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Abstract: Convolutional Neural Networks (CNN) have brought spectacular improvements in several
fields of machine vision including object, scene and face recognition. Nonetheless, the impact of
this new paradigm on the classification of fine-grained images—such as colour textures—is still
controversial. In this work, we evaluate the effectiveness of traditional, hand-crafted descriptors
against off-the-shelf CNN-based features for the classification of different types of colour textures
under a range of imaging conditions. The study covers 68 image descriptors (35 hand-crafted and
33 CNN-based) and 46 compilations of 23 colour texture datasets divided into 10 experimental
conditions. On average, the results indicate a marked superiority of deep networks, particularly
with non-stationary textures and in the presence of multiple changes in the acquisition conditions.
By contrast, hand-crafted descriptors were better at discriminating stationary textures under steady
imaging conditions and proved more robust than CNN-based features to image rotation.

Keywords: colour texture; feature extraction; image classification; convolutional neural networks;
hand-crafted image descriptors

1. Introduction

Colour texture analysis and classification play a pivotal role in many computer-vision applications
such as surface inspection, remote sensing, medical image analysis, object recognition, content-based
image retrieval and many others. It is no surprise, then, that texture has been an area of intense
research activity for at least forty years and that a huge variety of descriptors has been proposed in the
literature (see [1–3] for comprehensive and up-to-date reviews).

In recent years, the advent of convolutional neural networks has dramatically changed the
outlook in many areas of computer vision and has led to astonishing improvements in tasks like
object, scene and face recognition [4–8]. The structure of a CNN differs from that of traditional,
hand-designed descriptors in that the former contains a large number of parameters, which are to
be determined through suitable training procedures. The training process is usually carried out
on huge datasets (containing millions of images), which enables the nets to “learn” very complex
image-to-feature and/or image-to-class mappings. More importantly, there is evidence that such
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mappings are amenable to being transferred from one domain to another, making networks trained on
certain classes of images usable in completely different contexts [5,9]. The consequences of this are
far-reaching: although datasets large enough to train a CNN entirely from scratch are rarely available
in practical tasks, pre-trained networks can in principle be used as off-the-shelf feature extractors in a
wide range of applications.

Inevitably, the CNN paradigm is changing the approach to texture analysis as well. However,
though there is general consensus that convolutional networks are superior to hand-designed
descriptors in tasks such as object and scene recognition [4–6], this superiority is still not quite
clear when it comes to dealing with fine-grained images, i.e., textures. As we discuss in Section 2, some
recent results seem to point in that direction, but it is precisely the aim of this work to investigate this
matter further. To this end, we comparatively evaluated the performance of a large number of classic
and more recent hand-designed, local image descriptors against a selection of off-the-shelf features
from last-generation CNN. We assessed the performance under both ideal and realistic conditions,
with special regard to different degrees of intra-class variability. As we detail in Section 2, intra-class
variability can be the consequence of the intrinsic structure of the texture—which can be more or less
stationary—and/or of variations in the imaging conditions (e.g., changes in illumination, rotation,
scale and/or viewpoint).

On the whole, image features from pre-trained networks outperformed hand-crafted descriptors,
but with some interesting exceptions. In particular, hand-crafted methods were still better than
CNN-based features at discriminating between very similar colour textures under invariable imaging
conditions and proved slightly more robust to rotation; whereas the results were split in the presence
of variations of scale.

Networks were markedly superior in all the other cases—particularly with non-stationary colour
textures—and also emerged as more robust to multiple and uncontrolled changes in the imaging
conditions, which are harder to model and compensate for in a priori feature design.

In the remainder of the paper, we first put the work in the context of the recent literature
(Section 2), then describe the datasets and image descriptors used in our study (Sections 3–4). We detail
the experimental set-up in Section 5, discuss the results in Section 6 and conclude the paper with some
final considerations in Section 7.

2. Related Research

A number of papers have addressed the problem of comparatively evaluating image descriptors
for colour texture analysis (e.g., [10–14]), though none of these considers CNN-based features.
Yet, results from recent studies seem to suggest that CNN-based descriptors can be effective for
texture classification as well, in most cases outperforming hand-designed descriptors.

Cimpoi et al. [15,16] compared a number of hand-designed image descriptors including LMfilters,
MR8filters, LBP and SIFT against a set of CNN-based features in texture and material recognition
and concluded that in most cases, the latter group outperformed the former. Notably, their findings
are mainly based on the results obtained on the Describable Texture Dataset (DTD; more on this
in Section 3), which to a great extent, is composed of very irregular and non-stationary textures
acquired “in the wild”; by contrast, their results look rather saturated and levelled in other datasets
(i.e., Columbia-Utrecht Reflectance and Texture Database (CUReT), UMDand UIUC). Cusano et al. [17]
investigated colour texture classification under variable illumination conditions. Their study included
a large number of hand-designed texture descriptors (e.g., Gabor filters, wavelet and LBP), descriptors
for object recognition (dense SIFT) and CNN-based features. Experimenting on a new dataset of
colour texture images (RawFooT, also included in the present study), they concluded that features
based on CNN gave significantly better results than the other methods. Liu et al. [1] evaluated a large
selection of LBP variants and CNN-based features for texture classification tasks. In their experiments,
CNN-based features outperformed LBP variants in six datasets out of eleven, but in this case, all the
LBP variants considered were grey-scale descriptors, whereas CNN by default operates on colour
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images. The presence/absence of colour information may account—at least in part—for the different
performance. Recently, Napoletano [18] comparatively evaluated a number of hand-crafted descriptors
and CNN-based features over five datasets of colour images and found that, on average, the latter
group outperformed the former.

In summary, there is mounting evidence that off-the-shelf CNN-based features can be suitable
for texture classification tasks and may in certain cases outperform (therefore, potentially replace)
traditional, hand-designed descriptors. Interestingly, both [1,17] seem to suggest that CNN-based
methods tend to perform better than hand-designed descriptors in the presence of complex textures
and intra-class variations, though none of the references investigated this point further. There remains
a need to clarify under what circumstances CNN-based features can replace traditional, hand-crafted
descriptors and what are the pros and cons of the two strategies.

3. Materials

We based our experiments on 23 datasets of colour texture images (Section 3.1) arranged into
46 different experimental conditions (Section 3.2). We subdivided the datasets into ten different groups
(Sections 3.2.1–3.2.10) based on the following two properties of the images contained therein (see also
Table 1 and Figures 1– 10):

(a) The stationariness of the textures;
(b) The presence/absence and/or the type of variation in the imaging conditions.

Table 1. Round-up table of the image datasets used in the experiments. ALOT, Amsterdam Library
of Textures; CUReT, Columbia-Utrecht Reflectance and Texture Database; CBT, Coloured Brodatz
Textures; MBT, Multiband Texture Database; RawFooT, Raw Food Texture Database; VisTex, Vision
Texture Database; RDAD, Robotics Domain Attribute Database; STex, Salzburg Texture Image Database;
DTD, Describable Texture Dataset; S, Stationary; NS, Non-Stationary; N, No variations; I, variations in
Illumination; R, variations in Rotation; S, variations in Scale, M, Multiple variations.

VARIATIONS IN THE IMAGING CONDITIONS
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Group 1 Group 3 Group 5 Group 7 Group 9

ALOT-95-S-N ALOT-95-S-I ALOT-95-S-R KTH-TIPS-10-S-S CUReT-61-S-M
CBT-99-S-N Outex-192-S-I KylbergSintorn-25-S-R KTH-TIPS2b-11-S-S Fabrics-1968-S-M
Drexel-18-S-N RawFooT-68-S-I1 MondialMarmi-25-S-R Outex-192-S-S KTH-TIPS-10-S-M
KylbergSintorn-25-S-N RawFooT-68-S-I2 Outex-192-S-R KTH-TIPS2b-11-S-M
MBT-120-S-N RawFooT-68-S-I3 LMT-94-S-M
MondialMarmi-25-S-N RDAD-27-S-M
Outex-192-S-N
Parquet-38-S-N
PlantLeaves-20-S-N
RawFooT-68-S-N
STex-202-S-N
USPTex-137-S-N
VisTex-89-S-N
VxC_TSG-42-S-N
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Group 2 Group 4 Group 6 Group 8 Group 10

ALOT-40-NS-N ALOT-40-NS-I ALOT-40-NS-R Outex-59-NS-S DTD-47-NS-M
ForestSpecies-112-NS-N Outex-59-NS-I Outex-59-NS-R
MBT-34-NS-N
NewBarkTex-6-NS-N
Outex-59-NS-N
STex-138-NS-N
USPTex-33-NS-N
VisTex-78-NS-N

Property (a) refers to the concept of stationariness as defined in [19], i.e., a texture that “fills up
the whole image and its local statistical properties are the same everywhere in it”. In this case, the
subdivision is binary, which means we can have either stationary or non-stationary textures. Property
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(b) signals whether the samples of a given class have been acquired under steady or variable imaging
conditions in terms of illumination, rotation, scale and/or viewpoint. In the remainder, we use the
following naming convention to indicate the dataset used:

<source>-<no.-of-classes>-<prop-a>-<prop-b>
where:

• <source> indicates the name of the source dataset the images come from (e.g., Amsterdam Library
of Textures (ALOT), KTH-TIPS, etc. as detailed in Section 3.1);

• <no.-of-classes> the number of the colour texture classes in the dataset;
• <prop-a> the stationariness of the textures, which can be either S or NS respectively indicating

Stationary and Non-stationary textures;
• <prop-b> the presence/absence and/or the type of intra-class variation in the imaging conditions.

This can be either N, I, R, S or M, respectively indicating No variations (steady imaging conditions),
variations in Illumination, variations in Rotation, variations in Scale and Multiple variations (i.e.,
combined changes in illumination, scale, rotation and/or viewpoint).

3.1. Source Datasets

3.1.1. Amsterdam Library of Textures

This is a collection of stationary and non-stationary colour textures representing 250 classes of
heterogeneous materials including chip, fabric, pebble, plastics, seeds and vegetables [20,21]. Each class was
acquired under 100 different conditions obtained by varying the viewing direction, the illumination
direction and the rotation angle. The dataset comes in full, half or quarter resolution (respectively
1536 px × 1024 px, 768 px × 512 px and 384 px × 256 px): we chose the first for our experiments.

3.1.2. Coloured Brodatz Textures

Coloured Brodatz Textures (CBT) is an artificially-colourised version of Brodatz’s album [22,23].
There are 112 classes with one image sample for each class. The dimension of the images is 640 px ×
640 px, which we subdivided into four non-overlapping sub-images of dimensions 320 px × 320 px.

3.1.3. Columbia-Utrecht Reflectance and Texture Database

The Columbia-Utrecht Reflectance and Texture Database (CUReT) contains sixty-one classes
representing different types of materials such as aluminium foil, artificial grass, brick, cork, cotton, leather,
quarry tile, paper, sandpaper, styrofoam and velvet [24,25]. In the original version, there are 205 image
samples for each class corresponding to different combinations of viewing and illumination directions.
Some of these images, however, cannot be used because they contain only a small portion of texture,
while the rest is background. The version used here is a reduced one [26] maintained by the Visual
Geometry Group at the University of Oxford, United Kingdom. In this case, there are 92 images per
class corresponding to those imaging conditions that ensure a sufficiently large texture portion to be
visible across all materials. The dimension of each image sample is 200 px × 200 px.

3.1.4. Drexel Texture Database

This consists of stationary colour textures representing 20 different materials such as bark, carpet,
cloth, knit, sandpaper, sole, sponge and toast [27,28]. The dataset features 1560 images per class, which are
the result of combining 30 viewing conditions (generated by varying the object-camera distance and
the angle between the camera axis and the imaged surface) and 52 illumination directions. The images
have a dimension of 128 px × 128 px.
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3.1.5. Describable Textures Dataset

DTD is comprised of highly non-stationary and irregular textures acquired under uncontrolled
imaging conditions (or, as the authors say, “in the wild” [29,30]). The images are grouped into 47 classes
representing attributes related to human perception such as banded, blotchy, cracked, crystalline, dotted,
meshed and so forth. There are 120 samples per class, and the dimension of the images varies between
300 px × 300 px and 640 px × 640 px.

3.1.6. Fabrics Dataset

This is comprised of 1968 samples of garments and fabrics [31,32]. Herein, we considered each
sample as a class on its own, though the samples are also grouped by material (e.g., wool, cotton,
polyester, etc.) and garment type (e.g., pants, shirt, skirt and the like). The images were acquired in the
field (i.e., at garment shops) using a portable photometric device and have a dimension of 400 px ×
400 px. Each sample was acquired under four different illumination conditions; the samples also have
uncontrolled in-plane rotation.

3.1.7. Forest Species Database

The Forest Species Database (ForestSpecies) is comprised of 2240 images representing samples
from 112 hardwood and softwood species [33,34]. The images were acquired through a light microscope
with 100× zoom and have a dimension of 1024 px × 768 px.

3.1.8. KTH-TIPS

This is comprised of ten types of materials such as aluminium foil, bread, cotton and sponge [35,36]. Each
material sample was acquired under nine different scales, three rotation angles and three illumination
directions, giving 81 images for each class. The dimension of the images is 200 px × 200 px.

3.1.9. KTH-TIPS2b

KTH-TIPS2bis an extension to KTH-TIPS, which adds one more class, three more samples per
class and one additional illumination condition [36,37]. As a result, there are 432 image samples per
class instead of 81, whereas the image dimension is the same as in KTH-TIPS.

3.1.10. Kylberg–Sintorn Rotation Dataset (KylbergSintorn)

The Kylberg–Sintorn Rotation Dataset (KylbergSintorn) is comprised of twenty-five colour texture
classes representing common materials such as sugar, knitwear, rice, tiles and wool [38,39]. There is one
sample for each class, which was acquired at nine in-plane rotation angles, i.e., 0◦, 40◦, 80◦, 120◦, 160◦,
200◦, 240◦, 280◦ and 320◦. The dimension of the images is 5184 px × 3456 px.

3.1.11. LMT Haptic Texture Database

LMTis comprised of one hundred eight colour texture classes belonging to the following nine
super-classes: blank glossy surfaces, fibres, foams, foils and papers, meshes, rubbers, stones, textiles and fabrics
and wood [40,41]. The images were acquired using a common smartphone, and each material sample
was captured under 40 different illumination and viewing conditions. The dimension of the images is
320 px × 480 px.

3.1.12. MondialMarmi

This is comprised of twenty-five classes of commercial polished stones [42,43]. Four samples
per class (corresponding to as many tiles) were acquired under steady and controlled illumination
conditions and at 10 in-plane rotation angles, i.e., 0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦ and 90◦.
The dimension of the images is 1500 px × 1500 px.
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3.1.13. Multiband Texture Database

The Multiband Texture Database (MBT) is comprised of one hundred fifty-four colour texture
images obtained by taking three grey-scale textures [44,45] taken from the Normalized Brodatz Texture
database [46] and dealing with one of each of the R, G and B channels. There is one sample for each
class, and the image size is 640 px × 640 px.

3.1.14. New BarkTex

BarkTexis a collage of different types of tree bark [47,48] derived from the BarkTexdatabase [49].
This dataset includes six classes with 68 samples per class. The dimension of the images is 64 px ×
64 px.

3.1.15. Outex Texture Database

Outexis a well-known collection of texture images from 319 diverse materials such as canvas,
cardboard, granite, leather, seeds, pasta and wood [50,51]. There are 162 images for each class resulting
from acquiring the corresponding material under six different scales (100 dpi, 120 dpi, 300 dpi, 360 dpi,
500 dpi and 600 dpi), nine in-plane rotation angles (0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦) and
three illuminants (“inca”, “TL84”and “horizon”). All the images have a dimension of 746 px × 538 px.

3.1.16. Parquet

This is comprised of fourteen commercial varieties of finished wood for flooring and cladding [52,53].
Each variety has also a number of grades ranging from 2–4, which we considered as independent
classes, yielding a total of 38 classes. The number of samples per class varies from 6–8 and the
dimension of the images from 1200 px–1600 px in width and from 500 px–1300 px in height, as a
consequence of the different sizes of the specimens.

3.1.17. Plant Leaves Database

This is comprised of twenty classes of plant leaves from as many plant species [54,55]. Three
images of dimensions 128 px × 128 px were acquired from the regions of minimum texture variance
within each leaf, making a total of 20 × 20 × 3 = 1200 images. The acquisition was carried out using a
planar scanner at a spatial resolution of 1200 dpi.

3.1.18. Robotics Domain Attribute Database

Robotics Domain Attribute Database (RDAD) is comprised of fifty-seven classes of objects and
materials such as asphalt, chocolate, coconut, flakes, pavingstone, rice and styrofoam [56]. The dataset
includes a variable number of image samples per class (from 20–48), all captured “in the wild”.
The dimension of each image is 2592 px × 1944 px.

3.1.19. Raw Food Texture Database

The Raw Food Texture Database (RawFooT) is comprised of sixty-eight classes of raw food such
as chickpeas, green peas, oat, chilly pepper, kiwi, mango, salmon and sugar [57,58]. Each image was taken
under 46 different illumination conditions obtained by varying the type, the direction and the intensity
of the illuminant; other imaging conditions such as scale, rotation and viewpoint remained invariable.
The images have a dimension of 800 px × 800 px.

3.1.20. Salzburg Texture Image Database

The Salzburg Texture Image Database (STex) is comprised of four hundred seventy-six colour
texture images acquired “in the wild” around the city of Salzburg, Austria [59]. They mainly represent
objects and materials like bark, floor, leather, marble, stones, walls and wood. The dataset comes in two
different resolutions—i.e., 1024 px × 1024 px and 512 px × 512 px—of which the second was the
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one used in our experiments. We further subdivided the original images into 16 non-overlapping
sub-images of dimensions 128 px × 128 px.

3.1.21. USPTex

USPTex [60,61] is very similar to STex (Section 3.1.20) as for the content, structure and imaging
conditions. In this case, there are 191 classes representing materials, objects and scenes such as food, foliage,
gravel, tiles and vegetation. There are 12 samples per class and the image dimensions 128 px × 128 px.

3.1.22. VisTex Reference Textures

The VisTex reference textures are part of the Vision Texture Database [62]. They represent
167 classes, which are further subdivided into 19 groups, e.g., bark, buildings, food, leaves, terrain and
wood. For each class, there is one image sample of dimensions 512 px × 512 px, which we subdivided
into four non-overlapping samples of 256 px × 256 px.

3.1.23. VxC TSG Database

VxCTSGis comprised of fourteen commercial classes of ceramic tiles with three grades per
class [63]. We considered each grade as a class on its own, which gives 42 classes in total. The images
were acquired in a laboratory under controlled and invariable conditions. The number of samples
per class varies from 14–30, but in our experiments, we only retained 12 samples per class. Since
the original images are rectangular, we cropped them to a square shape, retaining the central part.
The resulting images have a dimension ranging between 500 px × 500 px and 950 px × 950 px.

3.2. Datasets Used in the Experiments

From the source datasets (Section 3.1), we derived the datasets used in the experiments.
The classification into stationary or non-stationary textures was performed manually by two of the
authors (R.B.-C, >2 years experience in texture analysis, and F.B., >10 years experience in texture
analysis). Those images on which no consensus was reached were discarded.

3.2.1. Group #1: Stationary Textures Acquired under Steady Imaging Conditions

• ALOT-95-S-N: Ninety-five stationary textures from the ALOT dataset (Section 3.1.1) with images
taken from the “c1I3”group. Six samples per class were obtained by subdividing the original
images into non-overlapping sub-images of dimensions 256 px × 256 px.

• CBT-99-S-N: Ninety-nine stationary textures from the CBT dataset (Section 3.1.2).
• Drexel-18-S-N: Eighteen stationary textures from the Drexel dataset (Section 3.1.4) with images

taken from the “D1_IN00_OUT00”group. Four samples per class were obtained by subdividing
the original images into non-overlapping sub-images of dimensions 64 px × 64 px.

• KylbergSintorn-25-S-N: All 25 colour textures in the KylbergSintorn dataset (Section 3.1.10) with
images taken from the 0◦ group. Each image was subdivided into 24 non-overlapping images of
dimensions 864 px × 864 px.

• MBT-120-S-N: One hundred and twenty stationary colour textures from MBT (Section 3.1.13).
Each image was subdivided into four non-overlapping sub-images of dimensions 320 px × 320 px,
giving four samples per class.

• MondialMarmi-25-S-N: All 25 colour textures of the MondialMarmi dataset (Section 3.1.12)
with images taken from the 0◦ group. Each image was subdivided into four non-overlapping
sub-images of dimensions 750 px × 750 px, giving 16 samples per class.

• Outex-192-S-N: One hundred ninety-two stationary colour textures from the Outex dataset
(Section 3.1.15) with images acquired under the following conditions: scale = 100 dpi, rotation
0◦ and illuminant = “inca”. We cropped the central part of each image and subdivided it into
20 non-overlapping sub-images of dimensions 128 px × 128 px.
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• Parquet-37-S-N: All 38 classes of the Parquet dataset (Section 3.1.16). We retained six samples per
class and centre-cropped the images. The final dimension ranges from 480 px × 480 px–1300 px ×
1300 px.

• PlantLeaves-20-S-N: The entirety of the PlantLeaves dataset (Section 3.1.17).
• RawFooT-68-S-N: All 68 classes of the RawFooT dataset (Section 3.1.19) with the following imaging

conditions: illuminant = “D65”and illumination intensity = 100%. We obtained four samples per
class by subdividing the original images into four non-overlapping tiles of dimensions 400 px ×
400 px.

• STex-202-S-N: Two hundred and two stationary colour textures from STex (Section 3.1.20).
• USPTex-137-S-N: One hundred thirty-seven stationary colour textures from USPTex

(Section 3.1.21).
• VisTex-89-S-N: Eighty-nine stationary colour textures from VisTex (Section 3.1.22). Each image

was subdivided into four non-overlapping sub-images of dimensions 256 px × 256 px.
• VxC_TSG-42-S-N: All 42 classes of the VxC_TSG dataset (Section 3.1.23).

ALOT-95-S-N CBT-99-S-N Drexel-18-S-N

“4” “34” “D018” “D029” “Carpet3” “Sole”

KylbergSintorn-25-S-N MBT-120-S-N MondialMarmi-25-S-N

“knitwear02” “rug01” “Dz001” “Dz022” “AcquaMarina” “RosaPorrino’

Outex-192-S-N Parquet-37-S-N PlantLeaves-20-S-N

“canvas043” “crushedstone001” “IRK01Grade2” “OAK07Grade3” “c01” “c14”

RawFoot-68-S-N STex-202-S-N USPTex-137-S-N

“0005” “0036” “Fabric_0002” “Hair_0013” “c018” “c029”

VisTex-22-S-N VxC_TSG-42-S-N

‘Brick_0000’ “Metal_0002” “antique-grade05” “venice-grade18”

Figure 1. Group #1: Stationary textures acquired under steady imaging conditions (Section 3.2.1).

3.2.2. Group #2: Non-Stationary Textures Acquired under Steady Imaging Conditions

• ALOT-40-NS-N: Forty non-stationary colour textures from the ALOT dataset (Section 3.1.1).
The other settings were the same as in ALOT-95-S-N.

• ForestSpecies-112-NS-N: The entirety of the ForestSpecies dataset (Section 3.1.7).
• MBT-34-NS-N: Thirty-four non-stationary colour textures from the MBT dataset (Section 3.1.7).

The other settings were the same as in the MBT-120-S-N dataset.
• NewBarkTex-6-NS-N: The whole New BarkTex dataset (Section 3.1.14).
• Outex-59-NS-N: Fifty-nine non-stationary colour textures from the Outex dataset (Section 3.1.15).

The other settings were the same as in Outex-192-S-N.
• STex-138-NS-N: One hundred thirty-eight non-stationary colour textures from the STex dataset

(Section 3.1.20). The other settings were the same as in STex-202-S-N.
• USPTex-33-NS-N: Thirty-three non-stationary colour textures from the USPTex dataset

(Section 3.1.21). The other settings were the same as in USPTex-137-S-N.
• VisTex-78-NS-N: Seventy-eight non-stationary textures from the VisTex dataset (Section 3.1.22).

The other settings were the same as in VisTex-89-S-N.
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ALOT-40-NS-N ForestSpecies-112-NS-N MBT-34-NS-N

“8” “148” “001” “022” “Dz017” “Dz100”

NewBarkTex-6-NS-N Outex-59-NS-N STex-141-NS-N

“BetulaPendula” “PinusSilvestris” “canvas030” “foam004” “Bark_0002” “Bush_0015”

USPTex-33-NS-N VisTex-32-NS-N

“c061” “c153” “Bark_0004” “Flowers_0002”

Figure 2. Group #2: Non-stationary textures acquired under steady imaging conditions (Section 3.2.2).

3.2.3. Group #3: Stationary Textures Acquired under Variable Illumination

• ALOT-95-S-I: The same ninety-five textures of the ALOT-95-S-N dataset acquired at 0◦ rotation,
orthogonal shot (camera “c1”) and five different illumination directions (conditions “I1”, “I2”,
“I3”, “I4” and “I5”). Each image was subdivided into six sub-images as in ALOT-95-S-N, giving
6 × 5 = 30 samples per class.

• Outex-192-S-I: The same one hundred ninety-two textures of the Outex-192-S-N dataset acquired
at 0◦, 100 dpi scale and three different illuminants (i.e., “inca”, “TL84” and “horizon”). As in
Outex-192-S-N, each image was subdivided into 20 non-overlapping images, resulting in a total
of 20 × 3 = 60 samples per class.

• RawFooT-68-S-I1: The same sixty-eight textures of the RawFooT-68-S-N dataset acquired under
an invariable light source (D65), but four different intensities, namely: 100%, 75%, 50% and 25%,
which respectively correspond to conditions “01”, “02”, “03” and “04” of the RawFooT database.
As in RawFooT-68-S-N, there are four samples for each imaging condition, therefore a total of
4 × 4 = 16 samples per class.

• RawFooT-68-S-I2: The same sixty-eight textures of the RawFooT-68-S-N dataset acquired under
six different light sources, i.e., D40, D55, D70, D85, L27 and L5, respectively corresponding to
conditions “14”, “17”, “20”, “23”, “26” and “29” of the RawFooT database. As in RawFooT-68-S-N,
there are four samples four each imaging condition, therefore a total of 6 × 4 = 24 samples
per class.

• RawFooT-68-S-I3: The same sixty-eight textures of the RawFooT-68-S-N dataset acquired under
an invariable light source (D65) coming from different illumination directions: θ = 24◦, θ = 42◦

and θ = 60◦, which respectively correspond to conditions “05”, “08” and “11” of the RawFooT
database. In this case, there are 3 × 4 = 12 samples per class.

ALOT-95-S-I Outex-192-S-I RawFooT-68-S-I1

“15” “24” “barleyrice001” “wood012” “0001” “0028”

RawFooT-68-S-I2 RawFooT-68-S-I3

“0004” “0014” “0002” “0015”

Figure 3. Group #3: Stationary textures acquired under variable illumination (Section 3.2.3).

3.2.4. Group #4: Non-Stationary Textures Acquired under Variable Illumination

• ALOT-40-NS-I: The same forty textures of ALOT-40-S-N and the same acquisition conditions and
number of samples per class as in ALOT-95-S-I.
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• Outex-59-NS-I: The same fifty-nine textures of Outex-59-S-N and the same acquisition conditions
and number of samples per class as in Outex-192-S-I.

ALOT-40-NS-I Outex-59-NS-I

“173” “193” “carpet007” “chips011”

Figure 4. Group #4: Non-stationary textures acquired under variable illumination (Section 3.2.4).

3.2.5. Group #5: Stationary Textures with Rotation

• ALOT-95-S-R: The same ninety-five textures of the ALOT-95-S-N dataset acquired with camera
“c1”, illumination direction “I3” and four in-plane rotation angles, i.e., 0◦, 60◦, 120◦ and 180◦.
Each image was subdivided into six sub-images as in ALOT-95-S-N, giving 6 × 4 = 24 samples
per class.

• Outex-192-S-R: The same one hundred ninety-two textures of the Outex-192-S-N dataset acquired
with lamp type “inca”, 100 dpi scale and and four in-plane rotation angles, i.e., 0◦, 30◦, 60◦ and
90◦. Each image was subdivided into 20 non-overlapping images as in Outex-192-S-R, giving a
total 20 × 4 = 80 samples per class.

• MondialMarmi-25-S-R: The same twenty-five textures of the MondialMarmi-25-S-N dataset
acquired under four in-plane rotation angles, i.e., 0◦, 30◦, 60◦ and 90◦. There are 16 samples per
rotation angle as in MondialMarmi-25-S-N, for a total of 16 × 4 = 64 samples per class.

• KylbergSintorn-25-S-R: The same twenty-five textures of the KylbergSintorn-25-N-R dataset
acquired under four in-plane rotation angles, which in this case were: 0◦, 120◦, 240◦ and 320◦.
The number of samples for each orientation is 24 as in KylbergSintorn-25-N-R, giving a total of
24 × 4 = 96 samples per class.

ALOT-95-S-R KylbergSintorn-25-S-R MondialMarmi-25-S-R

“64” “207” “fabric03” “knitwear03” “ParadisoBash” “SkyBrown”

Outex-192-S-R

‘canvas042’ ‘wallpaper008’

Figure 5. Group #5: Stationary textures with rotation (Section 3.2.5).

3.2.6. Group #6: Non-Stationary Textures with Rotation

• ALOT-40-NS-R: The same forty textures of ALOT-40-NS-N and the same acquisition conditions
and number of samples per class as in ALOT-95-S-R.

• Outex-59-NS-R: The same fifty-nine textures as in Outex-59-NS-N the same acquisition conditions
and number of samples per class as in Outex-192-S-R.

ALOT-40-NS-R Outex-59-NS-R

“63” “129” “canvas024” “canvas025”

Figure 6. Group #6: Non-stationary textures with rotation (Section 3.2.6).
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3.2.7. Group #7: Stationary Textures with Variations in Scale

• KTH-TIPS-10-S-S: All the classes of the KTH-TIPS dataset with nine image samples per class, each
sample being taken under fixed pose and illumination (frontal), and nine different relative scales.

• KTH-TIPS2b-11-S-S: Same settings as KTH-TIPS-10-S-S, i.e., fixed pose and illumination (frontal),
but variable scale. The number of samples per class is 4 × 9 = 36 in this case, for there are four
specimens per class.

• Outex-192-S-S: The same one hundred ninety-two textures of Outex-192-S-N taken under fixed
illumination (“inca”) and rotation (0◦) but variable scale, respectively 100 dpi, 120 dpi, 300 dpi
and 600 dpi.

KTH-TIPS-10-S-S KTH-TIPS2b-11-S-S Outex-192-S-S

“bread” “sponge” “corduroy” “cork” “canvas042” “wallpaper008”

Figure 7. Group #7: Stationary textures with variations in scale (Section 3.2.7).

3.2.8. Group #8: Non-Stationary Textures with Variations in Scale

• Outex-59-S-S: The same fifty-nine textures of Outex-59-S-N taken under the same conditions as in
Outex-192-S-S.

Outex-59-NS-S

“carpet007” “chips011”

Figure 8. Group #8: Non-stationary textures with variations in scale (Section 3.2.8).

3.2.9. Group #9: Stationary Textures Acquired under Multiple Variations in the Imaging Conditions

• CUReT-61-S-M: The complete CUReT dataset as described in Section 3.1.3.
• Fabrics-1968-S-M: All 1968 colour textures of the Fabrics dataset (Section 3.1.6).
• KTH-TIPS-10-S-M: The entirety of the KTH-TIPS dataset (Section 3.1.8).
• KTH-TIPS2b-11-S-M: The whole KTH-TIPS2b dataset (Section 3.1.9).
• LMT-94-S-M: Ninety-four stationary textures from the LMT dataset (Section 3.1.10).
• RDAD-27-S-M: A selection of 27 stationary colour textures from the RDAD database

(Section 3.1.18). We included the classes representing textures, discarded those representing
objects and retained 16 images samples for each class.

Fabrics-1968-S-M KTH-TIPS-10-S-M KTH-TIPS2b-11-S-M

“Blended61” “Polyester773” “bread” “sponge” “linen” “wool”

RDAD-27-S-M

“Bread” “Chocolate”

Figure 9. Group #9: Stationary textures acquired under multiple variations in the imaging conditions
(Section 3.2.9).

3.2.10. Group #10: Non-Stationary Textures Acquired under Multiple Variations in the Imaging
Conditions

• DTD-47-NS-M: The entirety of the DTD dataset (Section 3.1.5).
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DTD-47-NS-M

“braided” “grid”

Figure 10. Group #10: Non-stationary textures acquired under multiple variations in the imaging
conditions (Section 3.2.10).

4. Methods

We considered 35 hand-designed and 33 CNN-based descriptors as detailed in Sections 4.1–4.2 (see
also Tables 2 and 3 for a round-up). We subdivided the hand-designed methods into three subgroups:

• Purely spectral descriptors (colour descriptors; Section 4.1.1);
• Grey-scale texture descriptors (Section 4.1.2);
• Colour texture descriptors (Section 4.1.3).

Table 2. Summary table of the hand-crafted image descriptors used in the experiments. VLAD, Vectors
of Locally-Aggregated Descriptors.

Method Variant Abbreviation No. of Features

Purely spectral descriptors

Mean of each channel Mean 3
Mean and std. dev.of each channel Mean + Std 6
Mean and moms.from 2th to 5th of each ch. Mean + Moms 15
Quartiles of each channel Quartiles 9
256-bin Marginal Histogram of each channel Marginal-Hists-256 768
10-bin joint colour Histogram Full-Hist-10 1000

Grey-scale texture descriptors

Completed Local Binary Patterns Rotation-invariant CLBP 324
Gradient-based Local Binary Patterns Rotation-invariant GLBP 108
Improved Local Binary Patterns Rotation-invariant ILBP 213
Local Binary Patterns Rotation-invariant LBP 108
Local Ternary Patterns Rotation-invariant LTP 216
Texture Spectrum Rotation-invariant TS 2502
Grey-level Co-occurrence Matrices GLCM 60
Grey-level Co-occurrence Matrices GLCMDFT 60
Gabor features Gabor 70
Gabor features Rotation-invariant GaborDFT 70
Gabor features Contrast-normalised Gaborcn 70
Gabor features Rot.-inv.and ctr.-norm. GaborDFT

cn 70
Image Patch-Based Classifier Joint IPBC-J 4096
Histograms of Oriented Gradients HOG 768
Dense SIFT BoVW aggregation SIFT-BoVW 4096
Dense SIFT VLAD aggregation SIFT-VLAD 4608
VZClassifier MR8filters VZ-MR8 4096
Wavelet Statistical and Co-occurrence Features Haar wavelet WSF + WCFhaar 84
Wavelet Statistical and Co-occurrence Features Bi-orthogonal wavelet WSF + WCFbior22 84

Colour texture descriptors

Improved Opponent Colour LBP Rotation-invariant IOCLBP 1287
Integrative Co-occurrence Matrices ICM 360
Integrative Co-occurrence Matrices Rotation-invariant ICMDFT 360
Local Binary Patterns + Local Colour Contrast Rotation-invariant LBP LBP + LCC 876
Local Colour Vector Binary Patterns Rotation-invariant LCVBP 432
Opponent Colour Local Binary Patterns Rotation-invariant OCLBP 648
Opponent Gabor features OppGabor 630
Opponent Gabor features Contrast-normalised OppGaborcn 630
Opponent Gabor features Rotation-onvariant OppGaborDFT 630
Opponent Gabor features Rot.-inv. and ctr.-norm. OppGaborDFT

cn 630
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Table 3. Summary table of the off-the-shelf CNN-based features used in the experiments.

Pre-Trained Model Output Layer Aggregation Abbreviation No. of
(No. or Name) Method Features

DenseNet_161.caffemodel “pool5” (last Fully-Conn.) None DenseNet-161-FC 2208
DenseNet_161.caffemodel “concat_5_24” (last conv.) BoVW DenseNet-161-BoVW 2208
DenseNet_201.caffemodel “pool5” (last fully-conn.) None DenseNet-201-FC 1920
DenseNet_201.caffemodel “concat_5_32” (last conv.) BoVW DenseNet-201-BoVW 1920
imagenet-googlenet-dag “cls3_pool” (last fully-conn.) None GoogLeNet-FC 1024
imagenet-googlenet-dag “icp9_out” (conv.) BoVW GoogLeNet-BoVW 1024
imagenet-caffe-alex 20 (last fully-conn.) None Caffe-Alex-FC 4096
imagenet-caffe-alex 13 (last conv.) BoVW Caffe-Alex-BoVW 4096
imagenet-caffe-alex 13 (last conv.) VLAD Caffe-Alex-VLAD 4224
imagenet-resnet-50-dag “pool5” (last fully-conn.) None ResNet-50-FC 2048
imagenet-resnet-50-dag “res5c_branch2c” (conv.) BoVW ResNet-50-BoVW 2048
imagenet-resnet-101-dag “pool5” (last fully-conn.) None ResNet-101-FC 2048
imagenet-resnet-101-dag “res5c_branch2c” (conv.) BoVW ResNet-101-BoVW 2048
imagenet-resnet-152-dag “pool5” (last fully-conn.) None ResNet-152-FC 2048
imagenet-resnet-152-dag “res5c_branch2c” (conv.) BoVW ResNet-152-BoVW 2048
imagenet-vgg-f 20 (last fully-conn.) None VGG-F-FC 4096
imagenet-vgg-f 13 (last conv.) BoVW VGG-F-BoVW 4096
imagenet-vgg-f 13 (last conv.) VLAD VGG-F-VLAD 4096
imagenet-vgg-m 20 (last fully-conn.) None VGG-M-FC 4096
imagenet-vgg-m 13 (last conv.) BoVW VGG-M-BoVW 4096
imagenet-vgg-m 13 (last conv.) VLAD VGG-M-VLAD 4096
imagenet-vgg-s 20 (last fully-conn.) None VGG-S-FC 4096
imagenet-vgg-s 13 (last conv.) BoVW VGG-S-BoVW 4096
imagenet-vgg-s 13 (last conv.) VLAD VGG-S-VLAD 4096
imagenet-vgg-verydeep-16 36 (last fully-conn.) None VGG-VD-16-FC 4096
imagenet-vgg-verydeep-16 29 (last conv.) BoVW VGG-VD-16-BoVW 4096
imagenet-vgg-verydeep-16 29 (last conv.) VLAD VGG-VD-16-VLAD 4096
imagenet-vgg-verydeep-19 42 (last fully-conn.) None VGG-VD-19-FC 4096
imagenet-vgg-verydeep-19 35 (last conv.) BoVW VGG-VD-19-BoVW 4096
imagenet-vgg-verydeep-19 35 (last conv.) VLAD VGG-VD-19-VLAD 4096
vgg-face 36 (last fully-conn.) None VGG-Face-FC 4096
vgg-face 29 (last conv.) BoVW VGG-Face-BoVW 4096
vgg-face 29 (last conv.) VLAD VGG-Face-VLAD 4096

4.1. Hand-Designed Descriptors

4.1.1. Purely Spectral Descriptors

• Mean (Mean): Average of each of the R, G and B channels (three features).
• Mean + standard deviation (Mean + Std): Average and standard deviation of each of the R, G and

B channels (six features).
• Mean + moments (Mean + Moms): Average and central moments from second to secondof each of

the R, G and B channels (15 features) [64].
• Quartiles (Quartiles): The 25%, 50% and 75% percentile of each colour channel (nine features) [64].
• Marginal histograms (Marg-Hists-256): Concatenation of the 256-bin marginal histograms of the R,

G and B channels (3 × 256 = 768 features) [57,65].
• Joint colour histogram (Full-Hist-10): Full 3D colour histogram in the RGB space [66] with 10 bins

per channel (103 = 1000 features).

4.1.2. Grey-Scale Texture Descriptors

Histograms of Equivalent Patterns

Six LBP variants, also referred to as histograms of equivalent patterns [67], specifically:

• Completed Local Binary Patterns [68] (CLBP, 324 features)
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• Gradient-Based Local Binary Patterns [69] (GLBP, 108 features)
• Improved Local Binary Patterns [70] (ILBP, 213 features)
• Local Binary Patterns [71] (LBP, 108 features)
• Local Ternary Patterns [72] (LTP, 216 features)
• Texture Spectrum [73] (TS, 2502 features)

Each of the above methods was used to obtain a multiple resolution feature vector by
concatenating the rotation-invariant vectors (e.g., LBPri) computed at resolutions of 1 px, 2 px and 3 px
[74]. For each resolution, we used non-interpolated neighbourhoods [75] composed of a central pixel
and eight peripheral pixels, as shown in Figure 11.

Res.= 1 px Res. = 2 px Res. = 3 px

Figure 11. Neighbourhoods used to compute features through histograms of equivalent patterns and
other methods.

• Grey-Level Co-occurrence Matrices (GLCM): Five global statistics (i.e., contrast, correlation, energy,
entropy and homogeneity) from grey-level co-occurrence matrices [76] computed using displacement
vectors of lengths of 1 px, 2 px and 3 px and orientations of 0◦, 45◦, 90◦ and 135◦ (5 × 3 × 4
= 60 features). A rotation-invariant version (GLCMDFT) based on discrete Fourier transform
normalisation [77] was also considered.

• Histograms of Oriented Gradients (HOG): Concatenation of three densely-computed
256-dimensional histograms of oriented gradients [78] (3 × 256 = 768 features) estimated through
Sobel filters of dimensions of 3 px × 3 px, 5 px × 5 px and 7 px × 7 px.

• Image Patch-Based Classifier, Joint version (IPBC-J): Local image patches aggregated over a
dictionary of visual words (Section 4.3) as proposed by Varma and Zissermann [79]. The image
patches were captured at resolutions of 1 px, 2 px and 3 px using the same neighbourhood
configuration shown in Figure 11. The resulting feature vectors were concatenated into a single
vector. Further pre-processing involved zero-mean and unit-variance normalisation of the input
image and contrast normalisation of each patch through Weber’s law, as recommended in [79].

• Gabor features (Gabor): Mean and standard deviation of the magnitude of Gabor-transformed
images from a bank of filters with five frequencies and seven orientations. The other parameters
of the filter bank were: frequency spacing half octave, spatial-frequency bandwidth one octave
and aspect ratio 1.0. We considered both raw and contrast-normalised response: in the second
case, the magnitudes for one point in all frequencies and rotations were normalized to sum to
one. This option is indicated with subscript “cn”in the remainder. For both options, a DFT-based
rotation-invariant version [80] (superscript “DFT” in the remainder) was also included in the
experiments. In all the versions, the number of features was 2 × 5 × 7 = 70.

• Wavelets (WSF + WCF): Statistical (mean and standard deviation) and Co-occurrence features (same
as in GLCM) from a three-level Wavelet decomposition as described in [81]. We used Haar’s and
bi-orthogonal wavelets, respectively indicated with subscript “haar” and “bior22” in the remainder.
The number of statistical features was 2 × 4 × 3 = 24, and that of the co-occurrence features was 6 × 4
× 3 = 60, making a total of 84 features.
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• VZ classifier with MR8 filters (VZ-MR8): Filter responses from a bank of 36 anisotropic filters (first-
and second-derivative filters at six orientations and three scales) plus two rotationally-symmetric
ones (a Gaussian and a Laplacian of Gaussian). Only eight responses are retained, i.e., the six
maximum responses at each scale across all orientations and the response of the anisotropic filters
[82]. The filter responses were aggregated over a dictionary of 4096 visual words (see Section 4.3).

• Dense SIFT (SIFT-BoVW): Spatial histograms of local gradient orientations computed every two
pixels and over a neighbourhood of radius 3 px (histograms of equivalent patterns). The resulting
128-dimensional local features were aggregated over a dictionary of 4096 visual words as described
in Section 4.3.

• Dense SIFT (SIFT-VLAD): Same settings as SIFT-BoVW, but with Vectors of Locally-Aggregated
Descriptors (VLAD) aggregation (Section 4.3) over 32 clusters.

4.1.3. Colour Texture Descriptors

• Integrative Co-occurrence Matrices (ICM): Co-occurrence features extracted from each colour
channel separately and from the R-G, R-B and G-B pairs of channels as described in [83,84].
The other settings (i.e., statistics and displacement vectors) were the same as in GLCM
(Section 4.1.2). The feature vector is six-times longer than GLCM’s, resulting in 60 × 6 = 360
features. A rotation-invariant version (ICMDFT) based on the same scheme as GLCMDFT was
also considered.

• Local Binary Patterns + Local Colour Contrast
(LBP + LCC): Concatenation of Local Binary Patterns and Local Colour Contrast (LCC) features as
described in [85]. LCC is the probability distribution (histogram) of the angle between the colour
vector of the central pixel in the neighbourhood and the average colour vector of the peripheral
pixels. Following the settings suggested in [85], we used histograms of 256 bins for each resolution
(i.e., 1 px, 2 px and 3 px) and concatenated the results. Concatenation with LBP gives a total of
108 + 256 × 3 = 876 features.

• Local Colour Vector Local Binary Patterns (LCVBP): Concatenation of Colour Norm Patterns
(CNP) and Colour Angular Patterns (CAP) as proposed by Lee et al. [86]. In CNP, the colour norm
of a pixel in the periphery is thresholded at the value of the central pixel; in CAP, the thresholding
is based on the angle that the projections of the colour vectors form in the RG, RB and GB planes.
Since the CNP feature vector is the same length as LBP and CAP’s is three-times longer, their
concatenation produces 108 × 4 = 432 features.

• Opponent Colour Local Binary Patterns (OCLBP): Local Binary Patterns computed on each colour
channel separately and from the R-G, R-B and G-B pairs of channels [87]. The other settings (type
of neighbourhood and features) were the same as in grey-scale LBP (Section 4.1.2). The resulting
feature vector is six-times longer than LBP’s; therefore, we have 108 × 6 = 648 features.

• Improved Opponent Colour Local Binary Patterns (IOCLBP): An improved version of OCLBP in
which thresholding is point-to-average instead of point-to-point [88]. This can be considered a
colour version of ILBP (see Section 4.1.2).

• Opponent Gabor Features (OGF): A multi-scale representation including intra- and inter-channel
features as proposed in [89]. This comprises 2 × 3 (channels) × 5 (frequencies) × 7 (orientations)
= 210 monochromefeatures from each colour channel and 2 × 3 (channels) × 10 (combinations of
frequencies) × 7 = 420 intra-channel features. The total number of features is 210 + 420 = 630.

4.2. Off-the-Shelf CNN-Based Features

The CNN-based features were computed using the following 13 pre-trained models:

• Caffe-Alex [4]
• DenseNet-161 and DenseNet-201 [90]
• GoogLeNet [91]
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• ResNet-50, ResNet-101 and ResNet-152 [92]
• VGG-F, VGG-Mand VGG-S [93]
• VGG-VD-16 and VGG-VD-19 [6]
• VGG-Face [7]

Twelve of the above models were trained for object recognition and the remaining one (vgg-face)
for face recognition. Each network was used as a generic feature extractor, and the resulting features
were passed on to a standard classifier (see Section 5). Following the strategy suggested in recent
works [16,17,57], we considered the following two alternative types of features (see Section 4.3 and
Figure 12):

• The order-sensitive output of the last fully-connected layer;
• The aggregated, orderless output of the last convolutional layer.

Convolution Pooling Fully-connected Classification

Aggregation
Dictionary

Input image

Orderless features
(BoVW, VLAD)

Order-sensitive features
(FC)

R

G

B

Targetclasses

Figure 12. Simplified diagram of a generic convolutional neural network. For texture classification, we
can either use the order-sensitive output of a fully-connected layer or the orderless, aggregated output
of a convolutional layer.

4.3. Learned vs. Unlearned Methods: Aggregation

All the methods considered in the experiments (and, more generally, all local image descriptors)
can be either learned or unlearned. Methods belonging to the first group are also referred to as a posteriori
and those belonging to the second as a priori (for a discussion on this point, see also [67,94]). In the
first group, the image-to-features mapping is the result of a preliminary learning stage aiming at
generating a dictionary of visual words upon which the local features are aggregated. By contrast,
unlearned methods do not require any training phase, since the image-to-feature mapping is a priori
and universal.

Aggregation

Aggregation (also referred to as pooling [16]) is the process by which local image features (for
instance, the output of a bank of filters or that of a layer of a convolutional network) is grouped around
a dictionary of visual words in order to obtain a global feature vector suitable for being used with a
classifier [95].

The first step of the aggregation process is the definition of the dictionary, which usually consists
of vector-quantizing the local features into a set of prototypes. Key factors in this phase are:

• The dimension of the dictionary;
• The algorithm used for clustering;
• The set of images used for training.
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In our experiments, the dimension of the dictionary depended on the feature encoder used, as
discussed below. The algorithm for clustering was always the k-means; whereas for training, we
followed the same approach as in [57]; i.e., we used a set of colour texture images from an external
source [96]. To avoid overfitting and possibly biased results, these images were different from those
contained in any of the datasets detailed in Section 3.

For the aggregation, we considered two schemes (due to dimensionality reasons, aggregation
over the DenseNet, GoogLeNet and ResNet models was limited to BoVW) [16,95]:

• Bag of Visual Words (BoVW);
• Vectors of Locally-Aggregated Descriptors (VLAD).

This choice was based on recent works [16,57] and was also the result of a trade-off between
accuracy and dimensionality (recall that for a D-dimensional feature space and a dictionary with K
visual words, the number of features respectively generated by BoVW and VLAD is K and K × D).

Convolutional networks also have built-in aggregation modules: the Fully-Connected (FC) layers.
However, whereas BoVW and VLAD implement orderless aggregation (i.e., they discard the spatial
configuration of the features), the aggregation provided by fully-connected layers is order-sensitive.
The number of features produced by FC layers depends on the network’s architecture and is therefore
fixed. For a fair comparison between the three aggregation strategies (FC, BoVW and VLAD), we
chose a number of visual words for BoVW and VLAD that produced a number of features as close as
possible to that produced by FC.

Post-processing involved L1 normalization of the BoVW features and L2 normalization of the
individual VLAD vectors and vectors of FC features [16,57].

5. Experiments

We comparatively evaluated the discrimination accuracy and computational demand of the
methods detailed in Section 4 on a set of supervised image classification tests using the datasets
described in Section 3. In the remainder ‘Experiment #N’ will indicate the experiment ran on the colour
texture images of Group #N. Following the same approach as in recent related works [1,14,17,18], we
used the nearest-neighbour classification strategy (with L1 distance) in all the experiments.

Performance evaluation was based on split-sample validation with stratified sampling.
The fraction of samples of each class used to train the classifier was 1/2 for Experiments #1 and
#2 and 1/8 for all the other experiments. In the first two cases, the choice was dictated by the low
number of samples available (as few as four per class in some datasets); in the others, we opted
for a lower training ratio in order to better estimate the robustness of the methods to the intra-class
variability. The figure of merit (‘ accuracy” in the remainder) was the ratio between the number of
samples of the test set classified correctly and the total number of samples of the test set. For a stable
estimation, the value was averaged over 100 different subdivisions into a training and test set.

For each experiment, a ranking of method was obtained by comparing all the image descriptors
pairwise and respectively assigning +1, −1 or 0 each time a method was significantly better, worse or
not significantly different from the other. Statistical significance (α = 0.05) was assessed through the
Wilcoxon–Mann–Whitney rank sum test [97] over the accuracy values resulting from the 100 splits.

6. Results and Discussion

6.1. Accuracy

Tables 4 and 5 respectively report the relative performance in terms of ranking (as defined in
Section 5) of the ten best hand-crafted descriptors and ten best CNN-based features. The results depict
a scenario, which, on the whole, was dominated by CNN-based methods. Among them, the three
ResNet outperformed by far the other networks, and interestingly, the FC configuration emerged as
the best strategy to extract CNN-based features among the three considered (FC, BoVW and VLAD).
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Conversely, the hand-crafted descriptors came lower in the standings and were dominated by colour
variants of LBP (e.g., IOCLBP, OCLBP and LCVBP).

Table 4. Hand-crafted descriptors: relative performance of the best ten methods at a glance. For each
method, the columns from #1–#10 show the rank (first row) and average accuracy (second row, in
parentheses) by experiment. The next to last column reports the average rank and accuracy over all the
experiments and the last column the overall position in the placings.

Descriptor
Rank (by Experiment)

Avg. Overall Position
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

IOCLBP (9) 64.0 55.0 54.0 52.0 64.5 63.0 48.5 66.0 49.0 30.0 54.6 9(91.9) (78.6) (84.4) (71.6) (96.8) (82.4) (74.0) (71.7) (67.9) (18.6) (73.8)

OCLBP (14) 63.0 54.0 50.0 34.5 68.0 61.0 44.0 64.5 44.0 20.0 50.3 14(91.5) (77.3) (81.8) (68.1) (97.2) (80.3) (72.0) (70.2) (66.3) (16.7) (72.1)

ICMDFT 61.0 47.0 30.5 25.0 64.5 57.5 51.0 61.0 38.0 21.0 45.6 17(90.6) (76.9) (73.5) (61.4) (96.5) (76.4) (74.9) (68.0) (63.5) (16.9) (69.9)

LCVBP 60.0 59.5 42.0 53.5 53.0 59.0 12.5 42.5 43.0 23.0 44.8 18(91.1) (82.1) (77.4) (70.0) (93.6) (77.8) (57.1) (60.6) (66.1) (17.1) (69.3)

Full-Hist-10 46.0 53.0 11.0 26.0 45.0 67.0 61.5 67.5 40.0 11.0 42.8 21(83.1) (75.8) (56.2) (64.4) (92.5) (84.4) (81.1) (73.3) (63.3) (14.4) (68.8)

ILBP 49.0 35.0 51.0 60.0 52.0 47.5 22.0 45.5 26.0 36.0 42.4 22(86.8) (70.6) (81.5) (69.9) (94.2) (71.6) (60.9) (61.4) (59.5) (21.0) (67.7)

ICM 55.0 43.0 21.0 18.0 61.0 53.5 50.0 60.0 37.0 12.5 41.1 23(90.1) (75.9) (71.2) (59.0) (95.0) (73.4) (73.6) (67.4) (63.0) (15.0) (68.4)

LBP + LCC 56.5 42.0 43.0 58.5 49.0 53.5 18.0 40.0 29.0 17.5 40.7 25(90.5) (74.5) (78.4) (69.7) (94.0) (72.9) (58.4) (59.3) (59.9) (16.6) (67.4)

SIFT-BoVW 38.0 44.5 60.0 62.0 19.0 20.5 27.0 53.0 31.0 46.0 40.1 27(84.5) (76.4) (87.1) (72.4) (86.1) (59.4) (64.1) (64.4) (61.6) (31.6) (68.8)

CLBP 47.0 38.0 36.0 53.5 47.0 51.5 21.0 37.5 32.0 35.0 39.9 28(87.8) (72.4) (75.5) (66.9) (93.6) (72.5) (59.3) (58.1) (59.9) (20.6) (66.7)

Table 5. CNN-based descriptors: relative performance of the best ten methods at a glance. For each
method, the columns from #1–#10 show the rank (first row) and average accuracy (second row, in
parentheses) by experiment. The next to last column reports the average rank and accuracy over all the
experiments and the last column the overall position in the placings.

Descriptor
Rank (by Experiment)

Avg. Overall Position
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

ResNet-50-FC 68.0 68.0 68.0 68.0 66.0 68.0 66.0 64.5 66.0 68.0 67.0 1(91.4) (87.9) (94.8) (84.8) (96.1) (84.6) (84.5) (70.4) (83.3) (60.8) (83.9)

ResNet-101-FC 66.0 67.0 67.0 67.0 67.0 65.5 68.0 62.0 67.5 66.5 66.3 2(90.5) (87.1) (94.4) (84.0) (95.9) (83.9) (86.0) (69.2) (83.4) (60.3) (83.5)

ResNet-152-FC 65.0 66.0 66.0 66.0 62.0 65.5 67.0 63.0 67.5 66.5 65.5 3(90.4) (87.0) (94.1) (83.7) (95.7) (83.9) (85.5) (69.5) (83.6) (60.4) (83.4)

VGG-VD-16-FC 54.0 64.0 64.0 64.0 58.0 62.0 64.0 59.0 64.0 64.5 61.8 4(88.4) (83.3) (91.6) (81.3) (94.1) (82.2) (83.2) (66.4) (79.6) (56.2) (80.6)

VGG-VD-19-FC 50.0 59.5 65.0 65.0 51.0 60.0 65.0 57.5 65.0 64.5 60.3 5(87.1) (82.3) (91.7) (81.3) (93.4) (81.6) (83.6) (65.8) (79.8) (56.2) (80.3)

VGG-M-FC 59.0 65.0 63.0 63.0 54.0 57.5 63.0 54.5 63.0 59.0 60.1 6(88.6) (82.5) (91.3) (79.6) (93.6) (79.4) (79.3) (64.7) (78.3) (50.0) (78.7)

VGG-S-FC 62.0 62.5 62.0 61.0 59.0 56.0 58.5 54.5 62.0 62.5 60.0 7(89.3) (81.8) (90.9) (78.9) (94.0) (79.3) (78.1) (64.8) (78.2) (51.3) (78.7)

VGG-F-FC 58.0 61.0 61.0 58.5 56.5 51.5 57.0 56.0 60.5 58.0 57.8 8(88.7) (81.7) (90.4) (78.1) (93.8) (77.4) (77.9) (65.2) (77.3) (46.8) (77.7)

Caffe-Alex-FC 53.0 51.5 59.0 56.5 56.5 42.0 60.0 50.0 60.5 56.0 54.5 10(88.4) (77.5) (89.2) (76.1) (94.0) (73.3) (78.6) (62.8) (76.6) (43.6) (76.0)

VGG-S-VLAD 52.0 62.5 57.0 50.5 60.0 50.0 53.0 45.5 57.0 57.0 54.5 11(87.7) (81.8) (84.7) (74.1) (94.0) (76.8) (75.2) (61.3) (75.9) (46.3) (75.8)

It is also most informative to analyse the results by experiment and dataset as reported in
Tables 6–16. For each experiment, the corresponding table shows the average accuracy attained by the
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best five hand-crafted image descriptors and the best five CNN-based features (the other values are
provided as Supplementary Material).

Table 6. Results of Experiment #1 (Part 1: Datasets 1–7): stationary textures acquired under steady
imaging conditions. Figures report overall accuracy by dataset. Boldface denotes the highest value;
underline signals a statistically-significant difference between the best hand-crafted and the best
CNN-based descriptor. Descriptors are listed in ascending order of by-experiment rank (best first).

Descriptor
Dataset

Avg.
1 2 3 4 5 6 7

Hand-crafted

IOCLBP 96.7 99.5 98.7 100.0 83.6 98.4 95.3 91.9
OCLBP 96.0 99.5 96.6 100.0 85.3 99.1 95.2 91.5
ICMDFT 95.8 99.0 94.2 100.0 95.7 99.2 91.7 90.6
LCVBP 92.4 97.7 85.7 100.0 97.4 98.0 88.2 91.1
LBP + LCC 94.4 97.3 89.7 99.7 90.5 98.1 87.4 90.5

CNN-based

ResNet-50-FC 98.7 100.0 87.8 100.0 96.6 99.0 90.6 91.4
DenseNet-161-FC 98.6 99.7 100.0 100.0 83.2 99.5 90.6 91.5
ResNet-101-FC 98.9 99.8 85.7 100.0 95.5 99.3 89.9 90.5
ResNet-152-FC 98.7 100.0 84.1 100.0 93.4 98.8 89.6 90.4
VGG-S-FC 98.6 99.3 87.4 100.0 88.3 98.7 86.4 89.3

Datasets: 1) ALOT-95-S-N; 2) CBT-99-S-N; 3) Drexel-18-S-N; 4) KylbergSintorn-25-S-N; 5) MBT-120-S-N;
6) MondialMarmi-25-S-N; 7) Outex-192-S-N.

Table 7. Results of Experiment #1 (Part 2: Datasets 8–14): stationary textures acquired under steady
imaging conditions. Figures report overall accuracy by dataset. Boldface denotes the highest value;
underline signals a statistically-significant difference between the best hand-crafted and the best
CNN-based descriptor. Descriptors are listed in ascending order of by-experiment rank (best first).

Descriptor
Dataset

Avg.
1 2 3 4 5 6 7

Hand-crafted

IOCLBP 69.0 77.7 99.2 97.3 94.2 82.1 95.4 91.9
OCLBP 69.7 76.9 98.8 96.2 92.3 83.0 93.8 91.5
ICMDFT 62.1 76.8 98.0 93.9 92.5 81.5 90.1 90.6
LCVBP 75.1 75.4 98.4 96.6 95.2 83.7 91.5 91.1
LBP + LCC 67.2 79.3 99.1 93.7 92.6 85.7 94.2 90.5

CNN-based

ResNet-50-FC 53.0 86.6 99.8 99.0 99.6 85.4 85.4 91.4
DenseNet-161-FC 69.0 75.1 99.7 97.5 96.2 82.9 88.5 91.5
ResNet-101-FC 51.8 82.1 99.7 98.8 99.2 85.1 83.8 90.5
ResNet-152-FC 56.1 83.9 99.7 98.6 99.4 83.2 82.9 90.4
VGG-S-FC 56.3 74.3 98.1 98.1 98.0 86.0 82.3 89.3

Datasets: 1) ALOT-95-S-N; 2) CBT-99-S-N; 3) Drexel-18-S-N; 4) KylbergSintorn-25-S-N; 5) MBT-120-S-N;
6) MondialMarmi-25-S-N; 7) Outex-192-S-N; 8) Parquet-38-S-N; 9) PlantLeaves-20-S-N; 10) RawFooT-68-S-N;
11) STex-202-S-N; 12) USPTex-137-S-N; 13) VisTex-89-S-N; 14) V×CTSG-42-S-N.

Experiments #1 and #2 (Tables 6–8) show that, under steady imaging conditions, hand
crafted-descriptors were competitive only with stationary textures, whereas CNN-based features
proved clearly superior with non-stationary ones (Figures 13–15). In Experiment #1 (Tables 6 and 7),
the best-performing method belonged to the first group in the four datasets out of 14; the reverse
occurred in eight datasets, whereas in the remaining two, the difference did not reach statistical
significance (Figure 16). Interestingly, there was a marked gap when it came to classifying fine textures
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with a high degree of similarity, such as in datasets Parquet-38-S-N and V×CTSG-42-S-N (Figure 14).
In this case, the hand-crafted descriptors outperformed CNN-based features by a good margin. With
non-stationary textures (Experiment #2), CNN-based features proved generally better, outperforming
hand-crafted descriptors in six datasets out of nine, whereas the reverse occurred in two datasets only.

Table 8. Results of Experiment #2: non-stationary textures acquired under steady imaging conditions.
Figures report overall accuracy by dataset. Boldface denotes the highest value; underline signals a
statistically-significant difference between the best hand-crafted and the best CNN-based descriptor.
Descriptors are listed in ascending order of by-experiment rank (best first).

Descriptor
Dataset Avg.

1 2 3 4 5 6 7 8

Hand-crafted image descriptors

LCVBP 75.4 75.3 89.8 85.2 77.6 88.6 95.8 69.1 82.1
IOCLBP 78.6 79.9 54.4 80.2 84.1 90.3 95.4 66.0 78.6
OCLBP 74.8 74.8 60.1 79.9 83.3 87.7 92.6 65.0 77.3
Full-Hist-10 87.7 87.7 28.8 78.0 79.3 87.1 92.2 65.6 75.8
Marginal-Hists-256 71.0 79.6 99.6 73.7 81.5 70.5 79.6 70.3 78.2

CNN-based features

ResNet-50-FC 94.9 93.0 77.7 90.7 78.5 97.9 99.6 71.0 87.9
ResNet-101-FC 94.7 92.8 76.6 90.5 76.6 97.5 99.2 68.6 87.1
ResNet-152-FC 95.0 91.8 76.5 90.9 76.7 97.4 99.1 68.8 87.0
VGG-M-FC 87.7 86.8 64.1 84.3 74.5 95.1 99.2 68.3 82.5
VGG-VD-16-FC 93.1 85.6 71.5 79.1 76.8 96.3 96.6 67.2 83.3

Datasets: 1) ALOT-40-NS-N; 2) ForestSpecies-112-NS-N; 3) MBT-34-NS-N; 4) NewBarkTex-6-NS-N;
5) Outex-59-NS-N; 6) STex-138-NS-N; 7) USPTex-33-NS-N; 8) VisTex-78-NS-N.
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Figure 13. Relative performance of hand-crafted descriptors vs. CNN-based features with stationary
(x axis) and non-stationary textures (y axis) under invariable imaging conditions (Experiments #1 and
#2, best 13 methods). The plot shows a clear divide between CNN-based methods (mostly clustered in
the upper-left part, therefore showing affinity for non-stationary textures) and hand-crafted descriptors
(mostly clustered in the lower-right part, therefore showing affinity for stationary textures)
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Dataset Parquet-38-S-N, class “OAK05-grade1”

Dataset Parquet-38-S-N, class “OAK05-grade2”

Dataset V×CTSG-42-S-N, class “firenze-grade09”

Figure 14. Hand-crafted image descriptors proved generally better than CNN-based features for
the classification of stationary textures acquired under invariable imaging conditions. The gap was
substantial when it came to discriminating between very similar textures, as those shown in the picture.

Under variable illumination conditions, CNN-based descriptors seemed to be able to compensate
for changes in illumination better than hand-crafted descriptors did (Experiments #3 and #4,
Tables 9–10). This result is in agreement with the findings of Cusano et al. [57].

Table 9. Results of Experiment #3: stationary textures with variations in illumination. Figures
report overall accuracy by dataset. Boldface denotes the highest value; underline signals a
statistically-significant difference between the best hand-crafted and the best CNN-based descriptor.
Descriptors are listed in ascending order of by-experiment rank (best first).

Descriptor
Dataset

Avg.
1 2 3 4 5

Hand-crafted image descriptors

SIFT-BoVW 77.9 79.0 95.1 97.5 86.2 87.1
IOCLBP 82.0 85.9 91.7 82.8 79.5 84.4
IPBC-J 70.5 85.7 89.6 94.2 71.6 82.3
VZ-MR8 73.3 69.8 94.1 96.4 82.0 83.1
ILBP 76.9 84.2 80.8 96.4 69.0 81.5

CNN-based features

ResNet-50-FC 96.0 83.0 99.1 98.8 97.2 94.8
ResNet-101-FC 95.6 81.6 98.9 98.9 97.0 94.4
ResNet-152-FC 95.5 81.9 98.8 98.3 95.9 94.1
VGG-VD-19-FC 93.4 76.4 96.8 97.5 94.4 91.7
VGG-VD-16-FC 93.9 76.1 97.2 97.2 93.9 91.6

Datasets: 1) ALOT-95-S-I; 2) Outex-192-S-I; 3) RawFooT-68-S-I-1; 4) RawFooT-68-S-I-2; 5) RawFooT-68-S-I-3.

The results were however rather split in the presence of rotation (Experiments #5 and #6,
Tables 11 and 12). Here, the hand-designed descriptors were significantly better than CNN-based
features in three datasets out of six, whereas the reverse occurred in two datasets. This parallels the
results reported in [1] and is likely to be related to the directional nature of the learned filters in the
convolutional networks.
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A similar trend emerged with variations in scale (Experiments #7 and #8, Tables 13 and 14). In this
case, the hand-designed descriptors (particularly 3D colour histogram) were significantly better than
CNN-based features in two datasets, while the reverse occurred in the other two.

Table 10. Results of Experiment #4: non-stationary textures with variations in illumination.
Figures report overall accuracy by dataset. Boldface denotes the highest value; underline signals
a statistically-significant difference between the best hand-crafted and the best CNN-based descriptor.
Descriptors are listed in ascending order of by-experiment rank (best first).

Descriptor
Dataset

Avg.
1 2

Hand-crafted image descriptors

SIFT-BoVW 70.1 74.7 72.4
ILBP 63.1 76.7 69.9
LBP + LCC 64.6 74.9 69.7
CLBP 59.7 74.0 66.9
LCVBP 69.2 70.9 70.0

CNN-based features

ResNet-50-FC 95.7 74.0 84.8
ResNet-101-FC 95.7 72.3 84.0
ResNet-152-FC 95.7 71.7 83.7
VGG-VD-19-FC 93.4 69.2 81.3
VGG-VD-16-FC 93.9 68.7 81.3

Datasets: 1) ALOT-40-NS-I; 2) Outex-59-NS-I.

In the presence of multiple and uncontrolled changes in the imaging conditions, including
variations in illumination, scale and viewpoint (Experiments #9 and #10, Tables 15 and 16), the
hand-crafted descriptors were just non-competitive: CNN-based features proved superior in all the
datasets considered. The difference was more noticeable in those datasets (e.g., RDAD) where the
intra-class variability was higher. Particularly interesting were the results obtained with the Describable
Texture Dataset: here, CNN-based features surpassed hand-crafted descriptors by ≈30 percentage
points. On the same dataset, the 60.8% accuracy achieved by ResNet-50 was equally remarkable, in
absolute terms.

Dataset DTD-47-NS-M, class “Chequered”

Dataset DTD-47-NS-M, class “Cracked”

Dataset USPTex-33-NS-N, class “c108”

Figure 15. CNN-based features were on the whole better than hand-crafted descriptors at classifying
non-stationary textures, as those shown in the picture.
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Table 11. Results of Experiment #5: stationary textures with rotation. Figures report overall accuracy
by dataset. Boldface denotes the highest value; underline signals a statistically-significant difference
between the best hand-crafted and the best CNN-based descriptor. Descriptors are listed in ascending
order of by-experiment rank (best first).

Descriptor
Dataset

Avg.
1 2 3 4

Hand-crafted image descriptors

OCLBP 94.9 100.0 99.2 94.6 97.2
IOCLBP 94.9 100.0 98.6 93.8 96.8
ICMDFT 95.6 100.0 99.4 91.2 96.5
ICM 93.6 100.0 99.0 87.6 95.0
LCVBP 90.4 99.9 98.1 86.0 93.6

CNN-based features

ResNet-101-FC 98.4 100.0 98.3 86.9 95.9
ResNet-50-FC 98.7 100.0 98.0 87.6 96.1
DenseNet-161-FC 97.0 100.0 99.1 89.0 96.3
VGG-S-VLAD 96.8 100.0 98.3 81.0 94.0
VGG-S-FC 97.4 100.0 97.4 81.3 94.0

Datasets: 1) ALOT-95-S-R; 2) KylbergSintorn-25-S-R; 3) MondialMarmi-25-S-R; 4) Outex-193-S-R.

Table 12. Results of Experiment #6: non-stationary textures with rotation. Figures report overall
accuracy by dataset. Boldface denotes the highest value; underline signals a statistically-significant
difference between the best hand-crafted and the best CNN-based descriptor. Descriptors are listed in
ascending order of by-experiment rank (best first).

Descriptor
Dataset

Avg.
1 2

Hand-crafted image descriptors

Full-Hist-10 87.2 81.6 84.4
IOCLBP 81.2 83.6 82.4
OCLBP 77.4 83.3 80.3
LCVBP 79.2 76.4 77.8
ICMDFT 74.0 78.8 76.4

CNN-based features

ResNet-50-FC 95.4 73.9 84.6
ResNet-101-FC 95.5 72.2 83.9
ResNet-152-FC 95.5 72.4 83.9
DenseNet-161-FC 86.0 76.4 81.2
VGG-VD-19-FC 93.8 69.4 81.6

Datasets: 1) ALOT-40-NS-R; 2) Outex-59-NS-R.

Table 13. Results of Experiment #7: stationary textures with variation in scale. Figures report overall
accuracy by dataset. Boldface denotes the highest value; underline signals a statistically-significant
difference between the best hand-crafted and the best CNN-based descriptor. Descriptors are listed in
ascending order of by-experiment rank (best first).

Descriptor
Dataset

Avg.
1 2 3

Hand-crafted image descriptors

Full-Hist-10 89.1 76.0 78.1 81.1
Marginal-Hist-256 76.0 70.9 81.7 76.2
Mean + Std 77.4 69.7 74.9 74.0
ICMDFT 65.2 79.3 80.2 74.9
ICM 64.0 77.7 79.1 73.6

CNN-based features

ResNet-101-FC 84.3 91.5 82.1 86.0
ResNet-152-FC 85.7 89.0 81.9 85.5
ResNet-50-FC 81.7 88.9 82.8 84.5
VGG-VD-19-FC 86.8 87.3 76.7 83.6
VGG-VD-16-FC 87.1 86.2 76.2 83.2

Datasets: 1) KTH-TIPS-10-S-S; 2) KTH-TIPS-11b-S-S; 3) Outex-192-S-S.
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Table 14. Results of Experiment #8: non-stationary textures with variation in scale. Figures
report overall accuracy by dataset. Boldface denotes the highest value; underline signals a
statistically-significant difference between the best hand-crafted and the best CNN-based descriptor.
Descriptors are listed in ascending order of by-experiment rank (best first).

Descriptor
Dataset

1

Hand-crafted image descriptors

Full-Hist-10 73.3
Marginal-Hist-256 73.2
IOCLBP 71.7
OCLBP 70.2
ICMDFT 68.0

CNN-based features

ResNet-50-FC 70.4
ResNet-101-FC 69.2
ResNet-152-FC 69.5
VGG-VD-16-FC 66.4
VGG-VD-19-FC 65.8

Datasets: 1) Outex-59-S-S.

Table 15. Results of Experiment #9: stationary textures with multiple variations. Figures report overall
accuracy by dataset. Boldface denotes the highest value; underline signals a statistically-significant
difference between the best hand-crafted and the best CNN-based descriptor. Descriptors are listed in
ascending order of by-experiment rank (best first).

Descriptor
Dataset

Avg.
1 2 3 4 5 6

Hand-crafted image descriptors

IOCLBP 88.7 33.8 84.1 91.7 66.9 41.9 67.9
OCLBP 89.1 30.9 82.2 90.3 64.4 41.0 66.3
LCVBP 90.6 43.4 81.2 83.8 62.3 35.2 66.1
Full-Hist-10 75.5 19.6 95.5 93.1 55.9 40.0 63.3
OppGabor 85.1 30.7 83.6 88.9 53.6 34.4 62.7

CNN-based features

ResNet-101-FC 94.2 51.9 97.1 98.3 83.9 75.3 83.4
ResNet-152-FC 94.0 53.3 97.1 98.3 83.5 75.7 83.6
ResNet-50-FC 94.1 52.6 95.8 98.1 84.2 75.0 83.3
VGG-VD-19-FC 91.0 40.6 96.5 97.2 80.4 73.2 79.8
VGG-VD-16-FC 90.7 39.2 96.2 97.0 81.4 73.3 79.6

Datasets: 1) CUReT-61-S-M; 2) Fabrics-1968-S-M; 3) KTH-TIPS-10-S-M; 4) KTH-TIPS2b-10-S-M;
5) LMT-94-S-M; 6) RDAD-27-S-M.

Another interesting outcome is the relative performance of the descriptors within the two classes
of methods. The ranking of the CNN-based features was rather stable across all the experiments, with
the three ResNet models invariably sitting in the first places of the standings. Conversely, hand-crafted
descriptors showed a higher degree of variability: LBP colour variants (e.g., OCLBP, IOCLBP, and
LCVBP) for instance—which were among the best methods on the whole—did not perform well
under variable illumination (as one would expect) and were in fact surpassed by grey-scale methods
(e.g., SIFT and ILBP).
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Figure 16. Number of datasets on which: hand-crafted methods performed significantly better
than CNNs (“HC > CNN”); there was no significant difference (“No diff.”) and CNNs performed
significantly better than hand-crafted methods (“CNN > HC”). see also Tables 6–13.

Table 16. Results of Experiment #10: non-stationary textures with multiple variations. Figures
report overall accuracy by dataset. Boldface denotes the highest value; underline signals a
statistically-significant difference between the best hand-crafted and the best CNN-based descriptor.
Descriptors are listed in ascending order of by-experiment rank (best first).

Descriptor
Dataset

1

Hand-crafted image descriptors

SIFT-BoVW 31.6
VZ-MR8 27.8
SIFT-VLAD 27.1
IPBC-J 22.7
ILBP 21.0

CNN-based features

ResNet-50-FC 60.8
ResNet-152-FC 60.4
ResNet-101-FC 60.3
VGG-VD-19-FC 56.2
VGG-VD-16-FC 56.2

Datasets: 1) DTD-47-NS-M.
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6.2. Computational Demand

Table 17 reports, for each image descriptor, the average Feature Extraction time per image (FE)
and the average Classification time per subdivision into the training and test set (CL). The figures were
recorded from Experiment #1. For a fair comparison, all the features were computed using the CPU
only (no GPU acceleration was used). To facilitate a comparative assessment, we subdivided the whole
population into quartiles (columns QFE and QCL of the table). On the whole, the results indicate that
the best performing hand-crafted descriptors (e.g., OCLBP, LCVBP and ICM) were generally slower
than the CNN-based methods in the feature extraction step; in the classification step, however, the
situation was inverted in favour of the hand-crafted descriptors due to the lower dimensionality of
these methods.

Table 17. Computational demand: FE = average Feature Extraction time per image, CL = average
Classification time per problem; QFE and QCL are the corresponding quartiles. Values are in seconds.
Note: features’ extraction and classification from the DenseNet-161 and DenseNet-201 models were
carried out on a machine different from the one used for all the other descriptors. Consequently,
computing times for DenseNets are not directly comparable to those of the other descriptors.

Hand-Crafted Image Descriptors CNN-Based Features

Abbreviation FE QFE CL QCL Abbreviation FE QFE CL QCL

Purely spectral Caffe-Alex-FC 0.089 I 0.611 III
Mean 0.043 I 0.007 I Caffe-Alex-BoVW 0.151 I 0.676 IV
Mean + Std 0.054 I 0.007 I Caffe-Alex-VLAD 0.101 I 0.626 IV
Mean + Moms 0.152 I 0.009 I Caffe-Alex-BoVW 0.151 I 0.676 IV
Quartiles 0.063 I 0.007 I DenseNet-161-FC 1.060 ∗ 2.565 ∗
Marg.-Hists-256 0.103 I 0.114 II DenseNet-161-BoVW 1.462 ∗ 2.647 ∗
Full-Hist-10 0.168 II 0.147 II DenseNet-201-FC 0.858 ∗ 0.924 ∗

Grey-scale texture DenseNet-201-BoVW 0.986 ∗ 0.973 ∗
CLBP 0.564 II 0.053 II GoogLeNet-FC 0.717 III 0.146 II
GLBP 0.272 II 0.021 I GoogLeNet-BoVW 0.709 III 0.150 II
ILBP 0.329 II 0.036 I ResNet-50-FC 0.736 III 0.285 III
LBP 0.267 II 0.021 I ResNet-50-BoVW 0.800 III 0.333 III
LTP 0.668 III 0.036 I ResNet-101-FC 1.416 III 0.289 III
TS 0.606 III 0.406 III ResNet-101-BoVW 1.461 IV 0.338 III
GLCM 0.789 III 0.014 I ResNet-152-FC 2.068 IV 0.285 III
GLCMDFT 0.812 III 0.015 I ResNet-152-BoVW 2.112 IV 0.332 III
Gabor 1.396 III 0.016 I VGG-Face-FC 0.381 II 0.614 III
Gaborcn 1.455 IV 0.016 I VGG-Face-BoVW 0.459 II 0.699 IV
GaborDFT 1.395 III 0.016 I VGG-Face-VLAD 0.383 II 0.620 IV
GaborDFT

cn 1.457 IV 0.016 I VGG-F-FC 0.084 I 0.614 III
IPBC-J 4.300 IV 0.681 IV VGG-F-BoVW 0.133 I 0.687 IV
HOG 0.142 I 0.115 II VGG-F-VLAD 0.092 I 0.612 III
VZ-MR8 4.366 IV 0.679 IV VGG-M-FC 0.160 I 0.614 III
SIFT-BoVW 10.064 IV 0.676 IV VGG-M-BoVW 0.223 II 0.689 IV
SIFT-VLAD 0.617 III 0.612 III VGG-M-VLAD 0.154 I 0.613 III
WSF + WCF(1) 0.953 III 0.018 I VGG-S-FC 0.147 I 0.616 IV
WSF + WCF(2) 1.018 III 0.018 I VGG-S-BoVW 0.269 II 0.688 IV

Colour texture VGG-S-VLAD 0.155 I 0.614 III
OCLBP 1.183 III 0.097 II VGG-VD-16-FC 0.382 II 0.615 IV
IOCLBP 1.580 IV 0.188 II VGG-VD-16-BoVW 0.463 II 0.679 IV
LCVBP 2.194 IV 0.067 II VGG-VD-16-VLAD 0.388 II 0.612 III
LBP + LCC 0.918 III 0.130 II VGG-VD-19-FC 0.425 II 0.612 III
ICM 4.495 IV 0.057 II VGG-VD-19-BoVW 0.508 II 0.679 IV
ICMDFT 4.508 IV 0.056 II VGG-VD-19-VLAD 0.437 II 0.611 III
OppGabor 5.427 IV 0.094 II
OppGaborcn 5.614 IV 0.094 II
OppGaborDFT 5.440 IV 0.094 II
OppGaborDFT

cn 5.617 IV 0.095 II
(1) Haar wavelet; (2) Bi-orth.wavelet.
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7. Conclusions

We have compared the effectiveness and computational workload of traditional, hand-crafted
descriptors against off-the-shelf CNN-based features for colour texture classification under ideal
and realistic conditions. On average, the experiments confirmed the superiority of deep networks,
albeit with some interesting exceptions. Specifically, hand-crafted descriptors still proved better
than CNN-based features when there was little intra-class variability or where this could be
modelled explicitly (e.g., rotations). The reverse was true when there was significant intra-class
variability—whether due to the intrinsic structure of the images and/or to changes in the imaging
conditions—and in general in all the other cases.

Of the three aggregation techniques used for extracting features via pre-trained CNN (i.e., FC,
BoVW and VLAD), the first outperformed the other two in all the conditions considered. This
finding is in agreement with the results recently published by Cusano et al. [17], but differs from
those presented by Cimpoi [16] in which VLAD (and to some extent BoVW) performed either better
or at least as well as FC. Note, however, that in our comparison, we kept the number of features
approximately equal for the three methods, whereas in [16], VLAD’s feature vectors were significantly
longer than FC and BoVW. Furthermore, consider that in our experiments, the aggregation was
performed over an external—dataset-independent—dictionary, whereas [16] used dataset-specific
(internal) dictionaries. Incidentally, it is worth noting that the FC configuration is the only one that
allows a genuine off-the-shelf reuse of the networks in a strict sense, only requiring a resizing of the
input images to fit the input field of the net.

Among the hand-crafted descriptors, colour LBP variants such as OCLBP, IOCLBP and LCVBP
gave the best results under stable illumination, whereas dense SIFT proved the most effective method in
the presence of illumination changes. Pure colour descriptors (i.e., full and marginal colour histograms)
were the best methods to deal with variations in scale.

On the other hand, the performance of CNN-based features was rather stable across all the
datasets and experiments, with the three ResNet models emerging as the best descriptors in nearly all
experimental conditions.

As for the computational cost, the best CNN-based features were approximately as fast to compute
as their hand-crafted counterparts (Table 17). The feature vectors, however, are at least twice as long
(Tables 2 and 3), which implies higher computational demand in the classification step.

Finally, an interesting and rather curious result is the high affinity that emerged between local
binary patterns and the Outex database: in most of the experiments in which this dataset was involved,
the best descriptor was always an LBP variant, a finding that did not go unnoticed by other authors
either [16].

Supplementary Materials: The datasets’ file names, class labels and links to the original images are available
at the Supplementary material. Feature extraction and classification were based on CATAcOMB (Colour And
Texture Analysis tOolbox for MatlaB), which is provided in the CATAcOMB.zip file. An on-line version of the
toolbox will also made available at https://bitbucket.org/biancovic/catacomb upon publication.
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