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Abstract. This paper introduces an extension of linear temporal logic
that allows to express properties about systems that are composed of
entities (like objects) that can refer to each other via pointers. Our logic
is focused on specifying properties about the dynamic evolution (such
as creation, adaptation, and removal) of such pointer structures. The
semantics is based on automata on infinite words, extended with appro-
priate means to model evolving pointer structures in an abstract manner.
A tableau-based model-checking algorithm is proposed to automatically
verify these automata against formulae in our logic.

1 Introduction

Pointers are references to memory cells. Programming with pointers is an error-
prone activity with potential pitfalls such as dereferencing null pointers and the
creation of memory leaks. Unwanted side-effects may occur due to aliasing where
apparently unaffected variables are modified by changing a shared memory cell –
the so-called “complexity of pointer swing”. The analysis of pointer programs has
been a topic of continuous research interest since the early seventies [3, 7]. The
purpose of this research is twofold: to assess the correctness of pointer programs,
and to identify the potential values of pointers at compile time to allow more
efficient memory management strategies and code optimization.

Properties of Pointer Programs. Alias analysis, i.e., checking whether pairs of
pointers can be aliases, has received much attention initially (see, e.g., [6, 14]).
[8] introduced and provided algorithms to check the class of so-called position-
dependent alias properties, such as “the n-th cell of v’s list is aliased to the m-th
cell of list w”. Recently, extensions of predicate calculus to reason about pointer
programs have become en vogue: e.g., BI [12], separation logic [20], pointer as-
sertion logic (PAL) [13], alias logic [2], local shape logic [19] and extensions of
spatial logic [4]. These approaches are almost all focused on verifying pre- and
postconditions in a Hoare-style manner.

Since our interest is in concurrent (object-oriented) programs and in express-
ing properties over dynamically evolving pointer structures, we use first-order
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linear-time temporal logic (LTL) as a basis and extend it with pointer asser-
tions on single-reference structures, such as aliasing, as well as predicates to
reason about the birth and death of cells (which provide a model for object refer-
ences). The expressiveness of the resulting logic, called NTL (Navigation Tempo-
ral Logic), is similar to that of the recent Evolution Temporal Logic (ETL) [23].
Whereas ETL uses 3-valued logical structures as semantic models, we follow an
automata-based approach: models of NTL are infinite runs that are accepted by
Büchi automata where states are equipped with a representation of the heap.
PAL contains similar pointer assertions as NTL (and goes beyond lists), but has
neither primitives for the birth and death of entities nor temporal operators.
Evolving heaps have been lately used to model mobile computations. In that
view NTL combines both spatial and temporal features similar to the ambient
logic introduced in [5].

Heap Abstraction. A major issue in analyzing pointer programs is the choice
of an appropriate representation of the heap. As the number of memory cells
for a program is not known a priori and in general is unpredictable, a concrete
representation is inadequate. Analysis techniques for pointer programs therefore
typically use abstract representations of heaps such as, e.g., location sets [22]
(that only distinguish between single and multiple cells), k-limiting paths [14]
(allowing up to k distinct cells for some fixed k), or summary nodes [21] in shape
graphs. This paper uses an abstract representation of heaps that is tailored to
unbounded linked list structures. The novelty of our abstraction is its parame-
terization in the pointer program as well as in the formula. Cells that represent
up to M elements, where M is a formula-dependent constant, are exact whereas
unbounded cells (akin to summary nodes) represent longer lists. The crux of our
abstraction is that it guarantees each unbounded cell to be preceded by a chain
of at least L exact cells, where L is a program-dependent constant. Parameters
L and M depend on the longest pointer dereferencing in the program and for-
mula, respectively. In contrast with the k-limiting approach, where an adequate
general recipe to determine k is lacking, (minimal bounds on) the parameters L
and M can be easily determined by a static analysis.

Pointer Program Analysis. Standard type-checking systems are not expressive
enough to establish properties of pointers such as memory leaks and derefer-
encing null pointers. Instead, techniques for analyzing pointer programs are
more powerful and include abstract interpretation [8], deduction techniques
[2, 12, 13, 20], design by derivation à la Dijkstra [16], and shape analysis [21],
or combinations of these techniques.

As our aim is to obtain a fully automated verification technique the approach
in this paper is based on model checking. Our model-checking algorithm is a non-
trivial extension of the tableau-based algorithm for LTL [15]. For given NTL-
formula Φ, this algorithm is able to check whether the automaton-model of the
concurrent pointer program at hand satisfies Φ. The algorithm, like the ETL ap-
proach [23], suffers from false negatives, i.e., a verification may wrongly conclude
that the program refutes a formula. In such case, however, diagnostic information
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can be provided (unlike ETL, and as for PAL [13]) that may be used for fur-
ther analysis. Besides, by incrementing the parametersM and L, a more concrete
model is obtained that is guaranteed to be a correct refinement of the (too coarse)
abstract representation. This contrasts with the ETL approach where manually-
provided instrumentation predicates are needed. Compared to the PAL approach
which is fully automated for loop-free (sequential) programs, our technique is
fully automated for concurrent pointer programs that may include loops.

Main Contributions. Summarizing, the main contributions of this paper are:
(i) A first-order temporal logic that both contains pointer assertions as well as
predicates referring to the birth or death of memory cells; (ii) An automaton-
based model for pointer programs where states are abstract heap structures and
transitions represent the dynamic evolvement of these heaps; the model deals
finitely with unbounded allocations. (iii) A way of parameterizing the degree of
”correctness” of abstract heap structures, on the basis of a straightforward static
analysis of the program and formula at hand. On incrementing these parameters,
refined heap structures are automatically obtained. (iv) A model-checking algo-
rithm to check abstract representations of pointer programs against formulae in
our logic.

The main advantage of our approach is that it is completely automated: given
a program and a temporal logic property, the abstract automaton as well as the
verification result for the property are determined completely algorithmically.
Moreover, to our knowledge, this paper is the first to develop model-checking
techniques for (possibly) unbounded evolving heaps of the kind described above1.

Our current approach restricts to single outgoing pointers. This still allows
us to consider many interesting structures such as acyclic, cyclic and unbounded
lists (as in [16] and [8]), as well as hierarchies (by backpointers). Besides, several
“resource managers” such as memory managers only work with lists [18]. Our
abstract heap structures can also model mobile ambients (see [9]).

Details of the model checking algorithm and all proofs can be found in [10].

2 A Logic for Dynamic References

Syntax. Let LV be a countable set of logical variables ranged over by x, y, z, and
Ent be a countable set of entities ranged over by e, e′, e1 etc. ⊥ �∈ Ent is used
to represent “undefined”; we denote E⊥ = E ∪ { ⊥ } for arbitrary E ⊆ Ent.
Navigation Temporal Logic (NTL) is a linear temporal logic with quantification
of logical variables that range over entities, or may be undefined. The syntax of
navigation expressions is defined by the grammar:

α ::= nil
∣
∣
∣ x

∣
∣
∣ α↑

1 In this respect, the recent paper [1] only introduces a symbolic representation for
heaps intended for checking safety properties (but not liveness), and does not con-
sider model checking algorithms.
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where nil denotes the null reference, x denotes the entity (or nil) that is the
value of x, and α↑ denotes the entity referred to by (the entity denoted by) α
(if any). Let x↑0 = x and x↑n+1 = (x↑n) ↑ for natural n. The syntax of NTL is:

Φ ::= α = α
∣
∣
∣ α new

∣
∣
∣ α � α

∣
∣
∣ Φ ∧ Φ

∣
∣
∣ ¬Φ

∣
∣
∣ ∃x. Φ

∣
∣
∣ XΦ

∣
∣
∣ ΦUΦ .

The basic proposition α new states that the entity (referred to by) α is fresh,
α = β states that α and β are aliases, and α � β expresses that (the entity
denoted by) β is reachable from (the entity denoted by) α. The boolean con-
nectives, quantification, and the linear temporal connectives X (next) and U
(until) have the usual interpretation. We denote α �= β for ¬ (α = β), α dead for
α = nil , α alive for ¬ (α dead), α �� β for ¬ (α � β) and ∀x. Φ for ¬ (∃x. ¬Φ).
The other boolean connectives and temporal operators � (eventually) and �

(always) are standard. For example, �(∃x. x �= v ∧ x � v ∧ v � x) expresses
that eventually v will point to a non-empty cycle.

Semantics. Logical formulae are interpreted over infinite sequences of sets of
entities that are equipped with information concerning the linking structure
between these entities. Formally, an allocation sequence σ is an infinite sequence
of pairs (E0, µ0)(E1, µ1)(E2, µ2) . . . where for all i � 0, Ei ⊆ Ent and µi :
E⊥

i → E⊥
i such that µi(⊥) = ⊥; µi encodes the pointer structure of Ei. Let

θ : LV ⇀ Ent⊥ be a partial valuation of logical variables. The semantics of
navigation expression α is given by:

[[nil ]]µ,θ = ⊥
[[x ]]µ,θ = θ(x) if θ(x) �= ⊥, and ⊥ otherwise
[[α↑ ]]µ,θ = µ ([[α ]]µ,θ)

For a given allocation sequence σ, Eσ
i and µσ

i denote the set of entities,
respectively the pointer structure, in the i-th state of σ. The semantics of NTL-
formulae is defined by satisfaction relation σ,N, θ |= Φ where σ is an allocation
sequence, N ⊆ Eσ

0 is the set of entities that are initially new, and θ is a valuation
of the free variables in Φ. Let Nσ

i denote the set of new entities in state i, i.e.,
Nσ

0 = N and Nσ
i+1 = Eσ

i+1\Eσ
i , and let θσ

i denote the valuation at state i, where
θσ

i (x) = θ(x) if θ(x) ∈ Eσ
k for all k � i, and is ⊥ otherwise. The latter condition

prevents that contradictions like ∃x.X (x dead ⇒ X x alive) are satisfiable. Note
that once a logical variable is mapped to an entity, this association remains valid
along σ until the entity is deallocated. The satisfaction relation |= is defined as
follows:

σ,N, θ |= α new iff [[α ]]µσ
0 ,θ ∈ N

σ,N, θ |= α = β iff [[α ]]µσ
0 ,θ = [[β ]]µσ

0 ,θ

σ,N, θ |= α � β iff ∃ k � 0. [[α↑k ]]µσ
0 ,θ = [[β ]]µσ

0 ,θ

σ,N, θ |= ∃x.Φ iff ∃e ∈ Eσ
0 : σ,N, θ{ e/x } |= Φ

σ,N, θ |= ¬Φ iff σ,N, θ � Φ
σ,N, θ |= Φ ∨ Ψ iff either σ,N, θ |= Φ or σ,N, θ |= Ψ
σ,N, θ |= X φ iff σ1, Nσ

1 , θ
σ
1 |= Φ

σ,N, θ |= ΦUΨ iff ∃i. (σi, Nσ
i , θ

σ
i |= Ψ and ∀j < i. σj , Nσ

j , θ
σ
j |= Φ).
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Here, θ{ e/x } is defined as usual, i.e., θ{ e/x }(x) = e and θ{ e/x }(y) = θ(y)
for y �= x. Note that the proposition α � β is satisfied if [[β ]] = ⊥ and [[α ]] can
reach some entity with an undefined outgoing reference.

Program Variables. To enable the specification of properties over entities pointed
to by program variables (rather than just logical ones), we introduce for each
program variable vi a logical variable xvi

. This variable always points to a distin-
guished entity evi which exists in every state. For convenience in NTL-formulae
let vi denote xvi

↑ and let ∃x. Φ abbreviate ∃x. (x �= xv1 ∧ . . . ∧ x �= xvn
) ⇒ Φ.

Example 1. Consider the following list-reversal program (see, e.g., [2, 20, 21]):

decl v, w, t : w := nil ; while (v �= nil) do t := w;w := v; v := v↑;w↑ := t od

Properties of interest of this program include, for instance: “v and w al-
ways point to distinct lists (heap non-interference)”: �(∀x. v � x ⇒ w �� x).
“v’s list will be (and remains to be) reversed” 2: ∀x.∀y. ((v � x ∧ x↑ =
y) ⇒ ��(y↑ = x)

)

. “None of the elements in v’s list will ever be deleted”:
∀x. (v � x ⇒ �x alive).

Example 2. The following program consists of two processes that concurrently
produce and add entities to the tail tl of a buffer, respectively remove and con-
sume them from the head hd of that buffer:

decl hd , tl , t :
(

new(tl); hd := tl ; while (true) do new(tl↑); tl := tl↑ od
‖ while (true) do if (hd �= tl) then t := hd ; hd := hd↑; del(t) fi od

)

For navigation expression α, new(α) creates (i.e., allocates) a new entity that
will be referred to by the expression α. The old value of α is lost. Thus, if α is the
only pointer to entity e, say, then after the execution of new(α), e is automatically
garbage collected together with the entities that are only reachable from e. del(α)
destroys (i.e., deallocates) the entity associated to α, so that α and every pointer
referring to it becomes undefined. Some example properties: “Every element in
the buffer is eventually consumed”: �(hd �= tl ⇒ ∃x. (x = hd ∧ �x dead)).
“The tail is never deleted or disconnected from the head”: �(tl alive ∧ hd � tl).

3 Abstracting Linked List Structures

The most obvious way to model pointer structures is to represent each entity and
each pointer individually. For most programs, like, e.g., the producer/consumer
program, this will give rise to infinite representations. To obtain more abstract
(and compact) views of pointer structures, in this paper chains of entities will be
aggregated and represented by one (or more) entities. We consider the abstrac-
tion of pure chains (and not of arbitrary graphs) in order to be able to keep the
“topology” of pointer structures invariant in a more straightforward manner.

2 If one is interested in only checking whether v’s list is reversed at the end of the
program, program locations can be added and referred to in the standard way.
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Pure Chains. Let ≺ be the binary relation on entities (excluding ⊥) representing
µ, i.e., e ≺ e′ iff µ(e) = e′. A sequence e1, . . . , ek is a chain (of length k) if
ei ≺ ei+1, for 0 < i < k. The non-empty set E of entities is a chain of length |E|
iff there exists a bijection f : { 1, . . . , k } → E such that f(1), . . . , f(k) is a chain;
let first(E) = f(1) and last(E) = f(k). E is a pure chain if |{ e′ | e′ ≺ e }| = 1 for
all e ∈ f(2), f(3), . . . , f(k) and f is unique (which may fail to be the case if the
chain is a cycle). Note that chains consisting of a single element are trivially pure.

Abstracting Pure Chains. An abstract entity may represent a pure chain of “con-
crete” entities. The concrete representation of abstract entity e is indicated by
its cardinality C(e) ∈ M = { 1, . . . ,M } ∪ { ∗ }, for some fixed constant M > 0.
Entity e for which C(e) = m � M represents a chain of m “concrete” entities;
if C(e) = ∗, e represents a chain that is longer than M . In the latter case, the
entity is called unbounded. (Such entities are similar to summary nodes [21], with
the specific property that they always abstract from pure chains.) The special
cardinality function 1 yields one for each entity. The precision of the abstraction
is improved on increasing M .

Configurations and Morphisms. States in our automata are triples (E, µ, C),
called configurations. Configurations representing pure chains at different ab-
straction levels are related by morphisms, defined as follows. Let Cnf denote
the set of all configurations ranged over by c and c′, and C({ e1, . . . , en }) =
C(e1) ⊕ . . .⊕ C(en) where n⊕m = n+m if n+m � M and ∗ otherwise.

Definition 1. For c, c′ ∈ Cnf, surjective function h : E → E′ is a morphism if:

1. for all e ∈ E′, h−1(e) is a pure chain and C′(e) = C(h−1(e))
2. e ≺′ e′ ⇒ last(h−1(e)) ≺ first(h−1(e′))
3. e ≺ e′ ⇒ h(e) �′ h(e′) where �′ denotes the reflexive closure of ≺′.

According to the first condition only pure chains may be abstracted by a
single entity while keeping the cardinalities invariant. The last two conditions
enforce the preservation of the pointer structure under h. Intuitively speaking, by
means of a morphism the abstract shape of the pointer dependencies represented
by the two related configurations is maintained. The identity function id is a
morphism and morphisms are closed under composition. Configurations c and c′

are isomorphic, denoted c ∼= c′, iff there exist morphisms from c to c′ and from
c′ to c such that their composition is id.

4 An Automaton-Based Model for Pointer Evolution

Evolving Pointer Structures. Morphisms relate configurations that model the
pointer structure at distinct abstraction levels. They do not model the dy-
namic evolution of such linking structures. To reflect the execution of pointer-
manipulating statements, such as either the creation or deletion of entities (e.g.,
new in Java and delete in C++), or the change of pointers by assignments (e.g.,
x = x↑↑), we use reallocations.
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Definition 2. For c, c′ ∈ Cnf, λ : (E⊥ × E′⊥) → M is a reallocation if:
1. (a) C(e) =

⊕
λ(e, e′) and (b) C′(e′) =

⊕
λ(e, e′)

2. (a) for all e ∈ E, |{ e′ | λ(e, e′) = ∗ }| � 1 and (b) { e′ | λ(⊥, e′) = ∗ } = ∅

3. (a) for all e ∈ E, { e′ | λ(e, e′) �= 0 } and (b) for all e′ ∈ E′, { e | λ(e, e′) �= 0 }
are chains.

We write c λ
� c′ if there is a reallocation (named λ) from c to c′.

The special entity ⊥ is used to model birth and death: λ(⊥, e) �= 0 denotes
the birth of (some instances of) e whereas λ(e,⊥) �= 0 denotes the death of (some
instances of) e. Intuitively speaking, reallocation λ redistributes cardinalities on
E to E′ such that (1a) the total cardinality allocated by λ to e ∈ E equals
C(e) and (1b) the total cardinality assigned to e′ ∈ E′ equals C′(e′). Moreover,
(2a) for each entity e unbounded cardinalities (i.e., equal to ∗) are assigned only
once (according to (1b) to an unbounded entity in E′), and (2b) no unbounded
entities can be born. The last condition is self-explanatory. Note that the identity
function id is a reallocation. The concept of reallocation can be considered as a
generalisation of the idea of identity change as, for instance, present in history-
dependent automata [17]: besides the possible change of the abstract identity of
concrete entities, it allows for the evolution of pointer structures. Reallocations
allow “extraction” of concrete entities from abstract entities by a redistribution
of cardinalities between entities. Extraction is analogous to materialisation [21].
Reallocations ensure that entities that are born cannot be reallocated from any
other entity. Moreover, entities that die can only be reallocated to ⊥.

Relating Abstract and Concrete Evolutions. As a next step we relate transitions
between abstract representations of pointer structures to transitions between
their corresponding concrete representations. To that end, “abstract” realloca-
tions are related to “concrete” ones. These are called concretions.

Definition 3. Let c λ
� c′ and ĉ

̂λ
� ĉ′ with Cĉ = Cĉ′ = 1. λ̂ is a concretion of λ,

denoted λ̂� λ, iff there exist h and h′ such that:
1. h is a morphism between ĉ and c, and h′ is a morphism between ĉ′ and c′
2. λ(e, e′) =

⊕{ λ̂(ê, ê′)|(h(ê), h′(ê′)) = (e, e′) }
3. h(e) = h(e′) ∨ (h′ ◦ λ̂)(e) = (h′ ◦ λ̂)(e′) implies e ≺ĉ e

′ ⇔ λ̂(e) ≺ĉ′ λ̂(e′)
4. (Cĉ ◦ h′)(e) = ∗ ⇒ e ∈ cod(λ̂), the co-domain of λ̂.

The first condition states that the concrete source-configuration ĉ and its ab-
stract source c are related by a morphism, and the same applies to their target
configurations ĉ′ and c′. (Stated differently, reallocations and morphisms com-
mute in this case.) The second condition requires the multiplicity of λ and λ̂
to correspond, while the third condition forbids the change of order (according
to ≺) between concrete entities and their abstract counterparts (unlike realloca-
tions). Hence, the order of entities in a chain should remain identical. The last
condition says that entities that are mapped onto unbounded ones in the target
states are not fresh. Due to the third condition all concrete entities represented
by an abstract entity enjoy a common fate: either all of them “survive” the
reallocation or all die.
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Automaton-Based Model. In order to model the dynamic evolution of programs
manipulating (abstract) linked lists, we use a generalisation of Büchi automata
(extending [11]) where each state is a configuration and transitions exist between
states iff these states can be related by means of a reallocation reflecting the
possible change in the pointer structure.

Definition 4. A high-level allocation Büchi automaton (HABA) H is a tuple
〈X,C,→, I,F〉 with:

– X ⊆ LV, a finite set of logical variables;
– C ⊆ Cnf, a set of configurations (also called states);
– −→ ⊆ C×(Ent×Ent×M)×C, a transition relation, s.t. c−→ λ c

′ ⇒ c
λ
� c′;

– I : C ⇀ 2Ent × (X ⇀ Ent), an initialisation function such that for all c with
I(c) = (N, θ) we have N ⊆ E and θ : X ⇀ E.

– F ⊆ 2C a set of sets of accept states.

Note that initial new entities cannot be unbounded. HABA can be used to
model the behaviour of pointer-manipulating programs at different levels of ab-
straction. In particular, when all entities in any state are concrete (i.e., C(e) = 1
for all e), and states are related by the identity reallocation, a concrete automa-
ton is obtained that is very close to the actual program behaviour.

Automata for Pointer-Manipulating Programs. As a start, we determine by means
of a static analysis of the program p, the “longest” navigation expression that oc-
curs in it and fix constant L such that L > max{n | (v↑)n occurs in p }. Besides
the formula-dependent constant M , the program-dependent constant L can be
used to tune the precision of the symbolic representation, i.e., by increasing L
the model becomes less abstract. Unbounded entities (i.e., those with cardinality
∗) will be exploited in the semantics to keep the model finite. The basic intuition
of our symbolic semantics is that unbounded entities should always be preceded
by a chain of at least L concrete entities. This principle allows us to precisely
determine the concrete entity that is referred to by any assignment, new and
del-statement. As assignments may yield unsafe configurations (due to program
variables that are “shifted” too close to an unbounded entity), these statements
require some special treatment (see [10]).

Folded Allocation Sequences. In NTL-formulae, entities can only be addressed
through logical variables, and logical variables can only be compared in the
same state. These observations allow a mapping of entities from one state in
an allocation sequence onto entities in its next state, as long as this preserves
the conditions of being a reallocation. A folded allocation sequence is an infinite
alternating sequence (E0, µ0,10)λ0(E1, µ1,11)λ1 · · · , where λi is a reallocation
from (Ei, µi,1i) to (Ei+1, µi+1,1i+1) for i � 0. Due to the unitary cardinality
functions, λi associates at most one entity in Ei+1 to an entity in Ei. We write
λσ

i for the reallocation function of σ in state i, and we define Nσ
0 = N , and

Nσ
i+1 = Eσ

i+1\cod(λσ
i ). Similarly, θσ

0 = θ and θσ
i+1 = λσ

i ◦ θσ
i where λ ◦ θi(x)

equals e if θi(x) �= ⊥ and λ(θi(x), e) = 1, and ⊥ otherwise. Using these adapted
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definitions of N and θ, a semantics of NTL can be defined in terms of folded
allocation sequences that is equivalent to |= (see [10]). Runs of our symbolic
HABA automata “generate” folded allocation sequences in the following way:

Definition 5. HABA-run q0λ0q1λ1 · · · generates an allocation triple (σ,N, θ)
where σ = cσ0λ

σ
0 c

σ
1λ

σ
1 · · · is a folded allocation sequence, if there exists a family

of morphisms hi (called a generator) from cσi to cqi
such that, for all i � 0:

λσ
i � λi (via hi and hi+1), and I(q0) = (N ′, h0 ◦ θ) where N = h−1

0 (N ′).

We adopt the generalised Büchi acceptance condition, i.e, c0c1c2 · · · is a run
of HABA H if ci −→ ci+1 for all i � 0 and |{ i | ci ∈ F }| = ω for all F ∈ F .
Let runs(H) denote the set of runs of H. Then L(H) = { (σ,N, θ) | ∃ ρ ∈
runs(H). ρ generates (σ,N, θ) }.

Relating the Concrete and Symbolic Model. A given HABA abstracts a set of
concrete automata. We formally define this by first defining an implementation
relation over HABA and then using the correspondence of concrete automata to
a certain class of HABA. We say that a given HABA abstracts another one if
there exists a so-called simulation relation (denoted �) between their state sets.

Definition 6. Let H and H ′ be two HABAs such that C(e) = 1 for all e in
H. H ′ abstracts H, denoted H � H ′, iff there exists a simulation relation � ⊆
C × (Ent ⇀ Ent) × C ′ between their state sets such that:

1. c1 �h c
′
1 implies that h is a morphism between c1 and c′1;

2. c1 �h c
′
1 with c1 −→λ c2 implies c′1 −→ λ′ c′2 for some λ′ and c′2 such that c2 �h′

c′2 and λ� λ′ via h and h′;
3. c ∈ dom(I) implies I ′(c′) = (N,h ◦ θ) for some c′ ∈ C ′ and h such that

c �h c
′ and I(c) = (h−1(N), θ);

4. there exists a bijection ψ : F → F ′ such that for all F ∈ F and c ∈ F ,
c �h c

′ for some c′ ∈ ψ(F ) and h.

c �h c
′ denotes that c′ simulates c, according to a given morphism h. This implies

(1 ) that c′ is an abstraction of the pointer structure in c (due to the morphism
h), and (2 ) that every λ-transition of c is mimicked by a λ′-transition of c′ such
that λ′ � λ and the resulting target states are again in the simulation relation.
H is abstracted by H ′ if there is a simulation relation between their states such
that (3 ) initial states and (4 ) accept conditions correspond.

Let H |= Φ if for all (σ,N, θ) ∈ L(H) we have σ,N, θ |= Φ, where |= is the
satisfaction relation for NTL defined on folded allocation sequences.

Theorem 1. For H � H ′: L(H) ⊆ L(H ′) and (H ′ |= Φ ⇒ H |= Φ).

From this result it follows that all positive verification results on the (typically
finite) abstraction H ′ carry over to the (mostly infinite) concrete automaton H.
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Note that false negatives may occur as the refutation of a formula by H ′ does
not necessarily has to imply that H refutes it as well3.

Example 3. Consider the following NTL-formulae: tl alive ⇒ �(tl alive) and
�(hd alive ⇒ hd � tl). It turns out that both formulae are valid in the abstract
HABA (L = M = 1) modelling the producer/consumer program. By Theorem 1
we conclude that they are valid also on the infinite corresponding concrete model.

5 Model Checking

The Parameters M and L. The precision of automatonH is ruled by two param-
eters: L, which controls the distance between entities before they are collected
into unbounded entities, and M , which controls the information we have about
unbounded entities. L is used in the generation of models from programs; it is no
longer of importance in the model checking stage. M is a formula-dependent con-
stant exceeding

∑

x∈Φ max{ i | (x↑)i occurs in Φ } for the formula Φ to check.
This may mean that the model H at hand is not (yet) suitable for checking a
given formula Φ, namely if M for that model does not meet this lower bound. In
that case we have to stretch the model. Fortunately, we can stretch a given model
without loss of information (but with loss of compactness, and hence increase of
complexity of the model checking). In fact, in [10] we define an operationH ⇑ M̂ ,
which stretches H so that in the resulting model the corresponding constant is
M̂ , and we have the following:

Theorem 2. For all HABA H such that C(H) < M̂ : L(H) = L(H ⇑ M̂).

Here, C(H) is the maximal cardinality of some entity in H. The automaton
H ⇑ M̂ is a factor M̂ −M times as large as H.

The Tableau Graph. The next step is to construct a tableau graph GH(Φ) for Φ
from a given model H, assuming that stretching has been done, so M satisfies
the given lower bound for Φ. GH(Φ) enriches H, for each of its states q, with
information about the collections of formulae relevant to the validity of Φ that
possibly hold in q. These “relevant formulae” are essentially sub-formulae of Φ
and their negations; they are collected into the so-called closure of Φ [15]. The
states of GH(Φ) are now so-called atoms (q,D) where q is a state of H and D
a consistent and complete set of valuations of formulae from the closure of Φ on
(the entities of) q. Consistency and completeness approximately mean that, for
instance, if Ψ1 is in the closure then exactly one of Ψ1 and ¬Ψ1 is “included in”
D (i.e., D contains a valuation for it), and if Ψ1 ∨ Ψ2 is in the closure then it

3 In [11] where we only considered the birth and death of entities we obtained a
stronger relationship between (a somewhat simpler variant of) the concrete and
symbolic model. Here, the abstraction is less precise and permits the abstracted
model to exhibit spurious behaviours that do not occur in the concrete model.
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is “in” D iff Ψ1 or Ψ2 is “in” D, etc. For any q, the number of atoms on q is
exponential in the size of the closure and in the number of entities in q.

A transition from (q,D) to (q′, D′) exists in the tableau graph GH(Φ) if
q−→ λ q

′ in H and, moreover, to the valuation of each sub-formula XΨ in D
there exists a corresponding valuation of Ψ in D′ — where the correspondence is
defined modulo the reallocation λ. A fulfilling path in GH(Φ) is then an infinite
sequence of transitions, starting from an initial state, that also satisfies all the
“until” sub-formulae Ψ1 UΨ2 in the atoms, in the sense that if a valuation of
Ψ1 UΨ2 is in a given atom in the sequence, then a corresponding valuation of Ψ2
(modulo a sequence of reallocations) occurs in a later atom.

Proposition 1. H |= Φ iff there does not exist a fulfilling path in GH( ¬Φ).

Unfortunately, in contrast to the case of propositional logic (in [15]) and our
own earlier results in the absence of pointers (in [11]), in the setting of this paper
we have not found a decision procedure for the existence of a fulfilling path. In
fact, the existence of a self-fulfilling strongly connected sub-component (SCS) of
the tableau graph, which is the technique used in these other papers, gives only
a necessary criterion for the existence of a fulfilling path. To be precise, if we use
Inf (π) to denote the set of atoms that occur infinitely often in an (arbitrary)
infinite path π in GH(Φ), then we have:

Proposition 2. Inf(π) is not a self-fulfilling SCS ⇒ π is not a fulfilling path.

Since the number of SCSs of any finite tableau graph is finite, and the prop-
erty of self-fulfillment is decidable, this gives rise to a mechanical procedure for
verifying the satisfiability of formulae.

Theorem 3. H |= Φ can be verified mechanically for any finite HABA H.

This, combined with Th. 1, implies that, for any concrete automaton A of
which H is an abstraction, it is also possible to verify mechanically whether
A |= Φ. Note that this theorem leaves the possibility of false negatives, as usual in
model checking in the presence of abstraction. This means that if the algorithm
fails to show H |= Φ then it cannot be concluded that Φ is not satisfiable
(by some run of H). However, since such a failure is always accompanied by
a “prospective” fulfilling path of Φ, further analysis or testing may be used to
come to a more precise conclusion.

6 Conclusions

Although our heap structures are less general than those used in shape analysis,
our abstractions are less non-deterministic, and therefore, are potentially more
exact. Experimental research is needed to validate this claim. Although NTL is
essentially a first-order logic, it contains two second-order features: the reacha-
bility predicate α � β (which computes the transitive closure of pointers), and
the freshness predicate α new. The latter is second-order because it essentially
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expresses that the entity denoted by α did not occur in the set of entities exist-
ing in the directly preceding state. In fact it would be very useful to extend the
latter to freshness with respect to an arbitrary previous state, for instance by
introducing formulae σX.Φ which bind X to the set of entities existing in the
current state, and predicates α ∈ X which express that the entity denoted by
α is in the set X. We conjecture that the results of this paper can be lifted to
such an extension without essential changes.
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