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Abstract: We present a data–driven approach to feature selection and object detection based
on hypothesis testing. Starting from positive training examples only, we estimate the probability
density of each of a large number of image measurements. A quantitative feature selection criterion
inspired by maximum likelihood is then used in conjunction with Spearman’s independence rank
test to select a maximal subset of discriminative and pairwise independent features. Classification is
performed by a sequence of hypothesis tests for the presence of the object. The overall significance
level (i.e. the operating point) can be set by controlling the significance level of the individual
tests as well as the minimum number of them that a candidate window is required to pass. We
report experiments on face detection over the MIT-CBCL database. The image measurements
we use for these experiments include grey level values, integral measurements and ranklets. Our
results indicate that the method is able to generalize from positive examples only and reaches
state-of-the-art recognition rates.
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1. Introduction

In this paper we discuss a methodology for detecting ob-
jects in images based on hypothesis testing. Hypothesis
tests appear to be well suited for dealing with detection
problems; in particular, they afford a quantitative way
to estimate and control the percentage of false negatives
by tuning the confidence level. Our work makes use
of these classical tools in a new context. We consider
the common practical case in which there are enough
positive examples to allow reasonable estimates of uni-
variate marginal probability distributions but no clear
characterisation of the “reject” class is readily available.
One is thus forced to work against the omnibus alter-
native. We show that this situation can be handled by
using multiple tests on independent features automati-
cally selected from a large pool of measurements based
on their distribution.

In the training stage a very large number of image
measurements is collected, and the empirical density of
each of them is estimated from the available positive ex-
amples. A criterion derived from maximum likelihood is
used to identify the most discriminative features. Spear-
man’s independence rank test is then used to further se-
lect a maximal subset of pairwise independent features
of size N. At run time, a hypothesis test is performed
for each feature. The null hypothesis is, in each case,
the presence of the object. Detection is achieved if at
least M of the N tests are passed. The choice of M is
made according to the overall confidence level required.
The learning process described is efficient in the sense

that increasing the number of training samples leads to
better estimates of the underlying probability densities
without increasing the computational cost at runtime.

Many general–purpose feature selection methods
have been proposed (see 9, 1) and references therein).
In 8) Adaboost is used to distill a relatively small num-
ber of highly descriptive features using information from
both positive and negative examples. In a similar
context 4) apply a feature selection method based on
the analysis of the variance of features to discriminate
highly descriptive regions from uniform regions; in 7)

a component-based approach is described, where the
features are image patches of various sizes and feature
selection is performed via mutual information. Neither
of these, however, exploit quantitative measures of fea-
ture independence, though in 5) some heuristic is used
to this purpose. Our work is rooted in classic nonpara-
metric statistical approaches (see 3) for a quite complete
overview of this subject), perhaps less popular within
the computer vision community than Bayesian or sta-
tistical learning techniques, but which appear to be well
suited for dealing with detection problems.

We present experimental results on face detection
over the images of the MIT-CBCL database, but we
strictly view this application as a case study, since our
methodology is entirely data driven and does not rely
on specific properties of face images. In principle, the
porting to a different application is subject only to the
availability of a suitable (positive) training set.
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Figure 1: The dashed areas of the distribution p(x) con-
tribute to the “tail” (or the reject region) t ≤ tα of the
distribution f defined by Eq. 1.

2. Statistical background

2.1 Testing against the omnibus alterna-

tive

Hypothesis tests rely on the basic assumptions of know-
ing the probability distribution of the observable un-
der the null hypothesis and a model for the alternative
against which the test is run. Possibly the most common
choice for an alternative is the shift model, effectively
leading to one- or two-sided tests such as, for example,
the Student’s one-sample t-test.

While density estimation is a recognised research
topic in itself, the choice of the alternative is generally
relegated to the (oftentimes unprincipled) collection of
a set of ad–hoc negative examples. In this work, we re-
strict ourselves to the simple case in which the univari-
ate densities p(x) of our measurements can be satisfac-
torily approximated by an histogram over the positive
training data, and take a more principled stance on the
alternative instead.

To this aim, we perform a change of variables and
define the probability density function f(t) as

∫ t

0

f(z)dz =

∫ +∞

−∞

p(x)U0(t − p(x))dx (1)

where U0(·) is the unit step function. For a fixed t ≥ 0,
the integral on the l.h.s. is equal to the probability
of the event Dt = p−1([0, t]) (see the dashed area in
Fig. 1). We then perform a one-sided test on f(t) —
instead than on p(x) — rejecting the null hypothesis
for values of t lower than a critical value tα. Effectively,
this implements the maximum likelihood principle by
rejecting the null hypothesis if the observable x falls
in a region of small probability (see Fig. 1). As usual,

the significance level of the test is given α =
∫ t

α

0
f(t)dt.

Note that by Eq. 1 the tail of f may account for disjoint
intervals of p(x) on the x-axis (see again Fig. 1).

2.2 Spearman’s independence rank test

An effective way to estimate independence between two
observables (in our case, image features) that may have
different measurement units is provided by Spearman’s
independence rank test 3).

Assume we are given n realisations of two random
variables, R and S. Let πR(ri) and πS(si) represent the
rank of each observation among those of the respective
variable.

The Spearman’s statistics D is defined as D =∑n

i=1(πR(ri) − πS(si))
2. The null distribution of D

is obtained under the assumption that for independent
variables all rankings occur with probability 1/n!. For
large n a Normal approximation holds, with the tails
corresponding to correlated or anti-correlated variables
(i.e., equal or opposite rankings). Thus one runs a test
against the independence hypothesis with significance
α by checking whether D deviates from its average by
more than some critical value dα.

3. Feature selection

Assume we are given a training set of positive examples
only for the object of interest, and a large set of possi-
ble image measurements (e.g. grey level values, wavelet
coefficients, rank features). In this section we describe
a selection procedure that distills a subset of descriptive
and independent features for the problem at hand. In
the first stage, after estimating the probability distribu-
tion of each image measurement from the training set,
we select a subset of features according to the notion of
saliency defined below.

3.1 Selection of salient features

Considering the type of hypothesis test based on the
probability density f of Eq. 1, a natural definition of
saliency can be given in terms of tα. For a fixed signif-
icance level α, the image measurement with the cumu-
lative distribution leading to the highest critical value
tα is assigned the maximum saliency. This criterion can
be implemented by ranking the features of a given fam-
ily based on tα and retaining only a certain fraction or
number of the top features.

3.2 Selection of independent features

This second step aims at selecting a subset of indepen-
dent features out of the salient features identified in the
first step. The reason for this is to reduce the number
of features without compromising the power of the final
test.

This selection is performed by computing the Spear-
man’s statistics for all pairs of features of the same cat-
egory (grey levels, wavelets, etc). For each category,
a graph is built of which the single measurements rep-
resent the nodes. Given a threshold 0 < τ < 1, two

- 2962 -



nodes are joined by an edge if the corresponding fea-
tures don’t reject the independence hypothesis with a
level of significance lower than τ . Finally, maximally
complete subgraphs — or cliques — are located in each
graph. The nodes of the clique correspond to features
that are pairwise independent with confidence greater
than 1 − τ .

4. Testing for the presence of the

object

Detection is achieved by performing a hypothesis test
of the type described in Section 2.1 for each image mea-
surement. The null hypothesis is, in each case, the pres-
ence of the object.

The idea is to gather evidence for rejecting the null
hypothesis — that is, that the image represents the ob-
ject of interest — by testing the N selected, independent
features in a sequence. An object is detected if at least
M of the N tests are passed. The overall significance
level depends on M as well as on the single tests. In
general, we will want to choose a high level of signifi-
cance for the single tests, so that each of them acts as
a “weak classifier”. The operating point of the system
can then be tuned by varying M .

5. Experiments on face detection

In this section we specialise our method to the case of
face detection. We use the CBCL-MIT database for
training (feature selection) and validation 1.

5.1 Feature extraction

In the present set up, for each image patch of size 19×19
(the size of each of the 2431 images in the training
set) we compute the following collection of features:
(i) 19×19=361 grey values features (one for each im-
age location), (ii) 19 vertical, 19 horizontal, and 37+37
diagonal tomographies, for a total of 112 tomographic
features, and (iii) 5184 horizontal, 5184 vertical, 5184
diagonal ranklets, for a total of 15,552 ranklet features.
Overall this amounts to estimating about 16,000 fea-
tures.

Tomographies are integral measurements, or averages
of image grey values computed along specific directions
(at the moment limited to vertical, horizontal, and 45◦

diagonal). For both grey values and tomographies we
first equalise images to attenuate the effect of illumina-
tion changes.

Ranklets are a family of orientation selective rank fea-
tures designed in close analogy with Haar wavelets 6):
in particular, the three orientation channels correspond.
Whereas Haar wavelets are a set of filters that act lin-
early on the intensity values of the image, ranklets are

1The training and (positive) test sets we use have been ran-
domly sampled from the database to ensure they are identically
distributed.

Figure 2: Selected salient features (left to right): the
support of the best three diagonal, horizontal and ver-
tical ranklets respectively. The value of the features on
the left is distributed around zero: these features cap-
ture the symmetry of the face.

defined in terms of the relative order of pixel intensities
and are not affected by monotonic transformations of
the grey levels.

The current collection of image features is not ex-
haustive and can be enriched; we simply regard it as a
starting point for validating our method.

5.2 Feature selection

After the selection of the most salient features ranked
according to the procedure described in the previous
section we are left with 300 grey values, 112 tomogra-
phies, 4000 horizontal, 4000 vertical, and 1000 diagonal
ranklets. The supports of the more salient nine ranklets
are shown in Figure (2).

The subsequent selection of maximal cliques of inde-
pendent features (with τ = 0.5) left us with (N =) 84
grey values, 43 tomographies, 63 horizontal, 75 vertical,
and 83 diagonal ranklets.

5.3 Testing for the presence of a face

We validated the face detector on the test set of the
MIT-CBCL database, that consists of 472 faces and
23,573 non-faces. Since all images are 19×19 pixels the
question is simply whether, or not, an image is a face
image.

We first ran our experiments using features from one
category only. The results shown in Fig. 3 as ROC
curves indicate that grey values and horizontal and ver-
tical ranklets appear to perform better than tomogra-
phies and diagonal ranklets. The ROCs were obtained
by varying the significance α of the single test. Results
not included here clearly show that the ROC curves
obtained using the same number of features drawn ran-
domly from each category lead to inferior performances.

Combining horizontal and vertical ranklets (138 fea-
tures or tests all together) leads to the highest classifi-
cation accuracy (see Fig. 4; EER = 8%). In the same
figure we also displayed the results obtained by using
the first 72 principal components of the 138 features and
measuring the Mahalanobis distance from the centroid.
The PCA-based procedure appears to perform slightly
better than the proposed technique (EER = 6%). This
is consistent with the fact that the independence test

- 2963 -



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

horizontal ranklets
vertical ranklets

diagonal ranklets
tomographies

grey pixel values

Figure 3: ROC curves on the MIT-CBCL test set.
Comparison between grey values (where M has been
set to M = 75), tomographies (M = 38), horizontal
(M = 56), vertical (M = 67), and diagonal (M = 70)
ranklets.

has been performed with a low threshold (to the pur-
pose of retaining a not too small number of features).

6. Conclusions

We introduced a data–driven approach to feature selec-
tion and object detection based on hypothesis testing
and positive examples only. We designed our hypothesis
tests to be effective against the omnibus alternative by
incorporating a form of the maximum likelihood princi-
ple into them. The saliency criterion for feature selec-
tion derives naturally from this design. The reported
results support the potential of the proposed approach.

We believe that the main merit of this approach lies in
the direct application of effective nonparametric statis-
tical techniques with minimal assumptions on the prob-
ability distributions of the data. Clear strengths of this
method are its generality, modularity, and wide applica-
bility. On the other side, the flexibility of the approach
can lead to suboptimal solutions unless some problem
specific knowledge is injected into the system.

The experimental results we reported support the po-
tential of our method; the EER of 8% is in line with the
state of the art for this database 6, 2).
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