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Identification and functional characterization of regulatory elements in the human
genome is a challenging task. A sequence feature commonly used to predict regula-
tory activity is the co-occurrence of transcription factor binding sites (TFBSs) in reg-
ulatory regions. In this work, we present a graph-based approach to detect frequently
co-occurring TFBSs in evolutionarily conserved non-coding elements (CNEs). We intro-
duce a graph representation of the sequence of TFBSs identified in a CNE that allows
us to handle overlapping binding sites. We use a dynamic programming algorithm to
align such graphs and determine the relative enrichment of short sequences of TFBSs
in the alignments. We evaluate our approach on a set of functionally validated CNEs.
Our findings include a regulatory signature composed of co-occurring Pbx-Hox and Meis
binding motifs associated with hindbrain enhancer activity.

Keywords: regulatory element prediction; transcription factor binding site co-occurrence;
partial order graphs; dynamic programming.

1. Introduction

Identification of regulatory elements in the human genome is a fundamental chal-
lenge in the field of genomics. Regulatory elements that coordinate the expression
of genes act through the process of transcriptional regulation. Transcriptional reg-
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ulation is mediated by transcription factors (TFs) that bind to specific motifs in
the DNA in a cooperative manner. Thus, combinations of multiple transcription
factor binding sites (TFBSs) co-occurring in close proximity are good predictors
both of regulatory activity and to some extent of biological function [2, 20, 15]. This
assumption, that TFBSs in clusters are more likely to act as regulatory elements
than solitary binding sites, has formed the basis for the development of a number
of algorithms. Examples of such algorithms are Cluster Buster [5], MSCAN [11],
MCAST [1] and Ahab [17].

Motivated by the same assumption, we introduce a graph-based approach to
detect over-represented co-occurring TFBSs in conserved regulatory regions. We
do not directly use the DNA sequence of conserved non-coding elements (CNEs);
instead, we consider the sequence of TFBSs identified in each CNE. The idea is to
align such sequences of TFBSs and find the short subsequences of TFBSs that are
frequently matched in the alignments, i.e. TFBSs that co-occur in the CNEs. This
reduces the effect of spurious matches that are unlikely to occur in the same order
in multiple sequences, while taking into consideration the spatial order of TFBSs.
A similar approach was proposed in [9] which uses local alignments of TFBSs to
predict regulatory elements. Analyzing the co-occurrence of TFBSs is complicated
by the fact that binding sites may overlap. This rules out the use of classic alignment
algorithms [16, 19] (that cannot handle overlapping subsequences) and kmer-based
methods (that count the occurrences of subsequences and would enumerate the
overlapping subsequences indiscriminately). We use partial order graphs to handle
the overlap of TFBSs.

We represent each sequence of TFBSs identified in a CNE as a directed acyclic
graph (DAG). We then find the optimal alignment between two sequences of TFBSs
by aligning their corresponding graphs using a modified dynamic programming-
based alignment algorithm called the Partial Order-Partial Order (PO-PO) align-
ment algorithm [7], originally developed in the context of multiple sequence align-
ment. Finally, we measure the relative frequency of aligned TFBSs in the alignments
with respect to a background distribution.

This article is organized as follows: In Section 2.1, we show how the partial order
graph representing the sequence of TFBSs in a CNE is constructed. In Section 2.2,
we overview the PO-PO alignment algorithm in a graph framework. Measuring
the relative enrichment of co-occurring TFBSs in the alignments is discussed in
Section 2.3. In Section 3, we present the results of testing our method on a set of
functionally validated CNEs from the CONDOR database [21].

2. Methods
2.1. Graph representation of a CNE

Given a conserved non-coding sequence S = s153...S, over the alphabet N =
{A,T,C,G}, its graph representation is constructed in the following steps: First,
we assign a symbol to each TFBS identified in S to obtain the partially ordered
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..GTCAAATCAGTAATANAACCCTGATCAATAARALAATIAATAATTGTGTTGTT
AAAAGCGGACATCOAAAGGTGTTCATGGCAACATAT T TTAAAGGTTAGAAACT
CTTTTAAAATAAACGGATTTCATCTTTACACTATGTCATCTAAATCATTACTG
TGTTTGTGTATACARTTATAATCAGACGATAAATTGCAGCTATTGAATGGATT
AAGTCTGCACTTCTIGACCTCATAAATCTGAGATTGTCATAGCTTTAGAAAAT
GCTTGTG CAGSTTGATTACATGGCATG
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Fig. 1: (a) A CNE with seven identified TFBSs. (b) Graph representation of the CNE shown
in (a). Vertices have the same color as the corresponding binding sites. In this example, TFBSs
represented by vertices 8 and y overlap with the TFBS represented by vertex §.

multiset T' = {¢1,t9,...,tm}. Elements in T are in the same order as they are in
S, 1e. t; <tj (i #j) if and only if in S, every nucleotide in ¢; comes before every
nucleotide in ¢;. Next, we transform this set into a directed acyclic graph (DAG)
G. For each symbol in T, we create a vertex and label it with that symbol. In the
case where the same TF binds to overlapping sites in a CNE, only a single vertex
is created. We add an edge between two vertices if their corresponding symbols are
consecutive in 7. In this graph, each path from a source to a sink vertex (note that
there may exist multiple source/sink vertices since G can start/end with overlapping
vertices) corresponds to a sequence of non-overlapping TFBSs that were identified
in S. An example of the graph representation of a CNE is shown in Figure 1.

2.2. PO-PO alignment of CNEs

We use the Partial Order-Partial Order (PO-PO) alignment algorithm [7] for align-
ing a pair of CNEs. The PO-PO alignment algorithm is a generalization of the Par-
tial Order Alignment (POA) algorithm [12], which was proposed as an approach
to Multiple Sequence Alignment (MSA). In [12], linear representation of an MSA
was replaced by a DAG called a Partial Order MSA (PO-MSA); classic dynamic
programming-based alignment algorithms [16, 19] were modified to find the optimal
alignment between a sequence and a PO-MSA. This involved adding the branches
of the PO-MSA as additional surfaces to the dynamic programming matrix. The
set of possible moves at each position in the matrix was extended accordingly to al-
low moves to any surface at junctions between the surfaces. The PO-PO alignment
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algorithm generalized the above approach to align two PO-MSAs. Here, we use this
algorithm to find the optimal alignment between a pair of DAGs, each representing
a CNE. In the following, we re-introduce the algorithm in a graph framework as a
dynamic programming approach to finding the optimal path (corresponding to an
optimal alignment) in the strong product graph of two DAGs.

We denote the vertex set and the edge set of a DAG G by V(G) and E(G),
respectively. A directed edge from vertex u to vertex v is written as uv. Given two
DAGs G and Ga, their strong product G1 XG5 has vertex set V(G1) x V(Gz), where
vertices (v1,v2) and (ug,us) are connected if and only if for k € {1,2} either vy, =
ug or vgug € F(Gg). In this graph (which generalizes the dynamic programming
matrix), each path corresponds to an alignment of a path in G against a path in
G>2. The objective is to find the path with the optimal alignment score in the set
of all paths in G7 X G5. This requires finding the move (incoming edge) with the
optimal score at every vertex (m,n) in G; X G3. Possible moves are aligning two
symbols with substitution score s(m,n) and indels (insertions or deletions) with
gap penalty g. Vertices in G and G5 can have multiple predecessors. Hence when
computing score S(m, n) of a vertex (m, n), all possible combinations of its incoming
edges must be considered:

S(p,q) +s(m,n) pm € E(G1) and gn € E(Gs)
S(m,n) = max<{ S(m,q) +g qn € E(Gs) (1)
S(p,n) +g pm € E(Gh)

In the case of sequences that do not contain overlapping TFBSs, the corre-
sponding DAGs do not branch, and m and n can be thought of as simply positions
in the sequences. Tracing the path that leads to the optimal alignment is done
in the same way as in classic dynamic programming-based alignment algorithms.
For global alignments, back-tracking starts from vertex (m,n), where m and n are
sink vertices in GG; and G2, respectively. For semi-global alignments, back-tracking
starts from the highest scoring vertex (m,n), where m or n is a sink vertex. Starting
from the chosen start node, the optimal alignment is traced back along the product
graph to vertex (s1, s2), where s; is a source vertex in G; for at least one i € {1,2}
(semi-global alignment) or both (global alignment). An example of an alignment is
shown in Figure 2.

We note that using the Needleman-Wunsch [16] alignment algorithm, finding the
optimal alignment between two sequences with overlapping subsequences requires
aligning all possible pairs of sequences (without overlapping subsequences) corre-
sponding to the alternative paths in their DAGs, which will result in an exponential
complexity as the number of overlaps increases. In contrast, the above algorithm
finds the optimal alignment between two DAGs efficiently, with a time complexity
that is quadratic with respect to the number of vertices in each DAG.
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Fig. 2: (c) Strong product graph of DAGs shown in (a) and (b). The path corresponding to the
optimal global alignment shown in (d) is coloured in red. (d) An optimal global alignment between
the two sequences represented by DAGs shown in (a) and (b).
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2.3. Measuring the frequency of co-occurring TFBSs

We find the optimal alignment between all pairs of CNEs in the dataset. For each
pair of CNEs, we obtain two alignments, one for each of the two possible relative
orientation of the sequences. The optimal alignment between the CNEs is chosen
as the one with the highest score.

We search the alignments for words composed of up to four aligned symbols,
i.e. co-occurring TFBSs. We then compute the relative frequency of each word with
respect to a background distribution (see Section 3.1 for details) as follows: Let
nco(w) be the number of occurrences of word w in the alignments of sequences in
the main dataset (denoted by C), and let np(w) be the number of occurrences of w
in the alignments of sequences in the background distribution (denoted by B) using
the same type of alignment (global or semi-global). We denote the length of w by
|w|. Not all words occurring in C are present in B, and vice versa, i.e. ng(w) = 0 or
ne(w) = 0 for some w. To account for unseen words, we apply Laplace smoothing
by adding the constant A to all counts of w. The probability of occurrence of w in
the alignment of main sequences is computed as follows:

ne(w) + A
> (ne(w)+A)

w/IECUB
lw’|=|w]

Po(w) = (2)

Note that in computing Pe(w), only words of the same length as w are consid-
ered. The probability of occurrence of w in the alignment of background sequences,
Pp(w), is computed in the same way. The relative frequency of w is computed as
follows:

Po(w)
Pp(w)

Rep(w) = (3)

3. Evaluation

We tested our approach on a set of CNEs downloaded from the CONDOR
database [21]. Many of these CNEs have been functionally validated previously [8].
We found both the optimal global and semi-global alignments of CNEs in this
dataset, which we will refer to as the global and semi-global sets, respectively. We
then extracted the words of length two, three and four in the alignments and com-
puted their relative frequency with respect to a background distribution. Finally, we
selected the over-represented words and compared them to the results of functional
assays.

3.1. Data

The main dataset consists of four orthologous sets of human, mouse, rat and fugu
CNEs retrieved from the CONDOR database. We chose a set of 31 binding sites
of representative family members of TFs known to play a role in developmental
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Table 1: Names of TF families from which the representative TFs were chosen.

Transcription Factor Families

Cdx Meis Runx
Ets Nkx Six
Forkhead Nrf Sox
Gata Pax Tecf
Hmx Pbx Tfap
Hox Pitx Zic
Irx Pou

Maf Rix

patterning (Table 1). The binding preferences for these TFs were extracted from
the UniPROBE [18] and JASPAR [13] databases. We scanned the CNEs for the
occurrence of all TFBSs using FIMO [6]. For more details on the data see [8].

The relative frequency of each word in the PO-PO alignments of the above
dataset was computed with respect to a background distribution obtained by shuf-
fling the sequences in the main dataset. Each sequence in the background distribu-
tion was generated by randomly shuffling a CNE in the main dataset. We repeated
this process ten times to generate ten sets of shuffled sequences. The number of
occurrences of a word in the alignments of background sequences was averaged over
the ten sets.

3.2. Parameters

The alignment parameters and the Laplace smoothing constant were set as follows:
The matching score between two TFBSs was defined in a way that takes the count
of each TFBS in the main dataset into consideration. Let n(t) be the number of
times that TFBS ¢ has been detected in CNEs in the main dataset and N be the
total number of all TFBSs in the main dataset. The matching score s(t, ) is defined
as:

1 ! ifr=t

s(t,r) = 0og P2(1) ir= (4)
0 otherwise

where P(t) = n(t)/N. The linear gap penalty is -1. The smoothing constant ()
was set to 1.

3.3. Results

The global and semi-global sets contain 229 and 270 words, respectively. The number
of words of length three and four is low and collectively, they constitute less than
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Table 2: Top five Over-represented words of length two in the global set and their relative
frequency (symbols used to represent TFBSs are arbitrary and are only included to allow a rapid
assessment of the similarity between the words).

Word TFs Relative Frequency
¥4 Meis, Pbx-Hox 20.3
de Pbx-Hox, Zic 5.4
Ye Meis, Zic 2.3
oy Cdx-2, Meis 1.8
By Hoxd10-Hoxd13, Meis 1.5

15% of the words in the sets. The two sets have 207 words in common. In 99%
of cases, the words in the global set that are over-represented with respect to the
background distribution are also over-represented in the semi-global set, and vice
versa. Hence, the results are stable irrespective of the type of alignment. The top
five co-occurring TFBSs with the highest relative frequency are listed in Table 2.

The words ‘¢’ and ‘e’ are of note since Zic has been shown to regulate retinoic
acid (RA) signaling during the early development of the embryo which affects the
expression levels of Hox and Meis during the hindbrain patterning [4]. Moreover,
both Meis and Zic are involved in the patterning of the brain and the spinal cord, and
as such, are likely to be co-expressed spatially and temporally in the embryo [3, 14].
The word ¢S+’ represents the known interaction of Meis with Hox [10].

The regulatory activity driven by the highest ranked word ‘y§’, composed of
co-occurring Meis and Pbx-Hox binding motifs, has been previously functionally
validated in our dataset [8]. In [8], this syntax was identified in a set of conserved ver-
tebrate hindbrain enhancers. The authors showed that Meis TFBSs are frequently
proximal (within 100bp) to Pbx-Hox TFBSs, and that both TFBSs are required
for hindbrain enhancer function. They then used this syntax to accurately predict
hindbrain enhancers in 89% of cases from our dataset. Furthermore, they refined
and used this syntax to predict over 3,000 hindbrain enhancers across the human
genome, demonstrating the predictive power of this approach.

4. Conclusion

We presented an approach to identify over-represented combinations of TFBSs in
conserved regulatory regions based on the alignment of sequences of TFBSs appear-
ing in CNEs. We showed how the overlap of TFBSs can be handled by representing
the sequences as partial order graphs and described a modified dynamic program-
ming algorithm to align these graphs. Moreover, we discussed a way to measure the
relative frequency of subsequences of TFBSs in the pairwise alignments in order to
detect frequently co-occurring binding motifs. Comparison between the results ob-
tained using our approach and those obtained using functional assays showed that
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our approach can be employed to computationally identify combinations of TFBSs

which can then be prioritized for functional validation.
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