantics of code \(p \)

- **ISA constraints**
 semantics of \textit{arbitrary} instruction sequence in target architecture

- **observational equivalence constraints**
ISA Constraints

∀j. 0 ≤ j < n . \(\bigwedge_{i \in I} \text{instr}(j) = i \rightarrow \tau_i(\text{state}(j), \text{state}(j+1)) \)

I = \{ \text{ADD } \text{r0, r1} \}
\{ \text{ADD } \text{r1, r2} \}
\{ \text{MUL } \text{r0, r2} \}
\{ \text{LDR } \text{r0, [r1]} \} \ldots \}

length of instruction sequence

instruction at location j is i

semantics of instruction i
Shifting the search into the solver

- size of constraints does not depend on the candidate sequence of instructions
 - size of ϕ depends on n, size of χ depends on a
- more complex formula may take longer to solve
- opportunity to reuse reasoning within the solver
- stop at any time with a correct possibly suboptimal solution that can be improved upon later
 - models of ϕ are counterexamples
 - models of χ are correct instruction sequences
- fine-grained control: compilation time vs quality of generated code
- loop-free code not just straight line code
Preliminary Prototype

C program \(\rightarrow \) clang \(\rightarrow \) LLVM IR \(\rightarrow \) constraints \(\rightarrow \) Z3

ARM ISA Semantics

Cost Model

\(a \)

\(c \)

length of \(s \)

\(p \)

loop-free code

\(s \)

bitvectors
arrays
quantifiers
uninterpreted functions

loop-free code
def i32 sign (i32 x):
 ; <label>:L0
 v1 = icmp slt i32 x, 0
 br i1 v1, label L1, label L2
 ; <label>:L1
 br label L5
 ; <label>:L2
 v2 = icmp sgt i32 x, 0
 br i1 v2, label L3, label L4
 ; <label>:L3
 br label L5
 ; <label>:L4
 br label L5
 ; <label>:L5
 v3 = phi([L1,-1],[L3,1],[L4,0])
 ret i32 v3

L0 ← ρ1=(px<0)∧
 (((ρ1=true)∧L1)∨((ρ1=false)∧L2))
L2 ← ρ2=(px>0)∧
 (((ρ2=true)∧L3)∨((ρ2=false)∧L4))
L1 ← L5∧(ρ3 =−1)
L3 ← L5∧(ρ3 =1)
L4 ← L5∧(ρ3 =0)
L5 ← true

LLVM IR Constraints
ARM ISA Constraints

\[\forall j. \ 0 \leq j < n . \ \bigwedge_{i \in I} \text{instr}(j)=i \rightarrow \tau_i(\text{state}(j), \text{state}(j+1)) \]

\[\forall i. \ 0 \leq j < n. \]
\text{instr}(j)=“SUB R0, R1“ \rightarrow \text{state}(j+1)[R0]=\text{state}(j)][R0]=\text{state}(j)[R1] \land \text{PRES}
\text{instr}(j)=“MOV R0, R1“ \rightarrow \text{state}(j+1)[R0]=\text{state}(j)[R1] \land \text{PRES}
\text{instr}(j)=“MOVGT R0, R1“ \rightarrow \text{ite}(\text{GT,}
\text{state}(j+1))[R0]=\text{state}(j)[R1] \land \text{PRES,}
\text{state}(j+1)=\text{state}(j))

…..
Unbounded Superoptimizer \((p, a, c) \)

\[\chi := \text{encodeCorrectness}(p, a) \]

if not satisfiable(\(\chi \)) then return FAIL

repeat

\[m := \text{getModel}(\chi) \]

\[\chi := \chi \land \text{encodeBound}(m, c) \]

until not satisfiable(\(\chi \))

\[s := \text{getCode}(m) \]

return \(s \)

\[\lceil \chi \rceil \] instruction sequences that correctly implement \(p \) in a

if cost is length of generated instruction sequence and \(m \) represents a sequence of length \(K \), then \(\text{encodeBound}(m, c) \) returns \(n < K \)

cost of instruction sequences is less than \(c(\text{getCode}(m)) \)
Initial Feasibility Study

• Goal: can a solver handle complex constraints that arise from our encoding?

• Success on 17 out of 25 microbenchmarks but slow
 • under 30 min and up to 4 iterations per benchmark
 • unoptimized encoding
 • no solver heuristics
 • generated better code than gcc on 3 out of 17
Challenges

• Solver termination and completeness
• Compilation time
• Correctness of constraints
• Hardware specification availability
• Cost models availability
• Loops
• memory
• loops
• vectorizer
• integrate in other toolchains

• cost models
• target other ISA
• target GPU (shuffles)
• aid hardware design

• quantifiers
• maxSMT
• different combination of theories
• different solver (Lean?)
• partial evaluation
• search heuristics