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Abstract. Combining information from multiple heterogeneous data
sources can aid prediction of protein-protein interaction. This informa-
tion can be arranged into a feature vector for classification. However,
missing values in the data can impact on the prediction accuracy. Boost-
ing has emerged as a powerful tool for feature selection and classifica-
tion. Bayesian methods have traditionally been used to cope with missing
data, with boosting being applied to the output of Bayesian classifiers.
We explore a variation of Adaboost that deals with the missing values at
the level of the boosting algorithm itself, without the need for any den-
sity estimation step. Experiments on a publicly available PPI dataset
suggest this overall simpler and mathematically coherent approach may
be more accurate.

1 Introduction

One of the goals of systems biology is to understand the roles of proteins at vari-
ous levels of biological organisation, from molecular function through to cellular
and physiological function. The identification of networks of interacting proteins
is a step to suggesting higher levels of organisation [4]. Experimental data for
protein-protein interactions is available for a number of organisms in repositories
such as Biogrid [5] and Intact [12]. However protein interaction datasets often
contain many false positives [17, 7, 6] and are for most organisms largely in-
complete. This has prompted the development of a number of machine learning
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approaches for the prediction of protein-protein interactions. Although infor-
mation from sequence alone has been used [19, 25], several approaches combine
heterogeneous sources of data. Information from such sources can form compo-
nents of a feature vector associated with a pair of proteins. Given a suitable
Gold Standard comprising pairs of proteins that are known to interact and pairs
known not to interact, a classifier can be constructed that attempts to discrimi-
nate interacting from non-interacting pairs. The features obtained from various
data sources are widely heterogeneous and could include, for example, the ex-
tent to which the two proteins share similar patterns of co-expression, or the
existence of sequence–similar proteins known to interact in another organism.
The performance of the classifier can be assessed and the classifier can then be
used to predict interactions between pairs of proteins for which no experimental
information is yet available. Previous studies have constructed predicted inter-
actomes for various organisms including yeast, Arabidopsis and human, using
machine learning methods such as Bayes classifiers [11, 15, 24] and Support Vec-
tor Machines [3, 25, 13]. However, experimental measurements of each feature are
usually available for different subsets of proteins pairs. Therefore, as more infor-
mation is combined from multiple heterogeneous sources, the way that missing
observations are treated becomes increasingly important. Arguably, this some-
what limits the available choices of classifiers, unless non-trivial pre-processing
steps (typically Bayesian in nature) are applied. For instance, kernel methods
offer no straightforward way to handle missing data, as the implicit mapping
carried out by the kernel depends non-linearly on all components of the input
vector (see for instance [20]); typical applications of ensemble methods such as
AdaBoost [8] also rely on preprocessing.

In [11] a Naive Bayesian approach was used to predict protein-protein in-
teractions in yeast by integrating a few genomic features. A larger number of
features as well as a boosted classifier were used to assess the limits of data
integration in [15]. Here we explore a variant of the Adaboost algorithm that
is able to deal explicitly with missing feature values. Our approach matches or
betters the results obtained by Bayesian preprocessing and is overall easier to
implement. More importantly, it deals away with the arbitrariness inherent in
density estimation and fits into the same solid theoretical framework as Ad-
aBoost, especially with regard to convergence guarantees.

1.1 Dealing with missing features

Several strategies have been proposed for dealing with missing features (for an
overview, see [20]). At least two typologies of approaches have been applied
to the database we study (see Section 3). The first, most obvious strategy is
simply to discard the examples for which data is missing. This approach has
been investigated in [14], but complete information for each feature was only
available for a small subset of the protein pairs.

Another classical technique that can be employed to deal with missing data is
to complement the dataset with an estimate or a default value when a particular
feature is missing. One way in which this has been done is by learning Naive



Bayes classifiers from (subsets of) the raw features [11]. Since Naive Bayes clas-
sifiers can fall back on the prior, missing data are no longer an issue (cf Section
6.2); a more advanced classifier can then be applied to their output [15].

However, training a Naive Bayes classifier involves a density estimation step.
Density estimation is an ill–posed and difficult problem [9]; the variety of the
techniques available (Parzen windows, histograms, Expectation Maximisation
to name a few) is indicative of the element of arbitrariness that this process
entails. Indeed, some of the most successful classification algorithms such as
Support Vector Machines [26] and Adaboost [8] owe their effectiveness at least
in part to the fact that they avoid estimating densities for their input, but rather
optimise the margin or a bound on the empirical error; from this point of view,
introducing a preliminary density estimation step seems somewhat incongruous.

In this work we investigate an effective alternative to Naive Bayes classifiers
for dealing with missing feature values when Adaboost [8] is used. Adaboost
is an adaptive strategy for combining multiple binary classifiers with slightly
better–than–random performance (the so-called Weak Learners) into a highly
accurate strong classifier. The algorithm works by maintaining a list of weights
over the training examples, so that “difficult” examples (that are misclassified by
many Weak Learners) become more important over time. Adaboost iteratively
chooses the optimal Weak Learner (WL) with respect to the weights, adds it to
the strong classifier with an appropriate coefficient, and updates the weights of
the training examples (for details, see Section 2). When each WL is a function of
a single feature (for instance a simple threshold on the feature value, also known
as a decision stump), Adaboost iterations essentially perform feature selection.

Training Bayesian classifiers on the raw feature values and then boosting
them [15] amounts to dealing with missing data in the WLs, so that the missing
values are hidden from Adaboost. The alternative we here explore is to use WLs
that abstain (i.e. do not return a decision) on missing data, and let the boosting
algorithm deal with the problem.

Although variants of AdaBoost for WLs that abstain have been introduced
early on [23], they have not been as widely applied as the standard algorithm;
specifically, to the best of our knowledge, they have not yet been applied to PPI
data. One of the reasons for this may be that these algorithms have been intro-
duced in the slightly different context of confidence-rated predictions, i.e. under
the assumption that the WLs provide a graded output instead than a binary
decision. Also, while a considerable computational simplification of standard
Adaboost has made the implementation of the algorithm straightforward [2], to
the best of our knowledge this has not yet been generalised to the case of WLs
that abstain.

In this paper we introduce in detail the simplified version of the algorithm for
classifiers that abstain and we apply it to a widely investigated set of features
for PPI in yeast [15]. Our results show that avoiding density estimation and
dealing with missing features at a late stage may indeed be the better option,
at least when Boosting algorithms are used.



Adaboost for weak learners that abstain (simplified):

Input:

1. Labelled training vectors {(xi, yi)}, with yi ∈ {−1,+1}.
2. Weak learners {hj(x) : X → {−1, 0,+1}}.

Initialise the weights d1,i =
1

m
.

For t = 1, . . . , T :

1. Train each weak learner hj(x). Using the current distribution of weights dt,i, com-
pute the total weight of the training examples on which it abstains (Wa), that it
classifies correctly (Wc) and that it misclassifies (Wm).

2. Select the weak learner ht that minimises Z = Wa+2
√
WcWm. Check that Z < 1;

otherwise quit.
3. Compute αt =

1

2
log(Wc/Wm) and update the weights:

dt+1,i =











dt,i/(Wa

√

Wm/Wc + 2Wm) if ht misclassifies x,

dt,i/(Wa

√

Wc/Wm + 2Wc) if ht classifies x correctly,

dt,i/Z if ht abstains on x.

Output the strong classifier: H(x) = sign
(

∑T

t=1
αtht(x)

)

Table 1. Simplified version of AdaBoost for weak learners that abstain (Ada-ABS).
This algorithm is equivalent to the one introduced in [23] and reduces to standard
Adaboost in the case of weak learners that never abstain, as is the case with Naive
Bayes classifiers.

2 Boosting weak learners that abstain

We use the AdaBoost algorithm for classifiers that abstain given in [23], since
the choice of parameters in this algorithm guarantees the tightest bound on
the training error. However, instead of following the traditional formulation of
Adaboost, we extend to the case of classifiers that abstain the simplification
presented in [2]. As shown in [16], such simplification can be seen as a direct so-
lution of the dual formulation of the Adaboost minimisation problem. Extension
to the case of WLs that abstain is straightforward, and leads to the algorithm
outlined in Table 1 (henceforth Ada-ABS). We emphasise that this simplified
version computes, step by step, the same weights and the same final decision
function as specified in [23]. The main advantage is its simplicity; by compar-
ison, in the original formulation of Adaboost [8] the weight update procedure
is

dt+1,i =
1

Zt

dt,i exp (−αtyiht(xi)) , (1)



with
Zt =

∑

i

dt,i exp (−αtyiht(xi)) (2)

The algorithm for classifiers that abstain is very similar to classical Adaboost,
with the following main differences:

1. the value of α is log(Wc/Wm)/2 (different variants of the algorithm specify
other choices for α);

2. at each iteration the weak learner that minimises Z is chosen, as opposed to
the learner that minimises the weighted classification error Wc.

The reason for points 2. and 3. above is that, at each iteration, Z multiplies a
bound on the training error; the choice of αminimises Z givenWc andWm. When
Wa = 0, i.e. the weak learner never abstains, this is equivalent to the standard
choice α = 1/2 log((1 − Wm)/Wm). It is easy to see that if no weak learners
abstain also the weight update equations, and hence the entire algorithm, revert
to standard Adaboost.

Notice that, since Z = Wa+2
√
WcWm, weak learners that abstain on a large

number of training examples (or on training examples carrying a large weight)
are penalised irrespective of their performance on the examples on which they
do provide a decision. Also, since Zt < 1, training examples on which a weak
learner abstains see their weight increased for the following iteration. Therefore,
the algorithm will eventually select one or more weak learners to classify each
of the training examples.

3 Dataset

In this study we use a Gold Standard dataset3 for the prediction of protein-
protein interactions as described in [11] and [15]. This is based on the MIPS
(Munich Information Centre for Protein Sequences) hand curated catalogue. We
report experimental results over a subset of 3161 proteins, as already described
in [15]. This subset contains 2,711,441 interacting or non-interacting protein
pairs, for which at least one of the 16 genomic features defined in Table 2 is
available. For a complete definition of the features and of their relationship to
protein-protein interactions see [15]. In the whole dataset, a sample consists of
two protein names, 16 genomic features and a label that specifies if the proteins
interact or not. The distribution of the features is shown in Figure 1. The dataset
has a large number of missing features, even after discarding from the dataset
the samples for which no data at all is available; the percentage of missing data
by feature is shown in Table 2.

4 Results

We compare the performance of the three strong classifiers obtained by boosting
three different sets of WLs. These are implemented as threshold-based classifiers

3 Available online at http://networks.gersteinlab.org/intint



Features Description Missing data (%) IG Rank
Positive Negative Total Orig. Compl.

F1 mRNA Co-expression 7.71 1.03 1.05 7 4
F2 MIPS Functional Similarity 2.41 51.41 51.26 6 1
F3 GO Functional Similarity 8.85 76.06 75.86 5 2
F4 Co-Essentiality 73.85 78.78 78.76 8 8

F5 Absolute mRNA Expression 5.62 0.27 0.28 9 5
F6 Marginal Essentiality 6.21 4.25 4.26 10 7
F7 Absolute Protein Abundance 37.07 43.97 43.95 11 11
F8 Co-regulation 52.15 97.79 97.65 16 16
F9 Phylogenetic Profiles 88.92 99.03 99.00 4 6
F10 Gene Neighbourhood 96.22 99.96 99.95 3 10
F11 Rosetta Stone 98.63 99.95 99.95 2 9
F12 Synthetic Lethality 98.75 99.97 99.97 15 15
F13 Gene Cluster 99.98 99.98 99.98 14 14
F14 Threading Scores 98.75 99.96 99.95 13 13
F15 Co-evolution Scores 99.98 99.99 99.99 12 12
F16 Interologs in other Organism 54.65 99.85 99.71 1 3

Table 2. Percentage of missing values by feature over the 8, 250 interacting protein
pairs, 2, 703, 191 non-interacting pairs (and 2, 711, 441 pairs total) listed in the Gold
Standard after removing the pairs for which no feature values at all are given. Also
shown is a rank of the feature according to information gain [18] for the original dataset
and a dataset complemented by the mean.

(decision stumps), a common choice for WLs (see Section 6.1). The WLs are
trained (i) on the log odds of interaction for a particular feature (Bayes WLs), (ii)
on the raw feature values (WL-Abs) or (iii) on the raw feature values augmented
by the Naive Bayes score (Section 6.2), considered as an additional feature (WL-
Abs+Naive Bayes). WLs trained on the raw feature values abstain (return a
value of zero) when the feature value is missing. We use the Ada-ABS algorithm
outlined in Table 1. It should be noted that, as detailed in Section 2, Ada-ABS
reverts to standard Adaboost when the weak learners do not in fact abstain.

A Naive Bayes Classifier (NBC) trained on all features is used to give a base-
line performance. A common objection to boosting approaches based on decision
stumps is that correlations between feature values or higher order statistical mo-
ments that might be exploited, for instance, by a Support Vector Machine are
treated very poorly, as each WL bases its binary decision on a single feature.

As a coarse estimate of this limitation, we augment the set of WLs that
abstain with a decision stump based on the posterior estimate provided by the
baseline NBC. As we will see, when the percentage of missing data is limited
this combination of WLs that abstain with an NBC improves performance well
beyond the level achieved by the classical approach of applying Bayesian estima-
tion to the single features separately and then boosting them. As the percentage



Fig. 1. Distributions of the feature values (on a log scale). Colour indicates the fraction
of interacting protein pairs in each bin. Blue indicates that the bin mainly corresponds
to non-interacting pairs; red bins predominantly account for interacting pairs.

EER (%) All features F1–F4 F5–F16 w/o F2,F3

Naive Bayes Class. 5.0% 5.3% 27.3% 12.2%
Bayes WLs 3.2% 3.5% 18.6% 13.0%

WLs that Abstain 3.0% 3.3% 17.0% 11.7%
WL-Abs + NBC 2.0% 2.5% 17.0% 12.2%

Table 3. Summary of the EER for different choices of classifiers and of features, aver-
aged over 4 cross-validation rounds. The database and the first two algorithms listed
were explored in [11, 15]. Bold values show the minimal EER by set of features. Boost-
ing WLs that abstain is always better than both Naive Bayes and the boosted Bayesian
WLs. Complementing the WLs that abstain with the NB classifier can improve per-
formance when multiple observations with low percentages of missing data are used.

of missing data increases our results suggest that the NBC becomes less infor-
mative; weak learners that abstain still provide optimal results in this case.

4.1 Classification accuracy

We perform a series of four-fold cross-validation experiments on the dataset
described in Section 3 with an increasing number n of boosting iterations, using
different subsets of the features listed in Table 2. A schematic of the results is
given in Table 3.

Figure 2 shows the Equal Error Rate averaged across the four cross-validation
runs as a function of n, when all the 16 features are used for training.

The minimum error rate when boosting Bayes classifiers is in this case achieved
after 207 iterations (average EER=3.2%). For WLs that abstain, a slightly lower
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Fig. 2. Equal Error Rate as a function of the number of iterations for AdaBoost using
Bayes WLs, WLs that abstain and the combination of WL-Abs and the Naive Bayes
Classifier trained on all features.

EER is obtained after 51 iterations (average EER=3.0%). If we consider the es-
timate of the NBC as a new feature and boost it with Ada-ABS together with
the WLs that abstain, the average EER is lowered significantly to 2.0% (at 293
iterations). This is more that 30% better than boosting the Bayes WLs and less
than half the average EER of the baseline Naive Bayes Classifier (which is 5.0%).

The ROCs corresponding to the optimal average EERs listed above are dis-
played in Figure 3, for all four cross-validation rounds separately. As can be seen,
all boosting approaches widely improve on the Naive Bayes. Weak Learners that
abstain yield slightly better performance than boosted Bayes WLs, with a more
marked advantage in the high sensitivity part of the curve. The best ROC curves
are obtained by adding the Naive Bayes Classifier as a weak learner, arguably
because this captures the correlation between the features — a point that is
confirmed by our results in Section 4.3 below.

In predictive usage, one would need to set the number of iterations using a
validation set and extrapolate. This applies both to Adaboost with Bayes WLs
and to the algorithms we introduce. Convergence and generalisation ability of
Adaboost as a function of the number of iterations is a widely investigated
topic [22, 21], that is largely beyond the scope of this work. Empirically from
Figure 2 we notice that, after the decision function stabilises in the first 30
iterations, the boosted classifiers are fairly insensitive to the choice of the number
of iterations: the average EER oscillates in a band narrower than 1% as n is
increased from 30 to 300. However, Ada-ABS has a slight tendency to over-fit
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Fig. 3. Superposed ROC curves for all 4 cross validation rounds. The curves displayed
correspond to Bayes WLs (207 iterations), WLs that abstain (51 iterations) and a
combination of WL-Abs and the Naive Bayes classifier (293 iterations).

after about 60 iterations, while Bayesian WLs are more stable. This is likely
due to the fact that density estimation with a histogram (Section 6.2) effectively
reduces the choices for the weak learners by limiting the number of different
thresholds available for each feature to the number of bins in the histogram.
In turn, this seems to regularise the decision function, albeit at the expense of
classification accuracy.

However, it should be noted that while the curves in Figure 2 tell the en-
tire story for WL-Abs, of which the number of iterations is the only parameter,
Adaboost with Bayesian (weak) classifiers includes in addition many more pa-
rameters hidden in the density estimation step; this should be kept into account
when assessing the relative stability of the algorithms.

4.2 Structure of the decision function

In Table 4 we list the features that contribute to the decision function for each
of the ROC curves in Figure 3. Features are listed in the order in which the
corresponding WLs are first selected by the boosting algorithm; the number
of times a particular feature is chosen (possibly with different thresholds) is
indicated in parentheses.



Classifier Weak learners (occurrences)

WLs that F5(3,5,6) – F2(15,18,19) – F1(7,9,11) – F3(4,5,7) – F6(5,9,7,11) –
Abstain F16(2) – F4(2),F7(1,2) – F8,12(1), F4(2) – F8,12(1) – F7,8(0,1) –
(51 iter.) F14(0,1)

Bayes WLs F16(31,33) – F2(30,37,38) – F3(25,27,30) – F1(19,23,27,34) –
(207 iter.) F5(17,18,25,34) – F4(6,7,9) – F6(20,24,29,30) – F8(4,5) –

F7(3,4,6,7) – F12(9,13-15) – F14(0,2,6,7) – F11(0,3) – F9(0,1,2)

WLs that NB(64,78,80) – F1(10,16,25) – F2(91,108,109,112) – F5(11,18,19),
Abstain plus F16(2) – F5(28),F16(1,2) – F3(37,40-42) – F4(2),F6(21,25,30) –
Naive Bayes F4(2,3),F6(18) – F8(2),F12(1) – F8(1,2),F12(1) – F14(2,3),F7(8) –
(293 iter.) F7(5,10),F9(2),F11(1) – F7(1),F9(1,2),F11(1) – F11(1),F14(0,1)

Table 4. Features used by the WLs appearing in the decision functions that yield the
ROC curves in Figure 3. WLs are listed in order of first appearance. The number of
times each feature is chosen is given in parentheses. Multiple comma–separated entries
correspond to variations across the four cross-validation runs. NB indicates the WL
corresponding to the Naive Bayes Classifier.

As can be seen, the order in which the features are chosen is fairly stable for
each set of WLs, with variations between the cross-validation rounds occurring
for higher numbers of iterations. By comparison with Table 2 we see that the first
few features are chosen among the most discriminative features and among those
with the lowest percentage of missing values. Feature F5, the first feature when
using Weak Learners that Abstain, has the lowest total percentage of missing
data, while F16 (the first Bayesian WL) has the third highest information gain
on the complemented dataset (and the highest on the original dataset).

Probably as an effect of the unbalance between positive and negative training
examples, overlap with the positive training data seems to be more important
than the coverage of the set of non-interacting pairs. Feature 16 for instance has
99.71% missing data but covers about 45% of the positive training set. Similarly
Feature 3 has 75.86% of missing data overall, but only just short of 9% of the
positive training data are not covered. Conversely, features 10, 13 and 15 do not
appear at all in the optimal decision functions (except insofar as they contribute
to the NBC). As shown in Table 2, these features are unavailable for at least
99.95% of the Gold Standard data, with very limited coverage of both interacting
and non-interacting pairs.

Table 4 provides a picking order, but it does not specify the weight of each
feature in the decision function nor the dependence on the feature value. These
data are displayed in Figure 4 for the decision function resulting from 51 itera-
tions of Ada-ABS on WLs that abstain.

More specifically, with reference to the strong decision function H(x) defined
in Table 1, for each feature j the figure shows

Hj(x) =
∑

t∈Sj

αtht(xj) (3)
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Fig. 4. Contribution of the single features to the decision function for Ada-ABS, 51
iterations. F6 has an additional threshold at -27.63, F14 at +287.00, and F16 at +50.00.

where Sj is the set of iterations in which a weak learner that is a function of
feature j has been chosen . As can be seen, the functions HJ corresponding to
the 11 distinct features all have similar range, suggesting that they all contribute
significantly to the final decision. This confirms that the classifier can effectively
extract information from features with high percentages of missing data.

Figure 4 also shows how boosting can give different weights to specific inter-
vals of feature values by combining simple step-wise weak learners with different
thresholds. The type of these intervals (open or close) also depends on the parity
of the number of weak learners for the specific feature. As the first row of Table 4
shows, a few features have a marked preference for an odd or an even number
of occurrences. This explains the jagged appearance of the EER curves for WLs
that abstain in Figure 2 .

4.3 Exploring subsets of features

According to [15], near-optimal performance should be achieved in the case of
boosting Bayes WLs even when only the first four features are used (mRNA
co-expression, MIPS functional similarity, GO functional similarity and Co-
essentiality). We test this by limiting the boosting algorithm to select among
weak learners trained on the first four features only (both for Bayes WLs and
WLs that abstain). The resulting average EERs are reported in the third col-
umn of Table 3. Indeed, for both the baseline Naive Bayes Classifier and boosted
Bayes WLs, the average EERs increase by less than 10%. The lowest average
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EER of 2.5%, however, is obtained using a combination of WLs that abstain
with a WL that thresholds the NBC; this is less than half the EER of the base-
line NBC (5.3%), and actually improves on both the NBC and boosted Bayes
WLs even when those are allowed to use all features (see the second column of
Table 3). It should be noted that, when we allow our algorithm to use all fea-
tures, the EER is reduced by a further 25%. This suggests that F1 to F4 do not
actually capture all the information available, and that our approach is better
at extracting information from the remaining features (F5 to F16).

To further test the behaviour of our algorithms on features that mostly have
high percentages of missing data and have previously been found to be less
informative, we perform cross-validation tests on the database using features F5
to F16 only. Average EERs are displayed in the fourth column of Table 3. As
can be seen, WLs that abstain outperform the other approaches. Adding a WL
based on the Naive Bayes classifier does not in this case improve accuracy; this
is, in our view, a consequence of the high number of missing feature values and
of the consequent overall poor performance of the NBC itself.

Following [15] we also explore the effect of removing two strong features,
namely F2 and F3, that are based on functional similarity and dominate the
prediction performance. Since the accurate assignment of a functional category
to a protein generally involves a manual curation step, prediction performance
without these features may also better reflect a more general application case.

In Figure 5 we report the average EER as a function of the number of it-
erations after removing features F2 and F3 from the database. The minimum
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Fig. 6. ROC curves for Naive Bayes classifiers (33 iterations) and Raw Features (27
iterations). Curves for the four cross-validation rounds are superposed. Note how boost-
ing the Raw Features leads to higher precision as well as increased stability.

average EER for boosted Bayes WLs is 13.0%, while for WLs that abstain it
is 11.7% (see Table 3, last column). These values are achieved after 246 and 27
iterations respectively. The average EER of the baseline Naive Bayes Classifier is
12.2%; adding its output as a WL to the WLs that abstain does not in this case
improve accuracy. The corresponding ROC curves for all four cross-validation
round and the best choice of the number of iterations are displayed in Figure 6.

5 Conclusions

The integration of multiple heterogeneous data sources is important in systems
biology as it has the potential to impact on prediction. In order to exploit infor-
mation that may be available only on parts of the dataset, effective strategies
for handling missing data are required.

We explore the use of a variant of Adaboost (originally derived in the context
of confidence–rated predictions) that allows the weak learners to “abstain” ,
i.e. not to return a decision whenever a feature value is missing. We introduce
an exact simplified mathematical formulation of this algorithm along the lines of



an existing simplification of AdaBoost. The simplified algorithm is hardly more
complicated to implement than Adaboost, and reverts to standard Adaboost
when no data are missing.

We test our algorithm over different subsets of features from a widely used
database of yeast PPI data, that includes measurements with high numbers of
missing features. Experimental results show that our approach can handle large
percentages of missing data effectively, consistently outperforming the common
alternative of boosting single-feature Bayesian classifiers. Besides being overall
easier to implement, our approach deals away with the theoretical and practical
complications of density estimation.

Our results also indicate that a Naive Bayes classifier trained on all features,
although overall far less effective on its own, may capture correlations between
the features that escape an approach based on decision stumps; when this hap-
pen, this information can be integrated in the boosting framework by considering
the Naive Bayes classifier as an additional weak learner. In future work we pro-
pose to investigate the use of other choices for the weak learners that may better
account for dependency between the features.

6 Appendix

6.1 Weak learners that abstain

We use decision stumps that abstain to deal with missing feature values in the
dataset. More in detail, given training vectors x with missing components we
define a weak learner for each of the N features (components) in the following
way:

hj(x) =











+pj if xj ≥ τj

−pj if xj < τj

0 if xj is missing.

(4)

The “polarity” constant pj ∈ {−1,+1} allows us to cater for features represent-
ing similarities and dissimilarities in the same framework. Both pj and τj are
optimised at each iteration to minimise Z as defined in Table 1.

6.2 Naive Bayes classifiers

A Naive Bayes Classifier is based on the Bayes Rule and on the assumption that
the features are conditionally independent given the class. It assigns the most
probable label value ŷ to the vector x = {x1, . . . , xN} according to:

ŷ = sign





P (+1)

P (−1)

N
∏

j

P (xj |+ 1)

P (xj | − 1)
− τ



 (5)

where P (y) is the prior probability of class y, P (xj |y) are the class-conditional
densities and τ is a threshold used to set the operation point of the classifier.



NBCs provide a straightforward way of dealing with missing feature values:
when a given feature xj is missing the corresponding likelihood ratio P (xj | +
1)/P (xj | − 1) in Equation 5 is set to 1. In the limit case that all the features of
x are missing, the classifier can still return a prediction relying on the a-priori

odds P (+1)/P (−1).
Arguably the most critical part in Naive Bayes classification is the compu-

tation of robust estimates for the densities P (y) and P (xj |y). In this study,
the prior probabilities P (y) are estimated as the proportion of each class in the
training set. The conditional probabilities P (xj |y) are more difficult to estimate,
mainly because many of the the xj are continuous features. The seminal work
of [10] has shown that a simple discretization technique by histograms can be
used for this dataset. When known (see for example [1]), the numbers and ranges
of the bins used in former studies have been employed in this work; otherwise,
similar binning strategies have been used.

In order to obtain smooth estimates, the m-estimate method was used with
m = 2 to compute the probabilities from frequencies of labels according to

P (xj = b|y) = count(b, y) +mP (y)

count(b) +m
(6)

where count(b, y) is number of samples with label y in bin b, count(b) is the total
number of samples in bin b and P (y) is the prior probability of label y.

In this study, the classifier defined by Equation 5 is referred to as the Naive
Bayes Classifier. The single–feature Bayes WLs are obtained by thresholding the
likelihood ratio P (xj |+ 1)/P (xj | − 1) for each individual feature xj ∈ x.
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