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Abstract— We propose an algorithm for the visual detection
and localisation of the hand of a humanoid robot. This
algorithm imposes low requirements on the type of supervision
required to achieve good performance. In particular the system
performs feature selection and adaptation using images that
are only labelled as containing the hand or not, without any
explicit segmentation. Our algorithm is an online variant of
Multiple Instance Learning based on boosting. Experiments in
real-world conditions on the iCub humanoid robot confirm that
the algorithm can learn the visual appearance of the hand,
reaching an accuracy comparable with its off-line version. This
remains true when supervision is generated by the robot itself
in a completely autonomous fashion. Algorithms with weak
supervision requirements like the one we describe are useful for
autonomous robots that learn and adapt online to a changing
environment. The algorithm is not hand–specific and could
be easily applied to wide range of problems involving visual
recognition of generic objects.

I. INTRODUCTION

On-line adaptation is an essential capability for cognitive
robots operating in the real world. As the robotics community
devotes growing attention to the development of such sys-
tems, there is an increasing demand for learning techniques
that allow data acquisition and training to be performed on-
line and largely autonomously.

Ideally, training data should be collected automatically
without human supervision. Learning in real world appli-
cations is therefore hampered by an unfavorable tradeoff be-
tween the accuracy of the training examples and their avail-
ability. One way to relax the requirements on supervision
is to adopt a learning paradigm such as Multiple Instance
Learning (MIL). In this framework, training examples come
in “bags” that contain positive and negative instances sharing
a common label; a positive bag contains at least one positive
instance, while a negative bag is guaranteed to contain no
positive instances at all.

In this work, we develop an online MIL algorithm that
uses an online variant of Adaboost [25], [15] to combine a
family of weak hypotheses specifically designed for MIL [4].
As the online algorithm does not make provisions for feature
selection, we implement this by wrapping weak learners
inside selectors, similarly to what is done in [17]. We
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apply our algorithm to a visual learning problem, namely
hand detection in the iCub humanoid robot (Figure 1). Our
algorithm only requires knowledge of whether the hand is
present in the visual field for training. This enables the robot
to learn the appearance of the hand without any supervision
other than a self-generated coarse labelling based on the co-
occurrence of motion in the visual stream and in the motors.
Experiments are performed in a challenging scenario using
images coming from the embarked cameras while the robot
is operating in realistic, cluttered environment. The resulting
classifier performs reliably, with error rates comparable to
its offline version. Remarkably we demonstrate that the
salient features identified in the process of learning the MIL
classifier can be used to localise the hand in the visual field
with good accuracy: this is an important result because it
shows that the algorithm can be useful not only for object
detection but also for localisation.

We are aware of only a few other online MIL algorithms
in the literature [5], [28], also based on a variant of boost-
ing. While these are specifically applied to tracking, our
main focus in this work is on self-supervised learning of
the appearance of the hand, rather than on tracking. Our
approach further differs in that the Multiple Instance nature
of the problem is dealt with at an early stage by the weak
learners rather than at the level of the ensemble method; this
allows the classification of targets described by more than
one positive instance (see Section III).

To summarize this paper makes two contributions: i) it
proposes an algorithm for autonomous learning of the visual
appearence of the hand and ii) it describes the implementa-
tion of a novel online Multiple Instante Learning algorithm
and its application to robotics. To the best of our knowledge
the implementation of a MIL algorithm on a robotic platform
has never been reported before.

II. PREVIOUS WORK

A. Hand detection

Visual localisation of the end-point is crucial for closed
loop control of robotic manipulators [19]. Normally this
problem is solved by employing markers that greatly simplify
the detection. This approach, however, has clear limitations
and can be applied only in controlled settings. In humanoid
robotics, there have been recently some attempts to solve
the problem of hand detection in a generic way [24], [20],
[16]. These works share a common idea in that they integrate
vision with the arm joints state to perform the autonomous
visual segmentation of the hand. In these cases, however, the
main concern is to investigate to what extent the integration



Fig. 1. The hardware platform: the iCub robot

between vision and motorial information can help solve the
hand detection task. These works generally employ simple
visual descriptors (for example [20] uses a colour histogram);
arguably better result could be expected by using more
sophisticated and robust visual features (e.g. [21], [7]).

B. Multiple Instance Learning

The MIL approach originated in a bio-informatics setting
in the late Nineties [12], [3], when the Diverse Density
algorithm was developed [22], and was quickly applied to
object recognition. In our terms, MIL corresponds to a
scenario in which training images (that play the role of
the bags of instances) are identified as either containing or
not containing the object of interest, without its location
and size being specified. Interest in this technique has been
renewed more recently with the development of SVM-based
algorithms such as DD-SVM [10] and MILES [9].

Of special interest to us are the boosting-based ap-
proaches [2], [27], [4], that lend themselves more naturally
to modifications for on-line learning because of the iterative
nature of boosting algorithms. These approaches differ in the
particular flavour of boosting used as well as in the way
that the MIL paradigm is implemented. A variant of the
Linear Programming Boosting framework (LPBoost) is used
in [2]. At each iteration of LPBoost, a linear programming
problem is solved to maximise the margin of the training
examples. The MIL generalisation relaxes this requirement
by optimising to achieve a large margin for at least one of
the patterns in each bag. In [27] the AnyBoost framework
is used. Weak learners classify single instances, and the
probability that a bag is positive is obtained by the Noisy-
OR of the probability of each instance being positive. The
target function optimised by AnyBoost is the likelihood of
each bag being positive. The online MIL algorithm presented
in [5] builds on this approach by introducing a variant of
AnyBoost. Weak learners based on Haar-like features are
trained in an online fashion; for each new training example
however, a new strong classifier is estimated from scratch by
the boosting algorithm. In the semi-supervised MIL approach

presented in [28] the Noisy-OR function is replaced by a
geometric mean and gradient descent on the loss function is
used for boosting.

In the above boosting approaches, with the exception
of [4], the weak learners act on single instances, while
the multiple instance problem is handled by the ensemble
algorithm. By contrast, in [4] the weak learners themselves,
defined as balls of optimal radius in feature space, directly
classify bags of instances as opposed to single instances. By
dealing with bags of instances at the level of the weak learn-
ers, this algorithm allows using a standard implementation
of two-class Adaboost (or indeed, of any equivalent variant).
As detailed below, we choose this approach because of its
flexibility and of the compatibility of the particular type of
weak learners with our choice of visual descriptors.

III. CONTRIBUTIONS

We propose an online implementation of Multiple Instance
Learning for the purpose of semi-supervised recognition of a
robot hand. The MIL nature of the problem is derived from
application: the robot does not initially know the appearance
or the location of the manipulator in the visual field, but it
can control the motors to bring the manipulator in view or
out of view.

We extract from the image a set of interest points on
which we compute SURF descriptors [7]. SURF are robust
to scale and orientation variations and have been empirically
proved [6] to be remarkably faster than SIFT [21], which
makes them more suitable for online processing. Descriptors
are extracted from the whole image; thus the object of
interest (the hand) is represented by a group of relevant
descriptors (instances) embedded in a larger positive bag,
that also includes interest points from the background. This
differs from [27], [5] where the object is represented by a sin-
gle instance. It also differs from semi-supervised approaches
such as [18] in which some of the instances are labelled
and pseudo-labels are estimated for the other instances: in
our case, the position of the manipulator being unknown, all
images (bags) are labelled while no individual instances are.

For the reasons detailed above, it is crucial that the weak
learner themselves are able to deal with multiple instances;
we therefore follow the boosting-based approach of Auer
et al. [4], as their framework involves weak learners that
directly classify bags rather than single instances. Also, the
specific nature of the weak learners they propose (detailed
below in Section IV-B) makes them more suitable for clas-
sifying high-dimensional descriptors such as SURF.

In order to adapt the algorithm for online use, the standard
AdaBoost algorithm used in [4] must be replaced with an
online boosting procedure such as described in [13], [25],
[8]. We chose the algorithm introduced by Oza and Russell
in [25], that has already been used with success in vision
applications [17]. While Oza’s algorithm can be trained more
efficiently than the variant used in [5], it has no provisions for
feature selection. This limitation has been dealt with in [17]
by introducing selectors, that are essentially wrappers for
the weak learners that allow selecting the hypotheses that



perform best. We follow this scheme, apply it to the MIL
problem and extend it to the case that not all the weak
learners are known from the start (see Section IV-C).

Finally, we prove that the salient features identified by the
boosting algorithm and the selectors during the process of
training the strong MIL classifier can be used to effectively
locate the position of the hand in the image.

We present an implementation of our algorithm on an iCub
humanoid robot and use it to produce the experimental results
reported in Section V. The code has been submitted to the
iCub repository [1] and is available to all researchers using
the open-source robotic platform.

IV. MULTIPLE INSTANCE LEARNING AND ONLINE
BOOSTING

A. AdaBoost and online boosting

AdaBoost is a well established off-line boosting algo-
rithm that adopts a greedy strategy to combine a series
of inaccurate weak classifiers into a highly precise strong
classifier [15]. It does so by maintaining a distribution of
weights Λ over the training set. At each iteration, the weak
learner with the lowest misclassification rate with respect
to Λ is added to the strong classifier with a coefficient
dependent on its accuracy. The weights are subsequently
updated so that misclassified training examples become more
important at the next iteration.

The main obstacle to an online formulation of the algo-
rithm is the need to keep track of a weight distribution over
a training set that is constantly growing. In the online variant
introduced by Oza [25] the iterative structure of the algorithm
is retained, but the examples are now propagated down a pre-
ordered, fixed list of weak learners that make up the strong
classifier (Table I). Each weak learner increases (decreases)
the weight of the samples it misclassifies (classifies correctly)
before passing them on to the next weak learner.

Finally, each weak learner keeps track of its error rate
based on the weight of the samples it classifies. Because the
weak learners are fed the training examples one at a time, an
online Learning Principle (Figure 2) needs to be specified
for them.

B. MIL and Boosting

Auer and Ortner [4] proposed to combine MIL and boost-
ing from the perspective of high dimensionality features. In
their framework, a weak learner is a ball B in the feature
space RN . If we denote a bag of instances by I = {xi}, a ball
B classifies as positive the bags I such that I∩B 6= ∅. Under
these assumptions, given a training set I over which a weight
distribution Λ has been provided, the quality of any classifier
B can be assessed by evaluating its distribution accuracy
D(B,Λ), i.e. the sum of all the weights Λ associated to the
training bags correctly classified by B.

In the original work, classical Adaboost is applied to the
set of weak classifiers represented by the balls {Br(x)}
centred on every positive instance x in the training set. Weak
learners are trained by optimising their radius according
to r = argmax r′>0 D(Br′(x),Λ); however, this is not

Online Boosting

Initialization
• Let H = {h1 ,..., hN} be a set of weak classifiers with

Learning Principle L.
• Set λwn = λcn = 0 ∀n ∈ {1,...,N}.

Training

At each iteration step t a novel sample It is presented to the system:
• Set the importance weight of the sample to λ = 1.
• For n ∈ {1,...,N} do:

1) update hn ← L(hn, It, λ)
2) if hn correctly classifies It:

– λcn ← λcn + λ and λ← λ 1
2(1−εn)

else:
– λwn ← λwn + λ and λ← λ 1

2εn

where the updated error is εn =
λw
n

λc
n+λw

n
.

3) Define the relevance weight of the n-th weak learner as
αn = log

(
1−εn
εn

)
Strong Classifier

After every learning iteration, the score assigned by the strong classi-
fier to a bag I ∈ I is:

S(I) =

N∑
n=1

αn · hn(I) .

TABLE I
OZA AND RUSSEL’S ONLINE ADABOOST ALGORITHM [25]

directly feasible in an online context as training data are
provided to the algorithm in a sequential fashion.

In Table II we propose an adaptation of Auer and Ortner’s
ball learners to the online framework presented in Section
IV-A. The main difference is in the Learning Principle:
whenever a novel training bag arrives, the radius is updated
to keep the distribution accuracy maximized. However, as
new data comes in, training samples with the lowest weights
assume less and less importance and can be discarded to
avoid memory overstress.

C. Weak learner selectors

MIL over a continuous data stream can in principle be
achieved by applying the online boosting algorithm described
in Section IV-A to the weak learners introduced in Sec-
tion IV-B above. In an online context, however, it is likely
that useful and descriptive features (and hence potential
centres for new weak classifiers) will not be available from
the start, but may become available, for instance, as the
object to be learned rotates and some of its previously hidden
parts become visible. Unfortunately, the algorithm in Table I
has no way to access such information, as it requires the set
of weak learners to be defined a priori.

A possible solution is to employ a class of more general
weak learners: the selectors. These were originally intro-
duced in [17] to approach feature selection problems via
online boosting. A selector acts as a wrapper for a pool
of weak learners (Table III). Whenever a training sample



Online MIL weak learners

Definition
An online MIL weak learner is a pair h = (Br(x),Λ) associated to
a weighted distribution Λ and to a ball Br(x) ⊂ X centered on a
positive instance x .

Classification

∀I ∈ I h(I) =
{

1 if I ∩Br(x) 6= ∅
−1 otherwise

Learning Principle (Figure 2 (Left))
For any pair (I, λ) ∈ I × R+ and weak classifier h = (Br(x), λ),
the Learning Principle L(h, I, λ) is defined as follows (see Figure III
Left):
• update Λ← Λ ∪ {(I, λ)} .
• if |Λ| > nmax, eliminate from Λ the pair (I, λmin) with

minimum weight λmin.
• compute r̃ = argmaxr>0 D(Br(x),Λ).
• return the updated weak classifier h = (Br̃(x),Λ).

TABLE II
DEFINITION OF ONLINE MIL WEAK LEARNER

arrives, the selector updates all the weak learners in its
pool and marks the one with lowest error rate as its current
decision function. At the same time, the element that exhibits
the worst classification performance is substituted with a new
one, selected at random from a weak learner cache that stores
all weak classifiers corresponding to the instances in the
positive bags seen so far. This allows the boosting algorithm
to access novel weak learners as they are needed.

V. HAND DETECTION AND LOCALISATION

A. Robotic Platform

The experiments described in this paper were carried out
on an iCub humanoid robot (see Figure 1). The iCub is
a complete humanoid robot, with 53 degrees of freedom
[23]. This platform was designed to study manipulation and
for this reason particular attention has been devoted to the
design of the hands (overall each arm has 16 degrees of
freedom). Six motors actuate the head: three control the head

Fig. 2. Learning Principles. (Left) Example of a learning step for an online
MIL weak learner: a new negative instance has occurred (the cross) and the
radius is consequently reduced to keep the distribution accuracy optimised.
(Right) a typical learning iteration for a selector: the best weak learner is
chosen as current decision function while the worst one is substituted with
a completely new one randomly extracted from the weak learner cache.

Selectors

Definition
A selector is a couple s = (P, m̄) where P =
{(h1, ε1) ,..., (hM , εM )} is a set (or pool) of weak learners
hi with associated error rate εi and m̄ is the index of the weak
learner currently chosen by the selector

Classification

∀I ∈ I s(I) = hm̄(I) .

Learning Principle (Figure 2 (Right))
For any couple (I, λ) ∈ I×R+ and selector s = (P, m̄), the learning
rule L(s, I, λ) is defined as follows (see Figure III Right):
• For i ∈ {1 ,..., M} do:
− update hi ← Lh(hi, I, λ) where Lh is h’s Learning

Principle.
− update the error rate εi (as in step 2. of Table I) according

to hi(I).
• set imin = argmini εi and imax = argmaxi εi.
• substitute himax with a new weak learner chosen at random

and set εimax = 0.
• return the updated selector s = (P, imin)

TABLE III
DEFINITION OF A WEAK LEARNER SELECTOR

at the level of the neck, whereas other three control two
cameras around a common tilt axis and two independent pan
axes. The sensory system includes two cameras for vision,
an inertial sensor, force and position feedback from all the
motors (optical encoders).

The iCub is an open system, the design and documenta-
tion of hardware and software are licensed under the Free
Software Foundation licenses. All parts of the system can be
freely replicated and customised; at the moment of writing
several copies of the robot exist in research laboratories
around the world (though mostly in Europe). Researchers
working on these robots have access to a large repository of
software [1] which contains the results of the work of other
laboratories, including the work presented in this paper.

B. Hand Detection

We validate the online MIL boosting framework by testing
it on the hand detection problem. The system is trained
using the image stream from the right eye camera, acquired
while the robot performed random gaze shifts and right arm
movements. Gaze shifts involved motion of the head and
torso and increased background and illumination variability.
The frequency of hand occurrences in the data was controlled
and kept around 50%. In this paper we train the detector on
a single view of the hand. For this reason the wrist was
controlled so that the back of the hand faced the cameras
and was approximately parallel to the image plane. Both gaze
and arm random trajectories were generated using the iKin
cartesian controller [26] available on the iCub repository [1].

We present results over three datasets, each consisting of
a sequence of images. The first two datasets were recorded
in settings characterised by a different background in order



(a) Uniform background. (b) Cluttered background.

Fig. 3. SURF features extracted from images depicting two different kind
of backgrounds.

to assess the system robustness to environmental clutter.
The third dataset, on the other hand, was recorded with
the purpose of evaluating system performance on a longer
sequence and with automatically generated supervision.

Sequence 1 (Uniform): In this case the robot operated in
a relatively simple environment. The hand generally appears
on a uniform, uncluttered background (Figure 3(a)). For each
image, the presence or absence of the hand was manually
annotated by a human observer. This sequence consist of
1500 frames, of which the first 500 are used for training and
the remaining 1000 for testing.

Sequence 2 (Cluttered): Feature-rich distractors are added
to the environment, so that the features extracted from each
image have a much larger probability of belonging to the
background (Figure 3(b) shows a typical image). As for
the Uniform sequence, image labels are assigned by the
human observer. This sequence also consist of 1500 frames,
of which the first 500 are used for training and the remaining
1000 for testing.

Sequence 3 (Autonomous): As for the cluttered sequence,
images are recorded in an environment cluttered by distrac-
tors. Images are labelled autonomously by the robot during
acquisition by detecting the co-occurrence of movement in
the visual field and motion in the motor encoders. This
labelling strategy is intrinsically imprecise, leading to a 10%
of erroneous training labels. As a baseline, a second set of
labels were assigned by the human observer. This sequence
consists of 9000 images, of which 3500 are used for training
and the remaining 5500 for testing.

We measure the performance of our online MIL classifier
on the three datasets by determining the Equal Error Rate
(EER). For each sequence, results are averaged across 20
runs in order to account for the random substitution of new
weak learners in the selectors. We also test the robustness
of the algorithm to changes in the order of appearance of
the samples. For this purpose we trained the classifier in two
ways: 1) on the natural sequence of images (i.e. as they were
acquired by the robot), averaged 20 times and 2) averaging
over 20 random permutations of the sequence. Finally we
compare the performance of the online classifier with the
batch MIL algorithm of Auer and Ortner [4].

Experimental results are summarised in Table IV, that
lists for each experiment the average EER across 20 runs
and its standard deviation. In all experiments the number of
selectors was set to 100, each containing 50 weak learners;

Dataset Labelling Order Equal Error Rate
Online Offline

Uniform Manual Acquisition (8.8 ±0.3)% 7.3%

(1500 images) Shuffled (8.0±0.7)%

Cluttered Manual Acquisition (13.0±1.9)% 7.5%

(1500 images) Shuffled (11±1)%

Autonomous Manual Acquisition (2.0±0.5)% 0.5%

(9000 images) Shuffled (1.1± 0.4)%

Auto Acquisition (2.3±0.7)% 1.2%

Shuffled (1.75±0.5)%

TABLE IV
EER of the proposed algorithm (Online) and of off-line MIL Adaboost
(Off-line) over the three datasets, averaged across 20 runs. Labelling
strategies are identified with Manual (human supervision) and Auto

(automatic labelling by the robot). Images are learned either in the order
of acquisition (Acquisition) or in random order (Shuffled).

these numbers were chosen empirically.
From the comparison between the Uniform and Cluttered

datasets, it can be noticed that the noise caused by spurious
feature matches on the background influences the online MIL
boost algorithm much more than the batch version. However,
tests on the Autonomous sequence, that also features a
cluttered background, prove that this difference is largely
dependent on the limited number of training images.

Figure 4 shows a detailed comparison of the automatic
and the manual labelling strategies performed on the Au-
tonomous dataset on two distinct runs. The figure shows the
EER as a function of the number of training examples when
the classifier is trained online using automatic and manually
labelled data respectively. In this case the order of the images
was untouched. The two error curves show an oscillatory
behaviour that is progressively damped as more and more
training samples are presented to the system. This is due
to the order of presentation of the images, as consecutive
samples are strongly correlated as concerns the presence

Fig. 4. EER vs number of training images for the Autonomous dataset,
Manual and Automatic labelling.



Fig. 5. ROC curves, Autonomous sequence. The curves correspond to
manual labelling of the original (Manual) and reordered image sequence
(Shuffled), and to automatic labelling by the robot (Auto).

or the absence of the hand. The relative influence of the
resulting unbalance between positive and negative training
examples decreases as more samples are observed, leading to
a more stable EER. The ROC curves obtained after learning
all the training examples of this sequence are shown in
Figure 5, that also shows a ROC corresponding to a random
reordering of the training samples (as in Table IV).

Our algorithm consistently achieves a good detection
performance. Even in the case of a cluttered environment, the
EER approaches that of the batch version of the algorithm
when enough training examples are available. Of particular
significance for our application is that the classifier maintains
good performance when labels are assigned autonomously
by the robot (which introduces mistakes in the training
set). Also, performance is largely insensitive to the order
of presentation of the samples; this can be thought of as a
“sanity check” that confirms that the algorithm can be used
online as it can deal with correlation between consecutive
images and does not require a randomisation of the training
set.

C. Hand Localisation

The architecture of the proposed detection algorithm leads
to a natural object localisation strategy. During training, the
selectors choose from their pools the weak classifiers best
suited to detect the object in the training images, i.e. the
feature space “balls” centred on vectors that are most likely
to belong to the hand. Hence, whenever a selected weak
learner responds positively to a given image, we can consider
the 2D key-points associated to the feature(s) lying within
the ball radius as likely to be placed on the hand.

Let us consider an image positively classified by the strong
MIL classifier. The set of feature points that are positively
classified by the weak learners (depicted as blue dots in
Figure 6(a)) can be loosely interpreted as sampled from
the probability distribution p(x|I) of having the hand at
position x in the image, given the set of extracted SURF
features I . Similarly to what is done in Parzen window
estimation [14], we considered the mixture of Gaussians
obtained by centring a Gaussian kernel at each of these

(a) Set of positive respondent
features.

(b) The corresponding mixture
of Gaussians.

Fig. 6. Hand localisation: on the left the blue dots represent the position of
the SURF features positively classified by the weak learners. On the right,
the mixture of Gaussians centred on such points (σ = 10pix).

feature points (Figure 6(b)). The mode of the resulting
distribution is our estimate of the location of the hand (this
can also be interpreted as the first step in a subtractive
clustering procedure, see [11]). We further stabilise the
detection by weighted averaging of the mixture of Gaussians
across the few frames immediately preceding the image on
which detection is performed.

Figure 7 shows some localisation results. As can be seen
detection tends to be less precise when the hand is only
partially visible in the image - in some of these cases, the
MIL algorithm can still detect the presence of the hand in the
image, but localisation subsequently fails. In our experiments
using the Autonomous sequence, the detected point lies on
the hand in 98.4% of all positive frames. In these cases the
mean error distance between the detected point and the centre
of the hand (as visually estimated by a human observer) is
14 pixels with a standard deviation of 7 pixels; the apparent
linear size of the hand varies between 60 and 100 pixels
according to the image. A short video of the localisation is
included in the supplementary material.

VI. CONCLUSIONS

We presented an on-line MIL algorithm based on a variant
of Adaboost. Our algorithm tackles the MIL problem at the
level of the weak learners and includes a mechanism for

Fig. 7. Examples of hand localisation (Autonomous sequence): the green
dot represents the detected hand position. The rightmost column shows
misdetections.



online feature selection. We validated our algorithm with an
application to the problem of hand detection and localisation
with a humanoid robot, using SURF descriptors to encode
the salient points of the visual scene. We implemented
the algorithm on an iCub platform, that we used to run
experiments in realistic conditions. These showed that online
MIL boost performs consistently well even in a cluttered
visual environment, eventually reaching a detection accuracy
comparable with the equivalent off-line algorithm.

The reduced demands of MIL algorithms in terms of the
type of supervision provided to the system allowed the robot
to generate the supervision signal autonomously by labelling
images based on the co-occurrence of visual motion and
motor activity. Even in this case the system behaved reliably,
in spite of the inevitable inclusion of erroneous labels in the
training set.

As we showed, the salient feature vectors selected in the
process of learning the strong MIL classifier can be used in
a natural way to achieve reliable localisation of the hand. In
the end, the robot was able to learn autonomously not only to
detect, but also to locate its own hand within the images. We
remark that nowhere in the training process is the location of
the hand in the images specified or otherwise derived from
other cues.

It is important to point out that knowledge of the robot
kinematics can improve the hand localisation by providing
important cues on its location and orientation. In this paper
we have purposely avoided using this information. Our goal
was to solve the problem without relying on calibration
procedures or precise knowledge on the robot kinematics.
As a result the technique proposed in the paper is quite
general and can be easily adapted to any robot. Of course the
localisation could be greatly improved if the learning algo-
rithm incorporated in the detection the current configuration
of the arm obtained from the motor encoders. This could
help the system to better discriminate different views of the
hand (something we did not investigate in this paper).

To the best of our knowledge, this is the first applica-
tion of online MIL in robotics. In this paper we tested
our algorithm on the specific problems of hand detection
and localisation; however, the MIL nature of the approach
opens up a wide range of applications in cognitive robotics.
In our experiments labelling was autonomously generated
by detecting co-occurrence of events in different sensory
systems (vision and motor system); the same algorithm could
in principle be applied in contexts where supervision is
provided by integrating sensory modalities like vision, touch
and sound (or speech). Also, the flexibility of the boosting
algorithm makes it easy to integrate different features in the
classification process.
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