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ABSTRACT

A central goal in automatic music transcription is to detect indi-
vidual note events in music recordings. An important variant is
instrument-dependent music transcription where methods can use
calibration data for the instruments in use. However, despite the
additional information, results rarely exceed an f-measure of 80%.
As a potential explanation, the transcription problem can be shown
to be badly conditioned and thus relies on appropriate regularization.
A recently proposed method employs a mixture of simple, convex
regularizers (to stabilize the parameter estimation process) and more
complex terms (to encourage more meaningful structure). In this
paper, we present two extensions to this method. First, we integrate a
computational loudness model to better differentiate real from spuri-
ous note detections. Second, we employ (Bidirectional) Long Short
Term Memory networks to re-weight the likelihood of detected note
constellations. Despite their simplicity, our two extensions lead to a
drop of about 35% in note error rate compared to the state-of-the-art.

Index Terms— Proximal Methods, Alternating Directions
Method of Multipliers, Structured Sparse Coding, Instrument-
dependent Transcription.

1. INTRODUCTION

Automatic music transcription (AMT) is often considered to be a
key technology in music processing as it provides a link between the
acoustic domain (in the form of audio recordings) and the symbolic
music domain (capturing note events and higher level musical con-
cepts) [1]. A central component in an AMT system is the detection
of individual note events in an audio recording of a piece of music.
However, despite ongoing research since the 1970s [2], the AMT
problem remains unsolved in its most general form [1], i.e. for an
unknown number of instruments of unknown type playing jointly
under unknown acoustic conditions. In particular, a major challenge
is that in music note events are usually highly correlated both in time
and frequency – from a modelling point of view this often results in
highly ill-conditioned systems of (non-)linear equations [3].

Several families of AMT methods have been proposed, each
building on specific strategies to approach the AMT problem, see
[1, 3, 4] for an overview. Currently, most state of the art methods
either employ neural networks [5, 6] (typically using discriminative
modelling) or factorization methods [7] (i.e. inference methods
in generative models). Using the piano transcription task as an
example, current methods typically yield f-measures (for correctly
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detected notes) of around 50-70%, leaving considerable room for
improvement.

A typical approach to increase the transcription accuracy is to
include recordings of the instrument to be transcribed in the training
material – this is valid in a variety of scenarios where a calibration
phase is possible (e.g. studio or home recordings). We will refer to
this problem scenario as instrument-dependent music transcription.
However, despite the availability of additional information, the f-
measure for many methods improves only slightly to 60-80% – this
range holds for both discriminative methods [5, 6] and generative
models [8,9]. For example, in [5] Kelz et al. describe the current state-
of-the-art based on neural networks (instrument-dependent training)
– the final proposed method achieves an f-measure of ≈80%, which
is achieved employing an extensive hyper parameter tuning process.

A first idea to improve ill-conditioned problems is to lower the
’noise’, which means to keep the patterns used for identification as
close as possible to the observations. In particular, for instruments
such as the piano, a note is not a stationary sound but rather evolves
in typical formations over time. Most factorization based methods,
however, do not take this temporal progression into account and
rather employ pure spectral templates. The idea in [10] is thus
to model this note progression employing a graphical model that
controls the temporal position in 88 spectro-temporal patterns, each
associated with one piano key. The model is conceptually similar
to Non-negative Matrix Deconvolution (NMD) [11] but employs, in
contrast to NMD, patterns of variable length. There is also a close
connection to non-negative factorial HMMs (NFHMM) [12,13] – the
main difference in [10] being in the use of a specialized parameter
estimation process to enable the use of 88 parallel Markov processes.

Overall, the system presented in [10] models the piano sound
production process quite closely. Yet, this was not reflected in the
evaluation results, with f-measure values around 80% on a standard
dataset (MAPS [14]). A detailed analysis conducted in the context
of [3] revealed that the signal model can be used to yield a higher
transcription accuracy. However, for numerical reasons, the underly-
ing parameter estimation process used in [10] was biased towards
specific local minima of an objective function that are likely to cause
misdetections. The design goal in [3] was thus to use a signal model
similar to [10] but to replace the entire parameter estimation process.
The resulting method consecutively switches from simple, convex
regularizers (that stabilize the initial parameter estimation process)
to more complex terms (to encourage a more meaningful structure
as expressed by a graphical model). As a result, focusing only on
the numerical properties of the parameter estimation process, the
methods yields f-measure values of 95%.

While this is a step forward, the performance is still not high
enough for all relevant applications – intuitively, still 5 in 100 notes
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Figure 1: Illustration of the effect of using different combinations
of regularizers. (a) Log-frequency spectrogram of a recording of
Chopin’s Nocturne No.2 (Op. 9). (b)-(g) Activity tensor estimated
using different combinations of regularizers, see text for details.

are not correctly detected. The contribution in this paper is to in-
vestigate additional strategies for further increasing this accuracy.
Such a high accuracy is particularly important in education systems
that are used to give students feedback on their mistakes [15, 16]. In
this context, a manual analysis revealed two important sources of
errors: notes played with a low intensity and additive noise (moving
chairs, coughing). With respect to the first problem, the system in [3]
employs a single threshold for all pitches to differentiate real from
spurious notes. Using only a single value, however, is problematic
as loudness perception depends on the frequency. Therefore, a first
simple extension is to make this threshold pitch-dependent. Here, as
we will see, using simple schemes such as equal loudness contours
that are based on sinusoidal tones did not give an advantage – instead
we incorporated a method based on the Glasberg-Moore model for
complex, non-stationary sounds [17].

To deal with additive noise, we can exploit that additive sounds
as described above typically lead to activations that are harmonically
unrelated to the music. That means we need a measure for how
likely a certain constellation of notes is. This could be implemented
using an HMM – however, since we are modeling constellations

of notes, the corresponding state-space would at least have a size
of 288 (one state for each combination of active notes), which is
practically infeasible. However, such large, complex joint distri-
butions have recently been successfully approximated using neural
networks [18] [6]. Therefore, as a second extension, we investigate
here combining the method proposed in [3], which is adaptable to
new acoustical conditions with minimal effort, with long short term
memory (LSTM) neural networks for decoding, which essentially
provide a simple musical language model on top.

The remainder is organized as follows. In Section 2, we describe
our proposed extensions in more detail and report in Section 3 on
our evaluation results. We conclude in Section 4 with a prospect on
future work.

2. PROPOSED METHOD

2.1. Signal Model

Before we discuss our proposed extensions, we begin with a short
summary of the model as presented in [3] and refer there for many
of the details. The core of our signal model corresponds to a tensor
product modeling a time-frequency representation V ∈ RM,N

≥0 of a
recording to be transcribed:

V m,n ≈ (PA)m,n :=
∑
k

∑
`

Pm,`,k ·Ak,`,n. (1)

The pattern dictionary tensor P ∈ RM×L×K
≥0 contains K spectro-

temporal patterns, each consisting of L frames. Here, K = 88
corresponds to the number of keys on a piano. That means each
column P :,`,k ∈ RM

≥0 for fixed ` and k contains a single spectral
template; here we used the slicing notation : to refer to all elements in
an index dimension. Each pattern P :,:,k corresponds to a recording
of a single note. The activity tensor A ∈ RK×L×N

≥0 encodes the
activity of each template in each frame.

This basic signal model is relatively free and thus requires strong
regularization. The following objective function employs several of
the regularizers as proposed in [3]:

f(A) :=
∑
m,n

d(V m,n, (PA)m,n) (2)

+ χRK×L×N
≥0

(A) (3)

+ λ1

∥∥A∥∥
1

(4)

+ λ2

∥∥∆D[A]
∥∥
1

(5)

+ χM(A) (6)
+ χT (A) (7)

We illustrate the idea behind each term in Fig. 1. In Fig. 1a we see
a time-frequency representation of the recording to be transcribed.
Fig. 1b-f show activity tensors A obtained using different subsets
of the terms (2)–(7). For illustrative purposes, each A is flattened
out by placing the slices Ak,:,: vertically on top of each other. With
d(a, b) := a · log

(
a
b

)
− a+ b for a, b > 0 term (2) is a data fidelity

term using the generalized Kullback-Leibler divergence. Term (3)
encourages non-negativity of A, where χS is the characteristic func-
tion for some set S with χS(x) = 0 if x ∈ S and χS(x) = ∞
otherwise. Fig. 1b shows the result of using only terms (2)–(3): As
discussed in [3], the corresponding A is blurred and noisy – due to
the structure of P we would expect diagonal lines that start at the po-
sition of note onsets. A transcription based on such a representation
is likely to contain a larger number of errors.
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To obtain more meaningful activations, term (4) introduces a
sparsity inducing `1 regularizer. As shown in Fig. 1c, the results
indeed clear up. However, instead of diagonal lines, we rather see
horizontal lines. This is caused by using single note patterns in P
whose individual templates are not normalized, i.e. we preserve the
characteristic energy decay in the pattern. This causes here, however,
that only the energy-rich, first templates in a pattern are activated.
This activation of ’wrong’ templates causes residual energy and
thus spurious activity. As a remedy, term (5) discourages changes
along diagonals using an anisotropic variant of the total variation
operator. Here, ∆D is essentially a simple high-pass filter along the
diagonals as introduced in [3]. As shown in [3], terms (2)–(5) are
jointly convex in A – when used to obtain a first initialization for A
the convexity improves the robustness of the method considerably.

However, while convexity improves numerical stability, it often
limits the expressiveness of terms. To improve upon remaining
problems, additional non-convex terms are added. One remaining
problem can be see in the G3 activations around 10 seconds (Fig. 1d):
The G3 is activated twice, which is physically impossible and can
lead to estimation errors. As a countermeasure, term (6) uses the
characteristic function with a very specific setM. This set contains
only tensorsAwhose activations encode states in a specific graphical
model. The model essentially encodes that a note has a minimum
length and how it can progress in time. Including term (6) resolves
the concurrency issues (Fig. 1e). Due to space restrictions, we refer
to [3] for details.

A final problem is visible in Fig. 1e: a weak, incorrect activation
of G#3 around 8.5 seconds (octave error). If the note energy is
distributed across several weak activations, the correct activation can
fall below the detection threshold. For this reason, term (7) specifies
with T :=

(
[amin,∞) ∪ {0}

)K×L×N that activations have to be
zero or greater than amin. This way, low intensity energy is ’pulled’
into the main activation which in extreme cases pushes the activation
above the detection boundary. In this context, see also [19] for a
connection between hard thresholding and hard `0 sparsity.

2.2. Parameter Estimation using the Augmented Lagrangian

To obtain a meaningful A, we need to find a minimizing argument
to our objective function f . However, such a function is difficult or
even impossible to minimize with classical gradient or Newton-type
optimization methods. It contains highly non differentiable terms,
terms that yield infinity as value and strongly non-convex terms. In
this context, Augmented Lagrangian methods have been found to
be of high interest. In particular, the variant Alternating Directions
Method of Multipliers (ADMM) [20] provides a scheme to split up
the objective function, minimizing the terms individually and still
provides convergence guarantees for the entire objective. As a result
it is not only useful for complex objective functions as in our case
but also in big data scenarios, as ADMM’s splitting and merging
operations fit perfectly into distributed computing schemes like Map-
Reduce. Due to space constraints we refer to [3] for more details on
ADMM and minimizing the objective function f .

2.3. Thresholding based on Glasberg-Moore Model

Before we describe a first extension to the method introduced in [3],
we identify a potential weakness. In particular, the hard thresholding
introduced by term (7) was found to be particularly useful to improve
the detection of low intensity notes, i.e. those close to the decision
boundary. In [3], the corresponding threshold amin was derived from
user input as this threshold depends on the recording level. More
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Figure 2: Equal loudness curves: Inverted A-weighting (Blue) and
Fletcher et al. for 35 Phon (Orange).

precisely, the user is asked to provide an example of a note having
the lowest intensity to be expected in a recording session (during the
evaluation this was one value for the entire dataset and not specific
to recordings). The system processes this low-intensity recording
and sets amin using the computed activation values.

To keep the user effort minimal, the system employs only a single
low-intensity note. While including this type of thresholding in the
optimization procedure led to measurable improvements, there is a
problem: the perception of loudness is frequency dependent. That
means, if the low-intensity note has a high pitch, its energy is likely
to be different from a note having the same perceived loudness but
with lower pitch. In other words, an energy-based threshold chosen
based on one pitch is likely to be incorrect for another. Therefore, in
a first extension we make the threshold amin pitch dependent, without
increasing the user effort.

A first idea to implement this change is to set the threshold based
on equal loudness curves: Fig. 2 shows the widely used inverted
A-weighting and Fletcher curves [21]. More precisely, we start by
normalizing all single note recordings (that are used to create the
pattern tensor P ) to have the same root-mean-square (RMS) energy.
Then, for each note, we calculate the difference in dB between the
equal loudness value for that note and the one for the low-intensity
note – for this lookup, we use the fundamental frequency associated
with each note. Using this difference, we can derive an individual
threshold for each pitch (which then hopefully corresponds to the
energy level for a note of that pitch having the same loudness as the
low-intensity note). Unfortunately, this procedure led to virtually
no improvement in the results (f-measure improved by 0.2). There
was no difference between the A-weighting and the Fletcher curve,
which is not surprising given their similarity, compare Fig. 2.

A possible reason could be that there simply are not many low-
intensity notes in our evaluation dataset and thus such a measure
cannot have a stronger effect. Alternatively, the new thresholds
might simply not be meaningful enough as both curves were based
on listening tests involving stationary, sinusoidal sounds, while piano
notes are harmonic and non-stationary. To test this hypothesis we
employed a more complex loudness model as proposed by Glas-
berg and Moore [17], which was designed to provide a better fit to
complex, non-stationary sounds. To this end, we derived for each
RMS-normalized note a scaling factor such that the scaled note has
the same perceived loudness as a reference note (C4 in our case) –
loudness was measured as the local maximum over the entire note
duration (Note: All normalized note recordings were pre-scaled to
an assumed playback level of 30 db-SPL for the measurement). We
can then use these scalers to convert the threshold obtained from the
provided low-intensity note recording to all remaining piano keys.
We will report on the results for this variant in Section 3.

2.4. LSTM-based Decoding

A second occasional problem we observed stems from non-musical
interferences, including mechanical sounds from the instrument or
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breathing sounds. These sometimes led to spurious activations, in
particular, for pitched interferences. Most of these activations, how-
ever, are not strongly correlated with the music and typically occur
as short, out-of-key activations. Graphical models such as an HMM
could be used in this context to smooth over such unusual, musically
often irrelevant activations (similar to a language model in speech
recognition). However, even a simple frame-wise model would need
to span a space consisting of 288 states to model each combination
of notes. While there exist sophisticated pruning techniques for such
cases, they tend to be quite complex and often involve considerable
trade-offs with respect to approximation quality and runtime perfor-
mance. To approximate such complex joint probabilities, there has re-
cently been considerable success using neural networks [18] [22] [6]
(in the context of symbolic music representations). Following similar
ideas, we have trained long short term memory (LSTM) based recur-
rent networks to decode the position of onsets in each key, given the
activations obtained as above. While this could have been done with
various other architectures as well (e.g. convolutional networks with
time context) we chose LSTM networks as our input representation
is relatively low-dimensional (convnets are often used to get around
the difficulty of training RNNs with high dimensional inputs) and
LSTM networks have (theoretically) the model capacity to repre-
sent very long temporal dependencies [18]. The latter is achieved
by LSTM networks as they provide a more stable gradient flow in
the backpropagation-through-time algorithm, which is essentially
implemented through gated shortcut connections [22].

As a first step, we divided the activation values associated with
each pitch by the corresponding pitch-dependent threshold. This
way, all activations are normalized to a certain range of values and
comparable statistics, which helps with the training process. In
other words, most instrument and recording specific properties are
eliminated from the input and the network can focus on musical
aspects, which can be learned independently and do not need to be
adapted to new acoustic conditions. The input for frame n consists
of A:,1,n ∈ R88, i.e. the activations for the onset part of each
note pattern in P . The same representation was used in [3] for the
final onset detection. We used LSTM networks in two different
configurations. To take the entire recording into account the first
configuration uses a bidirectional LSTM network [23]. In such
a BLSTM network, one LSTM network operates on the original
input sequence and the other one on the reverse sequence. The
two networks are then trained jointly. For very long sequences,
however, training BLSTM networks typically involves splitting the
input sequence into chunks, which is necessary to deal with the
limitations in computational resources but leads to questions whether
the reversed LSTM network is actually necessary. Therefore, we
trained in a second configuration a uni-directional LSTM. In this
configuration, we simply delay the detection of notes by 400ms to
allow the network to peak a little into the future.

3. EXPERIMENTS

To evaluate our proposed extensions, we employed the ENSTDkCl
subset of the MAPS collection [14], which provides audio recordings
of a Yamaha Disklavier and corresponding MIDI-based annotations.
To evaluate a method, we employ precision (P), recall (R), and F-
measure (F) as used in the MIREX evaluation campaigns. A detected
note is considered correct if there is a note in the corresponding
ground truth having the same MIDI pitch, with an onset position
up to N ms apart from the detected note. As discussed in [3],
we set N=100 to account for some temporal jitter in the ground
truth annotations. Every ground truth note can validate up to one

Method P R F
O’Hanlon et al. [8] 89 77 82
Cogliati et al. [9] 80 84 81

Ewert et al. 2015 [10] 76 83 79
Ewert et al. 2016 (Baseline) [3] 96 93 95

Extension 1 96 95 96
Extension 1+2 (LSTM) 97 96 97

Extension 1+2 (BLSTM) 97 96 97

Table 1: Precision, Recall and F-Measure in percent for various
methods using the MAPS dataset.

detected note. For the LSTM networks, we used two layers with 100
units each and a final dense layer containing 88 units with sigmoid
activations. For the training we employed a subset of MAPS that
was generated using a variety of software synthesizers, i.e. there was
no overlap with the test dataset regarding the acoustic conditions.
Besides a dropout of 0.5, which we apply only to the non-recurrent
connections following [24], we employ no other unusual strategies
[25]1. The results for several methods, including our baseline [3]
and our proposed extensions are given in Table 1.

The first extension led to an improvement of 0.7 in f-measure
compared to the baseline. Given that there are typically not many
notes close to the decision boundary, this might be what can be
expected from such a simple extension. We were surprised, however,
that this value seemed to be consistently higher than just using equal
loudness contours. The use of a more complex loudness model
made some difference here. The LSTM-based decoders improved
the results by another 1.0 in f-measure to an overall improvement of
1.7. Again, a small improvement but given that the MAPS dataset is
very clean and does not contain breathing or similar interferences,
we would expect even bigger improvements in actual live recordings.
We did not measure a difference in performance between the LSTM
and the BLSTM networks, which might indicate that the delayed
output solution used in the LSTM network is enough in this specific
application scenario. Overall, the extensions increased the f-measure
marginally from 95% to 97%. While this is an incremental rather
than a major step forwards, it means that the expected number of
wrong notes in a 100 has gone down from five to three. For feedback
systems in education, this can make quite a difference.

4. CONCLUSIONS

We presented two extensions improving the accuracy of a state-
of-the-art music transcription system. The first extension is based
on specifying note-detection boundaries using the Glasberg-Moore
loudness model for complex non-stationary sounds. The second
extension employs an LSTM network to post-process the output of
a dictionary-based method using variable-length spectro-temporal
patterns. This way, the capacity to quickly adapt to new acoustic
conditions (acoustical model) is combined with a decoder that can
focus on music specific aspects such as the likelihood of specific
note constellations. The f-measure increased from 95% to 97%,
corresponding to a drop from five to three incorrect note detections
per 100 notes.

1We employ Glorot weight initialization [26] and label smoothing [25].
To normalize the input variance [25], we measure the variance across both
input samples and input dimensions to become invariant against pitch depen-
dent velocity biases in the dataset. Loss is an element-wise cross-entropy.
Optimizer is Adam using an initial stepsize set to 1/10 of the default [27].
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