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Abstract. Convolutional Neural Networks have proved extremely suc-
cessful in object classification applications; however, their suitability for
texture analysis largely remains to be established. We investigate the use
of pre-trained CNNs as texture descriptors by tapping the output of the
last fully connected layer, an approach that has proved its effectiveness
in other domains. Comparison with classical descriptors based on signal
processing or statistics over a range of standard databases suggests that
CNNs may be more effective where the intra-class variability is large.
Conversely, classical approaches may be preferable where classes are well
defined and homogeneous.
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1 Introduction

Texture, along with colour, shape and gloss, is a fundamental visual feature
of objects, materials and scenes. As a consequence, texture analysis plays an
important role in several computer vision applications, such as image classifica-
tion, content-based image retrieval, medical image analysis, surface inspection
and remote sensing. Research on texture has been intense for more than forty
years now: ideally, we could trace its origin as far back as 1973, when Haralick’s
seminal work on co-occurrence matrices [12] was first published. Since then a lot
of different textures descriptors have been proposed in the literature: so many
that Xie and Mirmehdi referred to them as ‘a galaxy’ [29]. Among them, methods
based on signal processing like Gabor filters and wavelets dominated the scene
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for a while, whereas in the last two decades statistical and rank-based features
have become more popular. The bag-of-features paradigm [30] has also become
the prominent aggregation strategy.

In recent years the appearance of Convolutional Neural Networks (CNNs)
[14] represented a major breakthrough that changed the outlook for the pattern
recognition field. This new paradigm for image analysis proved to consistently
outperform pre-existing methods in a number of applications including object
image recognition and scene classification [14,26]. Central to this scheme is the
ability to learn complex image-to-object or image-to-feature mappings starting
from very large datasets of labelled images. More importantly, pre-trained CNNs
have also showed to be able to generalise quite well to datasets different from
those they are trained on [8,26,31], a feature that makes them amenable to being
used ‘out of the box’ in a potentially large number of applications. Yet the real
effectiveness of CNN-based methods with fine-grained images – such as texture –
is still subject of debate. Most of the related literature, that we briefly review in
Sect. 2, is in fact rather new, and the results are far from being consolidated.

In this work we investigate the effectiveness of CNNs compared with classic
local image descriptors such as Local Binary Patterns and variants, Gabor filters
and grey-level co-occurrence matrices for texture classification. Specifically, we
are interested in determining the potential of pre-trained CNNs when used as
feature extractors in an off-the-shelf manner, relying directly on the pooling effect
of the fully connected layers of the network. This avoids the added complexity
of the separate pooling stages appearing in some related studies, that we review
in Sect. 2). In the remainder of the paper we describe the materials (Sect. 3) and
methods (Sect. 4) used in this study. We discuss the experimental set-up and the
results in Sect. 5 and conclude the paper with some final considerations (Sect. 6)
and directions for future studies (Sect. 7).

2 Related Research

Convolutional Neural Networks have been attracting increasing research interest
in the computer vision community: suffice it to say that Krizhevsky et al.’s mile-
stone work [14] has been so far cited more than 2700 times1 since its publication
in 2012.

In the field of texture analysisCNN-basedmethods have been receiving increas-
ing attention. Cimpoi et al. [8] is the first in-depth investigation of the transfer-
ability of CNN models to the texture domain. The proposed solution (FV-CNN),
however, entails complex and time-consuming pre- andpost-processing procedures
(respectively repeated image rescaling and Fisher vector pooling) that actually
make it a new texture descriptor on its own rather than a direct application of
CNNs to textures. A potential drawback of this solution is also the huge number
of features produced (65K) which may represent a limit in many practical appli-
cations. Andrearczy and Whelan [1] recently improved on this idea and proposed
a pooling scheme which relies on a lower number of features.
1 Source: ScopusR©; visited on Januray 18, 2017.



Hand-Designed Local Image Descriptors vs. CNN-Based Features 3

Table 1. Round-up table of the datasets used in the experiments.

ID Name
No. of
classes

No. of samples per
class

Sample images

1 KTH-TIPS 10 81

2 KTH-TIPS2b 11 432

3 Kylberg 28 160

4 Kylberg-Sintorn 25 6

5 MondialMarmi 25 16

6 Outex-00013 68 20

7 Outex-00014 68 60

8 PerTex 334 16

9 RawFooT 68 184

0452CUIU01

An interesting comparison between LBP variants and CNN-based features –
though once again obtained by vector pooling – was recently presented by Liu
et al. [19]. Here the authors find that the best performance is obtained by an LBP
variant known as Median Robust Extended Local Binary Patterns (MRELBP).
Of late, an experimental evaluation of colour texture descriptors under variable
lighting conditions – including CNN-based features – was proposed by Cusano
et al. [11]. Their approach consists of generating a texture descriptor by using, as
image features, the output of the last fully-connected layer of a CNN. The main
advantage of this strategy is that it generates significantly fewer features than
the pooling method, and can be considered the model that best fits the idea of
off-the-shelf use of CNNs for texture analysis. Finally, it is worth noting that in
later experiments the same Cusano et al. [10] found that Fisher vector pooling
produced worse results than were obtained by directly using CNNs features,
probably due to the high number of features generated by FV-CNN.

3 Materials

We considered 10 datasets of texture images: (1) KTH-TIPS; (2) KTH-
TIPS2b; (3) Kylberg Texture Dataset; (4) Kylberg-Sintorn Rotation Dataset;
(5) MondialMarmi; (6) Outex-00013; (7) Outex-00014; (8) Pertex; (9) RawFooT



4 R. Bello-Cerezo et al.

and (10) UIUC. The main features of each dataset are detailed in Sect. 3.1 and
summarised in Table 1.

3.1 Datasets

KTH-TIPS [13,15] features 10 classes of materials: aluminum foil, bread, cor-
duroy, cotton, cracker, linen, orange peel, sandpaper, sponge and styrofoam.
Images of each material were taken under different viewpoints and illumination
conditions, giving 81 images for each class.

KTH-TIPS2b [6,15] is an extension of KTH-TIPS and contains 11 types of
materials: aluminum foil, brown bread, corduroy, cork, cotton, cracker, lettuce,
linen, white bread, wood and wool. Four samples for each class were acquired
under varying scale, illumination and pose resulting in 432 images for each class.

Kylberg Texture Dataset (v. 1.0) [16] contains 28 texture classes such as
fabric, natural stone, grains and seeds. There are 160 images for each class; the
samples contain no variation in scale, rotation or illumination.

Kylberg-Sintorn Rotation Dataset [17,18] is a collection of 25 classes of
heterogeneous materials including food (seeds and sugar), textiles (wool and
knitwear) and tiles, with one image per class. The image samples used in our
experiments contain no variation in scale, rotation or illumination.

MondialMarmi (v 2.0) [2,21] is a visual catalogue of polished natural stone
products (marble and granites) featuring 25 classes of commercial denominations
(e.g., Azul Platino, Bianco Sardo, Rosa Porriño, etc.) with four samples per
class – each sample representing one tile. The images were acquired at fixed
scale, in controlled illumination conditions and under different rotation angles.
In our experiments we only used non-rotated images and subdivided each of
them into four non-overlapping sub-images, thus obtaining 16 samples per class.

Outex-00013 contains the same 68 texture classes as Outex’s test suite TC-
00013, i.e. a collection of heterogeneous materials such as grains, fabric, natural
stone and wood (see also Ref. [22] for details). There are 20 image samples for
each class which were acquired at fixed scale, rotation angle and under invariable
illumination conditions.

Outex-00014 is composed of the same classes as Outex-00013; in this case,
however, each sample was acquired under three different lighting sources. As a
consequence there are 60 samples for each class instead of 20. Note that in order
to maintain the same evaluation protocol for all the datasets (see Sect. 5) the
splits used in our experiments are different from those provided respectively with
the TC-00013 and TC-00014 test suites.

PerTex [9,24] includes 334 texture classes representing heterogeneous mate-
rials such as embossed vinyl, woven wall coverings, carpet, rugs, fabric, building
materials, product packaging, etc. The images were obtained by calculating the
height-maps of the samples first, then by relighting them in order to remove
variations due to reflectance. The results is a dataset of highly homogeneous
textures – some of which are very similar to each other, a feature that makes
this a very challenging dataset.
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Table 2. Summary table of the image descriptors considered in the experiments

Method Acronym No. of features

Hand-designed local image descriptors

Completed Local Binary Patterns CLPB 324

Gradient-based Local Binary Patterns GLBP 108

Improved Local Binary Patterns ILBP 213

Local Binary Patterns LBP 108

Local Ternary Patterns LTP 216

Texture Spectrum TS 2502

Gabor Filters Gaborrw4,6 48

Gaborcn4,6 48

Gaborrw5,7 70

Gaborcn5,7 70

Grey-level co-occurrence matrices GLCM 60

CNN-based features

CNN-imagenet-caffe-alex Caffe-AlexNet 4096

CNN-imagenet-vgg-fast VGG-F 4096

CNN-imagenet-vgg-medium VGG-M 4096

CNN-imagenet-vgg-slow VGG-S 4096

CNN-imagenet-vgg-medium-128 VGG-M-128 128

CNN-imagenet-vgg-medium-1024 VGG-M-1024 1024

CNN-imagenet-vgg-medium-2048 VGG-M-2028 2048

CNN-imagenet-vgg-verydeep-16 VGG-VD-16 4096

CNN-vgg-face VGG-Face 4096

RawFooT [11,25] contains 68 classes of different types of food such as grain,
fish, fruit and meat. There are 46 image samples for each class, each sample
having been acquired under 46 different lighting conditions, whereas scale and
rotation angle are invariable. In our experiments we subdivided each sample
into four non-overlapping images of smaller size, therefore obtaining 46× 4 =
184 samples for each class.

UIUC features 25 classes of heterogeneous materials and objects such as bark,
wood, water, granite, marble, floor, pebbles, wall, brick, glass, carpet, upholstery,
wallpaper, fur, knit, corduroy and plaid. There are 40 samples for each class, and
within each class there is a lot of variability due to significant changes in the
imaging conditions (i.e. rotation, scale and viewpoint) and warped surfaces.

4 Methods

We included in the experiments 11 hand-designed local image descriptors –
specifically: six variants of Local Binary Patterns, four sets of features from
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Gabor filters and one from grey-level co-occurrence matrices. On the network
side we had nine sets of CNN-based features from as many pre-trained CNNs.
The comparison was carried out on grey-scale images, therefore discarding colour
information altogether. Details about settings and implementation are provided
in the following subsections. Table 2 summarises the whole set of image descrip-
tors and lists the number of features generated by each method.

4.1 Hand-Designed Local Image Descriptors

We took into account the following LBP variants: Completed Local Binary Pat-
terns, Gradient-based Local Binary Patterns, Improved Local Binary Patterns,
Local Binary Patterns, Local Ternary Patterns and Texture Spectrum (please
refer to Ref. [5] for details). For each descriptor we concatenated the rotation-
invariant features (e.g. LBPri) computed over three concentric, non-interpolated,
eight-pixel circles respectively of radius 1px, 2px and 3px.

Gabor features [3] were computed using two filter banks: one with four fre-
quencies and six orientations, and the other with five frequencies and seven
orientations, which in the remainder we respectively indicate as Gabor4,6 and
Gabor5,7. In both cases we set the maximum frequency to 0.5px−1, the frequency
spacing to half-octave, the spatial frequency bandwidth and the aspect ratio to
0.5. We considered both raw and contrast-normalised filter output (in the latter
case the filter responses for one point in all frequencies and rotations were nor-
malized to sum one). In the reminder we indicate the two versions respectively
with superscripts ‘rw’ and ‘cn’. Image features were in all cases the mean and
standard deviation of the magnitude of the Gabor-transformed images.

For the co-occurrence features we used 12 displacement vectors resulting from
combining three distances (i.e. 1px, 2px and 3x – just as for LBP variants) and
four standard orientations (i.e. 0◦, 45◦, 90◦ and 135◦). From each matrix we
extracted the following global statistics as image features: contrast, correlation,
energy, entropy and homogeneity (see also Ref. [4] for details).

4.2 CNN-Based Features

CNN-based features were computed using nine pre-trained Convolutional Neural
Networks. The image processing pipeline included a pre-processing step whereby
the input images were converted to grey-scale first, then resized through bicu-
bic interpolation to fit the input dimension of each network – which for all
the networks considered here was 224px× 224px. The nets were fed by deal-
ing the resized, grey-scale images to the three colour input channels. Following
the approach proposed by Cusano et al. [11] we used as texture features the
L2-normalised output of the last fully-connected layer. The implementation was
based on the MatConvNet platform [20,28]. The main features of each network
are summarised here below.

– Caffe-AlexNet: a MatConvNet porting of AlexNet, the architecture orig-
inally proposed by Krizhevsky et al. [14]. It is composed of eight layers, of
which the first five are convolutional and the remaining three fully-connected.
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Table 3. Overall accuracy by descriptor and dataset. Boldface figures indicate the best
result for each dataset. Dataset IDs are listed in Table 1.

Descriptor Dataset ID

1 2 3 4 5 6 7 8 9 10

Hand-designed local image descriptors

CLBP 90.5 93.0 99.2 92.5 97.5 77.7 79.9 96.5 90.0 76.5

GBLBP 86.9 89.3 98.2 95.4 97.2 81.9 82.9 95.7 88.1 60.0

ILBP 89.9 91.7 99.1 95.8 97.7 83.6 85.7 96.5 93.1 72.0

LBP 87.7 89.7 98.0 90.1 96.7 78.2 80.5 95.5 90.1 60.5

LTP 87.8 89.8 98.1 90.1 96.7 79.0 81.7 95.6 90.5 60.6

TS 85.7 91.4 98.6 91.8 96.4 77.8 80.5 97.3 91.6 67.9

Gaborrw4,6 75.9 82.7 94.0 85.4 87.9 64.3 67.5 90.9 72.3 51.1

Gaborrw5,7 77.8 84.9 96.3 88.7 89.7 66.8 70.0 92.4 74.0 53.5

Gaborcn4,6 75.1 78.6 93.9 83.3 82.8 70.3 77.1 91.8 88.6 40.4

Gaborrw5,7 75.6 79.9 96.2 86.0 88.0 71.7 78.8 92.7 92.2 42.2

GLCM 75.4 80.5 97.2 92.9 89.9 65.3 68.2 92.9 74.4 52.8

CNN-based features

Caffe-AlexNet 94.4 96.5 97.8 99.6 91.7 79.9 84.2 89.0 96.7 82.9

VGG-M 95.1 97.0 99.5 98.6 92.1 80.6 84.9 94.2 97.9 89.8

VGG-F 93.3 96.0 98.8 99.7 91.4 80.1 84.2 91.1 97.3 86.5

VGG-S 94.5 97.3 99.7 98.7 92.8 79.4 84.7 93.3 97.8 91.0

VGG-M-128 90.5 93.2 98.1 96.9 85.2 76.6 81.7 86.6 97.0 81.3

VGG-M-1024 94.4 96.6 99.4 99.2 91.0 79.2 84.3 93.3 97.7 88.3

VGG-M-2048 94.4 96.8 99.4 98.7 92.4 79.6 84.4 94.0 97.8 89.1

VGG-VD-16 96.8 97.8 99.5 99.5 93.8 80.6 85.6 93.4 98.3 93.3

VGG-face 86.5 87.1 92.1 97.5 85.0 71.4 82.0 68.7 95.5 57.7

– VGG-F, VGG-M and VGG-S: three networks all consisting of five con-
volutional and three fully-connected layers. The main differences are the size
of the filters, the stride and the dimension of the pooling windows (‘F’, ‘M’
and ‘S’ respectively stand for fast, medium and slow – see also Ref. [7] for
details).

– VGG-M-128, VGG-M-1024 and VGG-M-2048: three variations of
VGG-M with a lower-dimensional last fully-connected layer [7].

– VGG-VD-16: a deep network featuring 13 convolutional and three fully-
connected layers [27].

– VGG-Face: a network designed for face recognition composed of eight con-
volutional and three fully-connected layers [23].

Apart from VGG-Face, which understandably was trained on faces [23], all
the other networks were trained for object recognition.
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5 Experiments and Results

To comparatively assess the effectiveness of the image descriptors presented in
Sect. 4 we ran a supervised image classification experiment using the 1-NN clas-
sifier with L1 distance. Accuracy estimation was based on split-sample validation
with stratified sampling where 1/4 of the samples of each class was used to train
the classifier and the remaining 3/4 to test it. The estimated accuracy was the
ratio between the number of samples correctly classified and the total number
of samples of the test set. For a stable estimation of the classification error we
averaged the results (see Table 3) over 100 random splits.

The results are interesting and show a trend strongly dependent on the
dataset used. In six datasets out of 10, CNN-based features outperformed the
hand-designed methods (though in dataset #3 the margin is narrow); whereas
the reverse occurred in four datasets out of 10 (though again by a narrow mar-
gin in dataset #7). CNN-based features seemed to be more effective when there
was high intra-class variability due to changes in viewpoint/scale/appearance:
paradigmatic and impressive is the 93.3% attained by VGG-VD-16 on dataset
UIUC – a notoriously difficult one. By contrast, hand-designed image descriptors
appeared to be more comfortable with homogeneous, fine-grained textures and
little intra-class variability – as for instance in datasets #5 and #8. Within this
group of methods, LBP variants clearly outperformed Gabor filters and GLCM.

6 Conclusions

Convolutional Neural Networks represented a major breakthrough in computer
vision, having significantly improved the state of the art in many applications.
Originally developed for object and scene classification, the approach proved
effective in other domains as well, for example face recognition. It is however
still a subject of debate whether this paradigm is amenable to being successfully
applied to fine-grained images – i.e. texture. In this work we have carried out a
comparison between some classic local image descriptors and off-the-shelf CNN-
based features from an array of pre-trained nets. Our results were split, showing
that though CNN-based features performed generally well, they were in some
cases outperformed by state-of-the-art hand-designed descriptors. More specifi-
cally, our findings seem to suggest that CNNs performed better when there was
high intra-class variability, whereas LBP variants provided better results with
homogeneous, fine-grained textures with low intra-class variability.

7 Limitations and Future Work

The results presented here are promising and should be validated in a broader
cohort of experiments. Importantly, our investigation was limited to grey-scale
images, therefore the contribution of colour to image classification wasn’t consid-
ered. Likewise, disturbing effects such as rotation and noise were not investigated.
Assessing the effectiveness of more complex pooling schemes for CNN-based fea-
tures (e.g. Fisher vectors) is also another important question for future studies.
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