
Dynamic Model-based Management of a Service-Oriented Infrastructure

Félix Cuadrado, Rodrigo García-Carmona, Juan C. Dueñas
Departamento de Ingeniería de Sistemas Telemáticos

ETSI Telecomunicación Universidad Politécnica de Madrid
Madrid, Spain

{fcuadrado, rodrigo, jcduenas}@dit.upm.es

Abstract- Models are an effective tool for systems and software
design. They allow software architects to abstract from the
non-relevant details. Those qualities are also useful for the
technical management of networks, systems and software, such
as those that compose service oriented architectures. Models
can provide a set of well-defined abstractions over the
distributed heterogeneous service infrastructure that enable its
automated management. We propose to use the managed
system as a source of dynamically generated runtime models,
and decompose management processes into a composition of
model transformations. We have created an autonomic service
deployment and configuration architecture that obtains,
analyzes, and transforms system models to apply the required
actions, while being oblivious to the low-level details. An
instrumentation layer automatically builds these models and
interprets the planned management actions to the system. We
illustrate these concepts with a distributed service update
operation.

Keywords- Model-Based Management; Runtime Models;
Service-Oriented Architecture; Service Configuration; Service
Deployment.

I. INTRODUCTION
In engineering, models are abstractions or conceptual

objects used in the creation of a system. Model Driven
Engineering is a methodology based on the systematic use of
models in software development processes [1]. It aims to
alleviate the complexity of current IT applications and
infrastructure platforms and express domain concepts
effectively. In their usage as software and hardware
development tools, models become blueprints to build
systems. The initial models are increasingly refined and
enhanced by means of transformations, until the final system
(the code) emerges [2]. The final model should represent the

code must be frequently refined or modified by hand: code is
changed throughout its lifetime and it is seldom
synchronized with the original design models. In systems
engineering the same situation happens; network and system
design models, once defined and deployed, are disconnected
from the real situation. This problem is exacerbated after
release, during their operation time. Each change further
decouples the models from the reality, invalidating the model
for runtime reasoning.

Because of these limitations, we propose to use dynamic
models; whose grammar (the metamodel) is defined

beforehand, during the design phase, but whose information
or data is obtained in runtime. These models are a key tool
for system management, as they allow reasoning over the

, it is possible to automate the decision making
activities related to system management, and to perform
them based on these models depicting the actual state. We
have combined static and dynamic models of running
systems, in order to provide automated deployment and
configuration for service oriented architectures.

The article is structured as follows. Next section provides
an overview on the context of application, identifying the
main requirements and concerns. Section 3 first discusses the
suitability of the main existing information model standards
for autonomic service management, and after that presents
our proposed information model abstractions. The next
section presents a management architecture that builds on the
dynamic model approach. Section 5 expands the main ideas
of our proposal through the explanation of a case study.
Finally, the article is closed with the main conclusions and
potential lines of future work derived from the presented
results.

II. CONTEXT OF APPLICATION
The increased importance of IT infrastructure has led to

significant investments in infrastructure, which must be
amortized over long periods of time. However, systems
evolve rapidly, rendering purchased units as legacy
technology before their lifetime has been completed. On top
of that, it is necessary to upgrade applications and enterprise
services, and acquire new equipment, in order to
continuously improve process efficiency to gain a
competitive advantage. Thus, systems are composed by not
only legacy systems, mainframes, or databases, but also Java
Enterprise Edition (JEE) application servers, or Business
Rule Manager (BRM) systems. The resulting enterprise
infrastructure is a complex heterogeneous distributed system,
composed by dozens of different servers and application
containers, deployed over hardware machines interconnected
through complex network distributions, containing firewalls,
virtual private networks and other access restriction and
security mechanisms.

Functional interoperability between all the components
of the IT infrastructure is usually achieved by adopting a
higher-level integration layer, which is based on Service
Oriented Architecture and Business Process Management

(SOA/BPM). This way, each artifact of the system is
presented as a service, hiding its implementation details and
providing a uniform high-level view. Services are published
in directories and connected through an Enterprise Service
Bus (ESB), where additional non-functional capabilities can
be added to the communications, like logging, or data
transformation. On top of that, BPM technologies, such as
BPEL (Business Process Execution Language) engines,
orchestrate the activities, bridging the gap between the IT
infrastructure and the business processes.

The SOA/BPM abstraction maximizes the use of the
existing IT infrastructure, but managers still have to cope
with the underlying heterogeneity and complexity, while
supporting three key business requirements: controlling
operation costs, warranting the quality of services and
handling the evolution of the services and the infrastructure.

Traditional management processes are identified with
human operation over a management administration console.
Monitoring information and events are collected and
aggregated into the console, and the administrator invokes
specific operations on the environment based on the
identified objectives and the collected information.
Operations are executed in scripts, containing the exact set of
machine-specific instructions for achieving a specific task.
Because of that, scripts lack reusability and suffer from the
increased complexity, distribution and heterogeneity of
current IT systems.

The limitations of this approach become more evident as
the complexity and heterogeneity of the managed systems
keep growing. Changes to the environment impact the
complete management process, as the configuration and
workflows must be manually adapted to the specifics of the
environment. Management operations are manually created
and composed, requiring specialized knowledge from the
administration experts, and can hardly be reused. On top of
that, a runtime system configuration has dependencies
between heterogeneous artifacts, propagating the impact of
any change or error throughout the whole system.

There is clearly a necessity of reducing complexity, and
lessening human intervention by automating parts of the
management processes. These problems can be alleviated by
using models; Model Driven Management [3] is a new
approach for management, where models allow the
abstraction from the complexity of the environment. This
approach has numerous advantages over others, thanks to the
greater expressivity of models [4]. We build on this
approach, and propose the need to handle both static models
containing the definitions of the developed services, and
dynamic models that contain information directly obtained
from the running systems (monitoring information); these
models must be related and transformed in order to generate
control actions that will be themselves represented by
models, able to be applied on the managed systems by the
proper agents. To verify this approach we have built a
deployment and configuration system, which operates on
models for characterizing the services, the runtime
environment and the operations on a service oriented
architecture.

III. MANAGEMENT INFORMATION MODEL
The management of networked systems is defined by [5]

as all the measures necessary to ensure the efficient and
effective operation of a system and its resources, based on
the organization goals. However, the scope of distributed
management greatly varies ranging from network, resource,
application, service and business concepts. Regardless of the
scope, every management system requires an information
model that provides a homogeneous view of the managed
elements. While there are successful proofs of concept of the
implementation of autonomic managers using ad-hoc models
and ontologies [6], the lack of alignment to existing
standards and models greatly complicates its applicability to
general cases. The information model must include all the
relevant information for the management operations, the
elements, its characteristics and relationships, while at the
same time it must be flexible enough to adapt to
heterogeneous environments and be as compatible as
possible with the existing information modeling standards.

A. Information Modeling Standards
Several standards have been defined for modeling the

relevant management information of a distributed system.
Alternatives range from mature standards from the network
management domain to emerging initiatives from the
Internet domain. Here we present a brief overview on the
most relevant ones, showing how they support service
management.

 MOWS (Management Of Web Services) [7] is an
OASIS standard that defines how to represent Web Services
as manageable resources. MOWS is part of the Web Services
Distributed Management (WSDM), a set of standards from
OASIS devoted to the management of IT distributed systems
using Web Services technology.

The Common Information Model (CIM) [8] is an
information model standardized by The Distributed
Management Task Force (DMTF) industrial association.
CIM is an object-oriented model for describing overall
management information in a networked enterprise
environment. CIM is specified as a set of UML models and
complementary MOF (Managed Object Format) files, textual
files expanding the semantics of the defined elements. CIM
is a modular, extensible standard; it models a very broad set
of elements including databases, networks, user preferences,
and applications among others. Internally, CIM is divided
into a core model, defining the basic elements, and additional
models extending from the base elements with additional
details on one specific area (application, network, computer
are some examples of profiles).

The OMG Deployment and Configuration Model [9]
provides a simple and flexible model for representing
deployment and configuration operations over a distributed
target. The target environment is called a domain in its
terminology, and is described by an object-oriented
information model. The base elements of the domain model
are resources, which are named entities classified into one or
more types. Resource instances model physical artifacts,
mainly: nodes, bridges and links.

There are two common characteristics of information
models that cover systems and services: the use of object-
oriented abstractions and the resource concept as the
essential unit of management.

B. Proposed Information Model
After evaluating the existing information modeling

standards, we have defined a set of modeling abstractions
that try to effectively capture the relevant information of a
heterogeneous distributed environment. The metamodels
build upon the common ground shared by the standards, with
D&C being the base reference because of its flexible nature.

 Our service deployment and configuration architecture is
supported by three metamodels, governing the static
definitions of services, the runtime description of the
environment and the planned management operations to the
runtime environment. These metamodels complement each
other, so they completely cover the required information for
the management of enterprise services. The metamodels
have been defined in EMOF (Essential MOF, a subset of the

The three metamodels share a core concept that is the

base of both static and dynamic abstractions; the resources.
A resource is a manageable element. Resources are
characterized with a name, a version identifier and a set of
properties. The resource definition is complemented by a
type field, which establishes a resource taxonomy, inherently
classifying the basic assets of the infrastructure environment
(ranging from services to containers). This allows
management systems to define actuators and policies that
automatically apply to the matching elements. The concept
has been taken from OMG D&C and expanded with
versioning information for software resources.

The software metamodel provides a software architect-
friendly abstraction for modeling software components,
known as deployment units in our terminology. Units model
their provided services and external requirements using the
resource concept. Finally, deployment units can also specify
environment constraints needed for correct performance
(such as existing system services, available disk space or
minimum amount of RAM memory) as mandatory resources
of the runtime domain. Examples of typical deployment units
include Java EE WAR and EAR files, Database DDL (Data
Definition Language) and DML (Data Modification
Language) scripts or BPEL (Business Process Execution
Language) process definitions. Instances of this metamodel
are considered static for the sake of configuration and
deployment, because they are inputs to the management
processes coming from the development infrastructure. The
software model combines aspects from CIM Application
model with the resource concepts. A previous version of this
model is presented in [10].

Once components and services are deployed, they
become runtime entities that are part of the environment,
with a state and a specific configuration. The runtime
metamodel defines the topology and the configuration of the
managed environment. An environment is composed of a set
of distributed nodes, interconnected through a network. Node
configuration information is also modeled as resources and

properties, whereas the network structure is defined by

nodes host containers, where components and services are
deployed. Examples of containers include an application
server, a business process manager or a database. Runtime
units are the main elements of the metamodel. They
represent deployed units, providing status and runtime
configuration information. Runtime models are generated on
the fly, as they represent the environment for management
purposes. Therefore, we need agents to extract the
information and populate the models. The combination of
both metamodels keeps the traceability between the static
view of software development and the dynamic view of
service management.

Finally, we have defined the management operations that
can be applied over the runtime elements (resources,
containers, and deployed units) as the plan metamodel.
Because of the dependencies and inter relationships existing
in a distributed system, operations cannot be executed
individually and must be aggregated in plans. A plan is a
collection of activities (such as unit deployment, component
activation, or resource configuration) which must be
executed over the environment to achieve a management
objective (e.g., release a new version of the client user
application). The activities are included in a directed graph,
ensuring a correct execution order while allowing at the
same time parallelization of non-dependant tasks. This
definition constitutes a management DSL (Domain Specific
language). Activities refer to the concepts described in the
software and runtime metamodels (such as deployment units,
resources, configuration values and containers). This
abstraction allows a management system to dynamically
create plans for achieving a specific goal through model
reasoning, instead of the traditional mechanism of a system
administrator manually defining change workflows.

IV. SERVICE MANAGEMENT ARCHITECTURE
In an enterprise environment the availability of the

complete runtime information is vital for an effective
management. The impact of changes spreads over the
environment, due to the nature of heavily distributed
systems. Additionally, the heterogeneity of the elements
complicates coordinated efforts [11]. Because of those
factors, our management functions are centralized for the
complete environment, and reason over generic models
abstracting from the specific system details.

Fig. 1 provides a high-level overview of our system. On
the left-hand side we can see the main blocks of the
management system (such as plan generation, Service-Level
Agreement monitoring, or environment asset management).
The management functions provided by the architecture
range from static information processing (e.g., unit
description storage, configuration and policy definition) to
dynamic reasoning (e.g., environment monitoring, and plan
model generation). The inputs and outputs of these
components are model instances of the previously described
metamodels, which isolates the functional components from
the specifics of the managed environment. Additionally, the
architecture implements a closed control loop. The

configuration and status are continuously monitored by the
agents, and transformed into runtime models. This
information is processed by the systems, also taking into
account high-level objectives and policies. The results of
these processes are the deployment and configuration change
plans, which are interpreted by the agents.

The physical managed elements are pictured on the right
hand side. The impedance mismatch is addressed by the
agent layer (in the central part of the figure), which
transparently instruments the runtime elements and builds a
coherent model with all that information. Communication
goes both ways. The agents produce a model abstraction of
the physical environment for the management blocks. At the
same time, they apply plan models to the runtime
infrastructure.

Depending on enterprise policies, business requirements
and architecture decisions the composition of a runtime
environment differs significantly. The instrumentation layer
must automatically adapt to different physical
configurations, without the need of manually defining the
topology of the specific environment. Because of that, the
agent

The top-level agent is the Environment Manager, which
acts as the contact point between the environment and the
management system. It provides model descriptions of the
environment and orchestrates the execution of plan models.
Internally, it uses the DNS-SD protocol for automatic agent
discovery. This way, the environment topology is
dynamically built, although it is also possible to manually
populate it to reflect runtime systems behind restrictive
firewalls. The discovered agents are the Node Managers,
which govern the resources, configuration and services
available at node level. Information about hardware and
software resources, containers and application is captured to
the environment model by the Information Gatherer agents.
These components instrument a specific aspect of the node,
such as hardware information, JEE application server
resources or service configuration. A Node Manager collects
the gathered models for providing to the Environment

Manager a complete characterization of the node. The
operation infrastructure is composed of the Change
Executor, which receives execution orders for change plans
to the environment, and multiple Actuators, which apply the
activities to the physical elements. These elements are
aggregated similarly to Gatherers; each one is capable of
applying one or more operations (i.e., configure container,
install deployment units) on some parts of the environment.
We can see how the base instrumentation elements are
generic, and only the endpoint Gatherers and Actuators
mediate between the runtime models and the runtime system.
These agents perform the key transformations for dynamic
model management, as they convert Specific Models from
each management interface to our Platform Independent
Model (the runtime metamodel), and interpret our plan DSL
elements as invocations to vendor-specific commands.

V. CASE STUDY
We will present an industrial case study to illustrate how

the elements of the management system collaborate for
obtaining and applying configuration and deployment
changes. The scenario has been extracted from the
ITECBAN project, a Spanish Research project from the
CENIT program whose objective is to develop a SOA-based
core banking solution. A banking organization internally
uses a credit grant service. It combines the use of inference
engines and the input of human experts to provide a response
to the requestor. On a technical view, the service is
composed of clustered JEE applications, BPEL processes,
Business Rule definitions and database information. These
components are deployed over a distributed environment,
and communicate through Web Services. After a user reports
a service fault, the incidence is escalated to the development
team, which releases an updated version of the faulty service,
and a change request is issued to provision these
modifications to the runtime environment.

Service update is a complex process, involving
installation, life-cycle control and configuration of several,
inter-dependent artifacts. Its correct execution requires
retrieving and processing information about the current
environment state, and the logical changes to the affected
services. We will describe how this scenario is supported by
collecting the state from the physical elements, obtaining a
change plan from the static and dynamic models, and
applying the changes to the environment.

The initial step is to obtain an updated snapshot of the
environment, which will be represented by an updated
runtime model. At this point, each Information Gatherer
connects to the management interfaces of a monitored part of
the infrastructure, obtains its current state and transforms that
information to our modeling abstractions. As an example,
Glassfish (the reference implementation of the JEE standard)
Gatherers access the remote JMX Server, query and retrieve
the relevant JSR 77 MBeans and transform that information
into container, unit, resource and property elements. An
analog process is applied to the rest of instrumented
infrastructure, such as Oracle configuration and information,
and Hyperic HQ inventory model instances. The Node
Managers and Environment Manager aggregate that

Figure 1 High-level Architecture View

information and provide an updated environment model to
the management system.

Once the updated model has been generated, the
management components analyze the objectives and current
status, and produce a change plan that will contain the
required changes for updating the selected service. Fig. 2
shows the general update change execution flow. Functional
elements operate with model instances, both as input
parameters and as execution results.

The process starts at the Resolve Artifact Dependencies
step. The plan generator takes the descriptor of the service to
be updated, along with the models of all the available
components, and obtains a model graph representing the
logical dependencies of the provider. Both current and
planned versions are analyzed, in order to estimate the
impact of the operation to the rest of the system. In case the
update operation can be safely executed, the workflow goes
on in order to generate the update plan.

After the logical dependencies have been calculated, the
plan generator retrieves the updated environment model, and
combines it with the logical graph in order to Map the
Logical Resources to Runtime elements, designating a
container for each logical unit (deployable artefact).
Whenever more than one container is suitable for a given
component, a decision is made either by an administrator or
a distribution policy.

After obtaining the physical component distribution, the
process will Identify the Required Activities for reaching the
desired state, as well as the restrictions in their execution
order. The state of the runtime environment is also taken into
account in order to only generate the mandatory activities,
avoiding redundant actions (e.g., if a deployment unit is
already running on the selected container, an installation

In parallel to activity
generation, the executor will Resolve the Configuration
Expressions of the graph components, automatically
calculating the required configuration changes to services

and environment in order to work correctly after the update
operation.

Finally, by combining the configuration parameters and
the plan activities, the change executor Builds the Plan
Model. The complete plan is composed by 36 activities that
represent the management operations. Each activity defines
the operation to be performed, the element of the
environment (such as a container resource, or a runtime unit)
where it will be applied, and the operation arguments. Fig. 3
shows a fragment of the resulting plan, composed by four
activities represented in XML syntax: two installation
activities, one update activity and one configuration activity.
The plan also contains the mandatory dependencies between
them, to assure its correct execution.

Once the plan has been created, it is processed by the
Change Executor. First, it identifies which Actuator will
perform each activity. The matching between plan activities
and Actuators is made using the resource type taxonomy
previously mentioned. Actuators interpret the generic
activities defined by the model into commands of the
languages supported by the specific management interfaces.
As an example, activity #5 (update a WAR artifact deployed
at the Glassfish node3 cluster) is translated into the
DeploymentManager operation, which is defined

<?xml version="1.0" encoding="ASCII"?>
<plan:plan
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:plan="http://model.deployment.itecban.es/DeploymentPlan">
 <name>Test Plan</name>
 <environment>Target</environment>

 <scheduleData>
 <creationDate>2010-01-22T10:59:01.250+01:00</creationDate>
 <lastModificationDate>2010-01-22T10:59:02.968+01:00</lastModificationDate>
 </scheduleData>
 <planStatus>CREATED</planStatus>
</plan:plan>

<activities>

</activities>

<activity xsi:type="plan:ConfigurationActivityType">
 <activityId>2</activityId>
 <target>target#node1#BPEL-PM#ApprovalProcess#endPoint</target>
 <dependency>1</dependency>
 <type>CONFIGURE_UNIT_RESOURCE</type>
 <configuration>
 <property>
 <name>endPointURL</name>
 <value>http://machine1:8080/BPMEndpoint/</value>
 </property>
 </configuration>
</activity>

<activity xsi:type="plan:DeploymentActivityType">
 <activityId>1</activityId>
 <target>target#node1#BPEL-PM</target>
 <type>INSTALL_DEPLOYMENT_UNIT</type>
 <unitName>ApprovalProcess</unitName>
 <unitVersion>2.1</unitVersion>
</activity>

<activity xsi:type="plan:DeploymentActivityType">
 <activityId>5</activityId>
 <target>target#node3#glassFish</target>
 <dependency>2</dependency>
 <dependency>6</dependency>
 <type>UPDATE_DEPLOYMENT_UNIT</type>
 <unitName>FrontEnd</unitName>
 <unitVersion>1.6.1</unitVersion>
</activity>

...
<activity xsi:type="plan:DeploymentActivityType">
 <activityId>6</activityId>
 <target>target#node2#OracleDB</target>
 <type>INSTALL_DEPLOYMENT_UNIT</type>
 <unitName>ProductCatalog</unitName>
 <unitVersion>1.6</unitVersion>
</activity>

...

Plan Runtime Entities

glassfish@node3

oracle@node2

bpelpm@node1

FrontEnd

ProductCatalog

ApprovalProcess

Figure 3 Generated Deployment and configuration plan Model

Resolve Software
Dependencies

Map Logical Resources
 to Runtime

Identify Required
Activities

Resolve Configuration
Expressions

Build Plan Model

Plan Generator

Plan

Runtime
Configuration

Physical Mapping
Graph

Target
Service

Logical
Dependency

Graph

Target
Environment

Activities

Available
Components

Figure 2 Plan Generation Activity Diagram

by the JSR 88 Deployment Management API offered by the
Glassfish server. Finally, the Change Executor invokes the
Actuators in the order dictated by plan dependencies, and as
a result the runtime environment configuration is updated to
support the new version of the credit grant service.
Additional details on the instrumentation architecture are
presented in [12].

VI. CONCLUSIONS
In this paper we have introduced the usage of

dynamically generated models for enabling autonomic
management of service oriented architectures. The proposed
abstractions define both static models for descriptions of
software components before they are deployed to the runtime
environment, and dynamically generated models (obtained
by monitoring agents) for the runtime environment elements.
By mixing, transforming, aggregating and processing these
models, we obtain a third model, the deployment and
configuration plan, which is generated and consumed at
runtime. Controlling agents are in charge of interpreting and
executing it so the environment is changed accordingly to the
plan.

Our interpretation of MDM offers several improvements
to the state of the art: there are clear, unambiguous but
extensible metamodels for all the information handled; static
relations between models are represented at the metamodel
stage, while relations between dynamic models are ensured
by the proper transformations; transformations can take
several models to produce a new one (as expressed in);
agents are considered as producers or consumers of models,
thus behaving as the frontiers of the management system; the
runtime system can be observed at a high level of
abstraction, at its logical view, but at the same time its model

Once the models have reached a certain degree of

maturity, and we have implemented a proof of concept of the
system, we consider the whole set composed by metamodels,
transformations, implementation of management functions
and monitoring and control agents, as a complete
infrastructure for the management of service oriented
architectures. After successive versions of the system we
have provided a method for the development of management
functions, based on the provision of transformation on
models, and the generation, adaptation or usage of the
required agents for monitoring and control.

We are currently adding more management functions that
will cover the full range of activities related to services
lifecycle. In its industrial application it is also necessary to
provide enhancements such as security and access control,
persistence and management of the intermediate and final
models, instrumentation for virtualized systems, generation
of reports for business intelligence and integration with IT
service level frameworks.

ACKNOWLEDGMENT
The work presented in this article has been partially

funded by the ITEA OSAMI-Commons and CENIT
ITECBAN R&D projects. The authors are grateful to
MITYC (Ministerio de Industria, Turismo y Comercio) and
CDTI (Centro para el Desarrollo Tecnológico e Industrial)
for its support.

REFERENCES

[1] D. - uter,
vol. 39, no. 2, February, 2006.

[2] L.A. Fernandes, B.H. Neto, V. Fagundes, G. Zimbrao, J.M. de
Souza, and R. Salvador, Model-Driven Architecture
Approach for Data Warehouse , Proceedings of the 6th
International Conference on Autonomic and Autonomous
Systems, pp. 156-161, Cancun, Mexico, 2010.

[3] M. Barbero, F. Jouault, and J.
Management of Complex Systems: Implementing the

International Conference and Workshop on the Engineering
of Computer Based Systems, IEEE Computer Society, 2008.

[4] V. Talwar, D. Milojicic, W. Qinyi, C. Pu, W. Yan, and G.
Jung. Approaches for service deployment IEEE Internet
Computing Magazine, vol. 9 Issue 2, pp.70-80, 2005.

[5] Hegering, H., Abeck, S., Ne
Management of Networked Systems. Concepts, Architectures

publishers, ISBN: 3-932588-16-9, 1999
[6]

System Administration. A Testbed
Proceedings of the 5th International Conference on
Autonomic and Autonomous Systems, pp. 117-122, Valencia,
Spain, 2009.

[7] K. Wilson and I. Sedukhin, Web Services Distributed
Management: Management Of Web Services (MOWS 1.1) .
OASIS, Standard 2006.

[8] DMTF (Distributed Management Task Force) Common
Information Model (CIM) specification v2.19. . 2008

[9] Object Management Group. Deployment and Configuration
of Distributed Component-based Applications Specification.
Version 4.0. April 2006.

[10] J.L. Ruiz, J.C. Dueñas, and F. Cuadrado, "Model-based
context-
Communications Magazine, IEEE , vol.47, no.6, pp.164-171,
June 2009

[11] J. Strassner, Handbook of network and service
administration Ed. Elsevier, 2007, ISBN 978-0-444-52198-9.

[12] F. Cuadrado, R. Garcia-Carmona, A. Navas and J.C. Dueñas,

Information Systems,. Madeira, Portugal. Communications
and Computer Series. Vol. 109 pp.441-450. 2010

.

