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Abstract 

Our research concerns a hand gesture recognition framework that makes use of 

a low cost “off-the-shelf” device. The device is a visual markerless sensor system called the 

Leap Motion controller (LM). However, before deploying the LM, we investigate its accuracy 

and limitations in measuring finger joint angles. We consider a user that flexes and extends 

all the fingers on the hand i.e. users with missing fingers are not considered in this research. 

In addition, we assume a user's hand does not shake and can maintain a required position 

for the duration of the experiments. 

 During finger joint angle error analysis, we conducted a series of experiments to 

assess the accuracy of the LM in terms of parameters such as elevation, lateral (side-to-side) 

positioning, forward-backward positioning, and rotation of the hand relative to the LM. We 

used an “artist’s hand” placed above the LM. The artist’s hand is more accurate than a 

human hand in performing static hand gestures as it can maintain a fixed position as long as 

is necessary. According to the results of the error analysis, we apply Principal Component 

Analysis (PCA) to the LM raw data to see whether it can compensate for these errors. 

Reasons for choosing PCA are described in Section 1.1. The experimental results show that 

the PCA is feasible, effective and can be applied such that accurate measurements can be 

obtained.  Specifically, PCA was able to reduce AEs (Absolute Errors) by 37.5%, 28.3%, 

33.0%, and 22.4% for the experimental results of elevation, lateral (side-to-side), forward-

backward, and rotation, respectively. 

Furthermore, we have applied machine learning techniques such as Linear 

Discriminant Analysis (LDA) and Support Vector Machines (SVMs). The reasons for choosing 

these techniques rather than others can be found in Section 1.1. These techniques help in 

recognising and classifying performed hand gestures. In addition, while classifying hand 

gestures, these techniques can learn about measurement errors and compensate for them. 

Experimental results show a significant benefit when applying LDA and SVM, yielding a 

performance accuracy above 88.0%, which is far better than the baseline performance of 

67.1%. The baseline performance is the accuracy obtained when we directly observe and 

assign all the test samples to the gestures they supposedly represent. Further explanation of 
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the baseline performance can be found in the fourth paragraph of Section 5.2.3.  

We also propose and evaluate the use of Multi-dimensional Dynamic Time 

Warping (MDTW) for simulating a comparison of dynamic hand gestures that would be 

performed by a patient relative to hand gestures that could be prepared by a 

physiotherapist. MDTW enables us to determine how similar or different a query dynamic 

hand gesture is to a reference one whilst filtering out unwanted sources of error resulting 

from positional, rotational or speed differences between the query and the reference 

actions. It produces a minimum-distance value of a warp path after aligning a query dynamic 

hand gesture with a reference one. A low minimum-distance value implies the two gestures 

being compared are similar and high minimum-distance value implies the two gestures vary 

to a greater extent. 

When we deliberately compare a specific hand gesture with itself, we obtain a 

minimum-distance value of 0.0o indicating the similarity is 100.0%. Furthermore, when we 

compare two closely similar hand gestures i.e. gesture 1 and gesture 4 as described in 

Section 6.1.4, a minimum-distance value of 35.9o is obtained. However, when we compare 

two quite different gestures i.e. gesture 2 and gesture 3, a minimum-distance value of 

248.5o is obtained. Therefore, one can establish whether a user performs hand gestures 

satisfactorily or an adjustment is required based on the minimum-distance values of the 

warp paths. 

Finally, we propose and implement PCA to investigate whether it is capable of 

improving the performance of LDA, SVM and MDTW. During PCA implementation, a feature 

vector that consists of the retained Principal Components (PCs) should be carefully selected. 

When we discard the first PC and retain the remainder as the feature vector, we obtain 

superior results where the performance of LDA, SVM and MDTW improves. 
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1 Introduction 

This research focusses on hand gesture recognition. The implemented hand 

gestures/exercises, as discussed in Chapters 5 and 6, are similar to those employed in a 

hand rehabilitation1 setting although there are other possible applications. These include 

sign-language recognition, gaming, and so forth. 

Although our research does not involve direct clinical support, we are motivated 

by a recent publication by the United Nations [2] revealing that there has been a consistent 

increment in life expectancy worldwide hence rising the number of aged individuals. The 

publication further anticipates that there will be approximately 2 billion older people (aged 

60 years or over) i.e. roughly 20.0% of the global population by the year of 2050. Around 

90.0% of these older people are likely to live independently outside of an environment with 

ready access to clinical support. This provides strong motivation for investigating 

technologies that can operate satisfactorily in a home setting. Whether in a hand therapy 

context [3] or otherwise, gestures can be monitored via wearable devices or contactless 

alternatives, or a combination of the two. Wearable sensor devices are applied to collect 

physiological and motion data. On the other hand, contactless methods aided by computer 

vision techniques have been recently implemented and described in literature. These are 

low-cost markerless motion devices that can track fingers, wrist, and forearm movements 

[4, 5]. 

Treatment of hand impairments typically involve a clinician proposing a series of 

hand exercises that the patient should perform, typically in the presence of the therapist. 

This is demanding in terms of resources, which include time, costly instrumentation and 

testing equipment, the use of health-care facilities and the related overheads [6]. Various 

rehabilitative sensor frameworks have been proposed and implemented but they are 

 

 

1 Rehabilitation is a treatment or treatments where a patient performs several physical fitness training tasks to gain a physical functioning 

level that permits him or her regain initial physical, sensory and mental capabilities that were lost, due to an accident, a stroke, or surgery 

[1]. 
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unnecessarily costly. For example, in [7] an intelligent game engine was proposed for home-

based hand recovery exercises of patients recovering from strokes. The engine presents 

various games that aid patients to perform exercises and is merged into a patient station 

that offers monitoring and feedback. Another example is in [8] where a contactless finger 

displacement measurement system was proposed and implemented. The system consists of 

a non-contact measuring device and does not require a complicated set-up. Indeed, many 

researchers have turned their attention to proposing contactless systems with the help of 

computer vision techniques [4, 5, 9, and 10]. However, vision-based systems as described in 

literature still exhibit issues. Reliability of such frameworks depends on various 

circumstances e.g. the visual background, illumination and contrast, noise related factors, 

ease of use etc. [4]. For example, an approach proposed in [9] aids hand therapy exercises 

using a coloured ball fixed to a hand gripper. However, this approach may not support hand 

finger exercises effectively since a user is required to grasp when performing a hand 

procedure exercise [10].  

We propose a prototype of low-cost vision–based system for hand gesture 

recognition to overcome some of the limitations existing in systems presented in literature. 

Our prototype makes use of a low-cost “off-the-shelf” device. The device is a visual 

markerless sensor system called the Leap Motion controller (LM). LM is a popular 

markerless sensor system developed for gesture interaction [4, 11]. Compared with other 

markerless sensors such as the Intel RealSense 3D Camera, Kinect sensor, IMU (Inertial 

Measurement Unit) sensor [12], tilt sensor [13], and camera-based systems [10] that can 

perform similar tasks, the LM is superior in terms of portability. In addition, RealSense, 

Kinect, IMU and camera-based systems are costly and some of them unable to detect small 

movements [11]. Moreover, the tilt sensor involves complicated set-up before use. However 

before deploying such a device in a hand therapy environment, a thorough analysis and 

evaluation of its performance is required.  

Guna et al. [14] conducted an evaluation of the device. They tested the accuracy 

and precision of the device based on the elevation distance from its surface going upwards. 

They discovered that accurate measurements are not possible beyond an elevation of 25 
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cm. They did not test its accuracy based on other parameters such as lateral (side-to-side) 

and forward-backward positioning relative to the LM. They also did not suggest any 

scientific measures to mitigate the inaccuracy of the device. Separate from their work, we 

have tested the LM considering various parameters, namely: elevation, lateral (side-to-side), 

forward-backward movements and rotation of the hand. We have discovered that errors do 

exist as the hand is moved even a relatively small distance from a baseline central position 

above the LM. We have further implemented Principal Component Analysis (PCA) to 

compensate for these errors. The reasons for choosing PCA are described in Section 1.1.  

The PCA technique has already been employed to detect online abnormal 

medical sensor readings [15-18]. The technique was used to analyse collected physiological 

measurements from sensors to detect the occurrence of multivariate anomalies based on 

the squared prediction error at runtime [15]. However, the researchers did not specify 

particular sensors where the proposed and implemented technique could work best. In our 

research, we apply PCA to finger joint angle data collected from the LM to compensate for 

absolute errors.  

We further applied machine learning techniques i.e. Linear Discriminant Analysis 

(LDA) and Support Vector Machine (SVM) to compensate for measurement errors from the 

LM. Through training of these machine learning models, hand gestures can be classified into 

a set of available hand gestures [19] taking into consideration measurement errors and 

noise in the LM device. The reasons for choosing these techniques rather than others can be 

found in Section 1.1. 

In addition, we propose and implement Dynamic Time Warping (DTW) and 

Multi-dimensional Dynamic Time Warping (MDTW) to quantify how dissimilar two dynamic 

gestures are from each other [20, 21]. The reasons for employing MDTW can be found in 

Section 1.1. We implement a MDTW algorithm that processes hand motion signals to 

establish whether a patient would perform right dynamic hand gestures in comparison to 

predefined ones that are recommended by a physiotherapist. Dynamic hand gestures are 

represented as a sequence of positions changing over time and each position is described by 

a set of joint angles. A dynamic hand gesture that would be performed by a patient is 
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aligned against a dynamic reference hand gesture in a database. MDTW produces a 

minimum-distance value of a warp path as the end result after aligning a query dynamic 

hand gesture with a reference one. Low minimum-distance value implies the two gestures 

being compared are similar and a high minimum-distance value implies the two gestures 

vary to a greater extent. [22]. The minimum-distance value between two dynamic hand 

gestures is computed by adding up the Euclidean distances between pairs of points of a 

warping path. 

Our proposed markerless visual sensor-based methodology can detect precise 

movements of fingers within the interaction area of the sensor (See Section 3.1.1). The 

objective of the LM system is to allow individuals with hand injuries to practice hand 

movement exercises at home or clinic, without the need of an always-present therapist. 

Inspired by in-the-field low-cost systems, this research proposes a prototype in order to 

precisely assist patients performing hand therapy exercises outside a hospital environment 

using readily available devices such as LM.  

1.1 Motivation 

Traditional hand therapy is executed one-on-one, suggesting one 

physiotherapist (or occasionally many) helping one patient. Thus the costs are high 

especially for demanding patients e.g. those suffering from traumatic brain complications or 

spinal cord related illness. We have proposed and implemented a cheap and “comfortable 

to use” device that is suitable for hand recovery treatment. Several hand motion capture 

frameworks presently use devices that are relatively costly [23, 24] and uncomfortable for 

patients to operate due to huge batteries. In our research the focus is on a low-cost 

computer-vision assisted hand therapy framework in order to mitigate these two challenges 

and in the process improve people's quality of life by facilitating a would-be affordable and 

convenient hand exercise recovery set-up. 

In a hand exercise recovery settings, costs of medical related services and an 

increasing number of aging people are directing the provision of medical care and other 

related services away from medical centres i.e. at home [25]. Hand injury survivors often 
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need a lengthy and costly hand therapy procedure to regain some of the hand functions 

that are lost due to hand injuries [26]. Issues such as making appointments to suit both a 

patient and a physiotherapist, travel related challenges to and from a medical centre, etc 

can hinder the quality of hand restoration related services [26] and this further suggests the 

need for employing home-based hand therapy using convenient and accessible hand 

recovery treatment devices. However, these systems greatly rely on fairly precise 

measurements and representation of hand motion. This can be easily facilitated by use of 

low-cost devices that have been developed, tested and readily available in the market.  

Sensor technologies for human hand motions can be grouped into two types i.e. 

contact-based sensors and non-contact-based sensors [27]. The contact-based sensors 

obtain sensing information when fixed on the human hand while non-contact-based sensors 

obtain sensing information without being directly fixed on the human hand [27]. It is 

important to note that all these hand sensing technologies have issues, for example hand 

data gloves, categorised as contact-based sensors, experience some challenges. Therefore, 

researchers need to devise techniques to overcome these challenges of comfort, rigidity, 

and robustness when implementing hand sensory gloves for medical and industrial 

applications [28]. Some challenges of attached force sensors, that are categorised as 

contact-based sensors, are electromagnetic noise, being sensitive to temperature, drift of 

sensor output for piezoelectric sensors etc. [27]. Surface electromyograph sensors, also 

categorised as contact-based sensors, experience issues resulting from crosstalk, issues due 

to electrode displacement, information redundancy, and a lack of simple mechanisms for 

selecting suitable features from the raw data [29]. Contact-based optical markers also 

experience issues while tracking hand movements. The issues include marker placement 

errors caused by skin deformation and unsuitable markers that make users feel 

uncomfortable [30] when using them. All these issues need to be addressed by researchers. 

Compared to the above-mentioned sensors, LM is categorised as a non-contact-based 

sensor system and has an extra advantage since all the above issues are not experienced 

when using it. In addition, LM is a lightweight and affordable device [31, 32]. Moreover, it 

can be easily operated by a user since it only requires a simple calibration procedure when 
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operated for the first time. 

In our proposed hand injury restoration prototype, we first conduct finger joint 

angle error analysis where a series of experiments are performed to assess the accuracy of 

the LM in terms of parameters such as elevation, lateral (side-to-side) positioning, forward-

backward positioning, and rotation of the hand relative to the LM. If no measurement errors 

and noise were experienced, our dataset would have 0.0o as variance for each of the five 

variables (See Sections 4.5, 4.6, 4.8, and 4.9 in Chapter 4) however this was not the case as 

each variable experienced variance. We devise a filtering technique that is able to reduce 

the absolute errors (AEs) in our dataset. Some of the known techniques that can be 

employed include a moving average filter, Savitzky-Golay filter, local regression filter [33], 

Principal Component Analysis (PCA) [34] etc. Compared to other filtering techniques, PCA is 

more efficient and easier-to-use in relation to variance reduction in a dataset. PCA 

computes a new set of variables i.e. principal components (PCs) that expresses a dataset in 

order of high variance represented in the first PC. In order to reduce absolute errors (AEs), 

we employ PCA on our dataset. PCA reduces variance and hence absolute errors as 

illustrated in Equation (4-5) in Section 4.2.3. We delete the first PC that contains the highest 

variance and retain the remaining PCs that form the feature vector. According to our 

dataset, deleting the first PC whilst retaining the remaining PCs in the feature vector is 

suitable means of reducing absolute errors. Details on how PCA was implemented can be 

found in Section 4.2.3.  

We propose and implement LDA and SVM in order to recognise and classify 

hand gestures. LDA and SVM are categorised as supervised machine learning techniques 

[35]. In supervised learning, models are trained using a labelled dataset; however, in 

unsupervised learning, models need to find the mapping function to map the input variable 

with the output variable [35] in a non-labelled dataset. We have implemented supervised 

machine learning techniques since our dataset contains labelled observations (data points) 

of four hand gesture categories.  Both LDA and SVM can learn about measurement errors 

and compensate for them. LDA performs relatively well compared to other models such as a 

logistic regression model when the classes are separated relatively well [35]. Under this 
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condition the parameter estimates for the logistic regression model are inaccurate. 

Furthermore if the number of observations in a dataset is small and the distribution of the 

measured features are relatively normal in each of the groups, the LDA model also performs 

better than a logistic regression model [35]. SVM has been proved to perform well in various 

settings and is normally known to be a superior classifier [35]. Basically SVM is employed to 

recognise and classify measured observations of a dataset that consists of only two classes. 

However multiclass recognition and classification is possible when many classifiers are 

combined [36]. Our objective is to create an SVM model after training a fraction of 

measured observations on our dataset with an aim of correctly recognising and classifying 

test samples of the hand gestures. Both LDA and SVM can learn about measurement errors 

in LM and hence compensate for them.  

We consider and implement both DTW and MDTW, however there exist other 

possible dissimilarity measures such as Longest Common SubSequence (LCSS) [20, 37], Edit 

distance with Real Penalty (ERP) [20], Edit Distance on Real sequences (EDR) [20, 38], and 

Time Warp Edit Distance (TWED) [20, 39]. However DTW has an extra advantage since its 

implementation is simple and efficient. Furthermore, DTW is superior because it is not 

essential that both time-series being compared are of equal length as required by typical 

distances and this behaviour is termed elasticity [20]. DTW is therefore an elastic 

dissimilarity value that estimates the greatest match within two time-series by reducing a 

distance between them. We have noticed that dynamic hand gestures may vary e.g. in 

duration, speed, rotations, etc. and our MDTW approach takes this into account.  

1.2 Contributions 

Our novel contributions are as follows: 

1. Characterise joint angle absolute errors based on parameters such as elevation, 

lateral (side-to-side), forward-backward and rotation movements of the hand 

relative to the Leap Motion controller (LM). 

2. Implement and evaluate Principal Component Analysis (PCA) to compensate for the 

absolute errors in the LM as well as improving the accuracy of LDA, SVM and DTW.  
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3. Employing Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) 

models to recognise and classify hand gestures taking into consideration LM 

measurement errors and noise. We finally evaluate LDA and SVM models in 

comparison to a baseline. 

4. Implement and evaluate a Multi-dimensional Dynamic Time Warping (MDTW) 

technique. MDTW establishes how similar or different a query dynamic hand gesture 

is in comparison to a reference one. MDTW produces a minimum-distance value of a 

warp path as the end result after aligning a query dynamic hand gesture with a 

reference one. 

1.3 Thesis outline 

Chapter 1 provides an introduction, motivation and the novel contributions of 

our research. This is followed in Chapter 2 by a state of the art review. In this chapter we 

describe different sensor technologies related to hand motion capture systems. We discuss 

types of hand gestures, provide a hand overview that is essential for our research, and 

finally discuss a brief kinematic human hand model that is relevant to our research.  

Chapter 3 illustrates background theory of LM device, PCA, LDA, SVM and DTW. 

We also formulate a specific problem regarding gesture recognition and classification using 

LDA and SVM. We further formulate a specific problem regarding the comparison of a 

dynamic query hand gesture and a dynamic reference hand gesture using DTW and MDTW. 

We finally review research where LDA, SVM, DTW and MDTW have been implemented in 

hand gesture recognition. Then in Chapter 4, we characterise finger joint absolute errors, 

illustrate how PCA compensates for these errors, and present results and discussion 

regarding PCA. Next, in Chapter 5, we represent static gestures using a feature vector in 3D 

space. We also train LDA and SVM models to recognise and classify sample gestures taking 

into consideration LM measurement errors and noise. We finally evaluate LDA and SVM 

models in comparison to a baseline. In Chapter 6, we implement and evaluate the efficacy 

of MDTW technique. Following this, in Chapter 7, we implement PCA to see if it can improve 

on the accuracy of LDA, SVM and MDTW. Finally, concluding remarks and future work are 

presented in Chapter 8.  



  

 

Hussein Walugembe PhD Thesis Page 24 of 145 

 

2 State of the Art Review 

Human hand movement tracking devices have the ability to gather hand motion 

data through various approaches that dynamically illustrate the position differences of a 

human hand on the basis of motion sensor related technologies. In hand motion data 

analysis, the hand is commonly represented as a system of rigid elements joined by 

revolving joints. In most scenarios, measurement strategies can obtain an acceptable field of 

view on a human hand model or near where sensor devices are positioned. Motion of 

sensor devices is defined in relation to a reference coordinate system and from sensor 

position and direction. In [40-42], researchers noticed that most of the hand motion capture 

techniques are highly dependent on accurate positioning of sensors and initial calibration of 

sensor devices is a prerequisite before measurement. However, in our hand gesture 

recognition system, we do not rely on accurate sensor positioning and there is no need for a 

complex calibration before measurement, though a user is required to move his or her hand 

within the LM interaction area (See Section 3.1.1). It is important to note that a simple 

calibration procedure is required when the LM device is used for the first time. Details of the 

calibration procedure are described in Section 3.1.3. 

2.1 Sensor Technologies for Human Hand Motion  

Sensor technologies for human hand motion can be grouped into two types i.e. 

contact-based sensors and non-contact-based sensors [27]. The contact-based sensors 

obtain sensing information when fixed on the human hand while non-contact-based sensors 

obtain sensing information without being directly fixed on the human hand [27]. Contact-

based hand sensor technologies include hand data gloves, attached force sensors, surface 

electromyography, and optical markers. Non-contact-based sensor technologies include 

ordinary cameras, depth cameras, and Leap Motion controller (LM). Figure 1 illustrate 

various human hand sensor technologies. 

2.1.1 Contact-based Sensor Technologies  

a) Hand Data Gloves 

A hand data glove is an electronic device that possesses various types of sensors 
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that track hand movements. Hand data gloves can be employed to grasp, move, and rotate 

objects in a virtual environment [27]. Hand data gloves can detect finger bends and utilise 

magnetic position sensors to locate the hand position in 3D space [27]. Some of the 

available and mostly used hand data gloves on the market are illustrated in Figure 2. In the 

figure, (a) is a DG5-V glove, (b) is a CyberGlove III, (c) is a ShapeHand glove, (d) is a VHand 

DGTech, (e) is a 5-DT 14 glove, and (f) is a CyberWorld P5 glove. Glove-based systems can be 

employed in medical applications, industrial applications, etc. This is because they can 

successfully operate with multiple degrees of freedom (DOFs) for each finger [27], because 

of having high accuracy, high response speed, and strong operability.    

 

 

Researchers in [43] proposed a hand gesture recognition system based on a data 

glove and a Back Propagation (BP) neural network. The data glove is able to collect data of 

the hand and forearm, it illustrates all aspects of arm movement, and the BP neural network 

algorithm is employed to process and classify the collected data. Experimental results 

demonstrate that hand data can be classified effectively by BP neural network.  

In [44], they propose a versatile soft sensing glove using a simple process for 

Figure 1:  Human hand motion sensor technologies [27]. 
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implementing sensors of various sizes. Ten sensors were fixed to the back side of the glove 

to measure flexion-extension and four sensors are fixed on the glove at the interdigital folds 

between fingers to measure abduction-adduction. The sensory glove successfully replicates 

hand motion. The authors employed machine learning techniques to obtain the angles of 

the joints in the hand and also to recognise 15 hand gestures. The implemented sensory 

glove solves the issues of comfort, rigidity, and robustness. The implemented glove can also 

be employed in both industrial and medical settings.  

 

 

The authors in [45] implemented a hand recognition system that constituted a 

pair of gloves i.e. a sensory glove and a motor glove. Both gloves were implemented with a 

soft and flexible material that provides greater comfort and safety than conventional rigid 

hand recognition systems. The sensory glove which is fixed on the nonaffected hand 

possesses the force and flex sensors that assist in measuring the gripping force and bending 

angle of each finger joint for hand motion tracking. On the affected hand, the motor glove is 

driven by micromotors. This provides a driving force that helps in performing hand 

recognition tasks. Finally, machine learning techniques are applied to identify the hand 

Figure 2: Examples of data gloves available in the market [27]. 
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gestures from the sensory glove and to facilitate the hand recovery tasks for the affected 

hand [45].  

It is important to notice that when implementing hand data gloves for medical 

and industrial applications, issues such as comfort, rigidity, and robustness are experienced 

[28]. Therefore, researchers need to devise techniques to overcome these challenges. 

b) Attached Force Sensors 

Several force sensors and techniques for measuring exerted forces have been 

proposed and implemented by researchers [27]. The most essential design criteria of force 

sensors in manipulation functions are the spatial resolution, robustness, sensitivity, and 

frequency response. Attached force sensors, which include four common force sensors i.e. 

capacitive, piezoresistive, piezoelectric, and strain-gauge need to meet the demands of 

object characterisation, identification, and manipulation [46]. 

Capacitive sensors acquire the displacement, force, and speed depending on the 

change in distances between the upper and lower electrodes due to external force 

variations. Piezoresistive sensors register the variations in the resistivity of the sensing 

material established on a silicon substance. Piezoelectric pressure sensors make use of the 

piezoelectric substances to develop an electric charge that is proportional to the pressure 

generated. Strain-gauges measure the variation in resistance [27]. 

Some challenges of attached force sensors that need to be addressed by 

researchers are electromagnetic noise, sensitivity to temperature, drift of sensor output for 

piezoelectric sensors etc. [27]. 

c) Surface Electromyography (SEMG) 

SEMG provides a means of assessing the biofeedback of the motion of muscles 

by measuring the Electromyography (EMG) signal on the surface of the skin. By observing 

muscle contraction arrangements of human hand movements, the sensor system can 

establish the human's intention and carry out corresponding measures or communication, 

e.g. completing hand movements through prosthetic hands [47]. Research conducted by Al-

Timeny et al. [48] applied an offline measure to assess the classification performance 



  

 

Hussein Walugembe PhD Thesis Page 28 of 145 

 

depending on multiple-channel SEMGs. In research conducted by Y. Xue et al. [49], an 

SEMG-based in-hand motion recognition system was proposed to recognise various types of 

hand gestures. In line with regular movements in executing in-hand object manipulations, 

some sets of in-hand movements, including translation, transfer, and rotation were 

implemented in their sensor device. Then a nonlinear series analysis approach to SEMG 

signal processing was proposed to capture the nonlinearity of the hand movements. 

Experimental results demonstrated that a human in-hand motion recognition system could 

be implemented effectively to recognise various in-hand movements. Some challenges of 

SEMG sensors that need to be addressed by researchers are discussed in Section 1.1. 

d) Optical Markers 

Optical marker-based systems use cameras to track markers placed on a hand so 

as to track and monitor the motion of the hand. Various researchers have proposed many 

different platforms to implement marker-based hand motion capture. 

In the work of [50], they proposed and implemented a robust online technique 

for recognising and monitoring of passive motion capture markers fixed on the fingers of 

hands. By implementing various assignment hypotheses and soft decisions, the system can 

strongly recover from a difficult situation with numerous simultaneous occlusions and 

incorrect observations (ghost markers). While the majority of state-of-the-art applications 

can regularly recognise and monitor markers on bigger components of the human hand, the 

markers fixed to fingers present unique challenges and generally necessitate a 

comprehensive set-up procedure before operation [50]. The biggest challenge in optical 

motion capture that implements markers is the identification and monitoring of the 

markers, usually stated as labelling. Figure 3 displays a choice of sparse marker collections 

and details of (a) to (f) can be found in [50]. 

The difficulties experienced with automatic labelling of finger markers derive 

from several factors. For instance, finger markers are susceptible to occlusion specifically 

when fingers are bent towards ground or the body. Another concern is that fingers have 

great mobility over a confined space, and markers arranged adjacent to each other (for 

instance close fingertips or close joints) can be inaccurately recreated as one single marker 
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or cause short-lived spans of noisy data [51]. Although they have devised techniques to 

reduce occlusions in their implemented system [50], occlusions are only partly reduced and 

further research is required to devise techniques that eliminate occlusion related issues. For 

example, when the LM approach is implemented, minimal and insignificant occlusion is 

experienced in hand motion tracking if a hand is moved in the area of interaction (see 

Section 3.1.1, [32], and [34] for more details). 

 

 

2.1.2 Non-contact-based Sensor Technologies 

a) Ordinary Cameras 

Employing low-cost commercial markerless cameras in a hand recognition 

system, industrial setting etc is a possible solution to overcome issues related to contact-

based sensor techniques. The issues are complex connection wires, surface properties, 

hysteresis, and sensitivity [27].  

Research conducted by [52] proposes a multi-view set-up employing a readily 

convenient colour camera from a smart device such as a phone, and plane mirrors to 

Figure 3: A choice of sparse marker collections [50]. 
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generate multiple views of the hand. Their system overcomes the challenges of 

synchronizing numerous cameras to reduce occlusion related issues. Further their 

experimental results demonstrate that a multi-view set-up could be helpful in reducing 

measurement errors when obtaining the flexion angle of finger joints [52]. 

Stereo camera comprise two same-specification digital camera. Through 

focusing, zooming and sensitizing, the 3D structure of the hand is created from various 

viewpoints. Stereo cameras possess specific lens angles and internal pre-calibrations, which 

grant the camera freedom of movement, but the angle between the two lenses is often too 

small to cover the occlusion space in hand movements. Furthermore, owing to the 

complexity of stereo geometry estimation, stereo intensity images are sensitive to light 

variations, therefore it is challenging to correspondingly match images for triangulation [27]. 

b) Depth Camera 

As opposed to the ordinary cameras, depth cameras have ability to capture 

depth information and are more flexible and convenient to deploy in a 3D vision system 

than ordinary cameras when tracking and analysing hand movements [27]. The Kinect 

sensor is the most popular sensor employed in research in this category. 

An example of a Kinect sensor system is proposed and implemented in [53]. The 

system needs a Microsoft Kinect hung from a rig over a table (ideal height for reliable 

tracking was 80 cm and variable rig 50-125 cm), permitting the users to put their hands 

above the table in order to make use of the system. The implemented system is illustrated 

in Figure 4. The Kinect sensor consists of both infrared depth and colour cameras and has an 

Application Programming Interface (API). In their system, they preferred to implement 

Kinect in its default mode (0.8-4 m) instead of near mode field of vision. The depth camera 

was configured to recognise a hand and fingers. 

As reported by [54], with the implementation of infrared-based sensors, e.g. the 

Kinect, it has become simpler and more robust to recognise hand gestures. It has been 

implemented in a wide variety of applications e.g. tabletops, distant displays and 3D 

desktops. Keskin et al. [55] implemented an application for identifying finger spelling from 
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the depth data. However, while these kinds of system work efficiently for application-

specific hand gesture recognition, they are not able to generalise and track a full range of 

hand movements [54]. 

 

 

c) Leap Motion controller (LM) 

The introduction of LM has initiated recent opportunities for hand gesture 

recognition related research [56]. Unlike Kinect, LM was specifically invented for hand 

gesture recognition where it directly computes the position of a hand and direction or 

orientation of the fingers. An example on how to obtain this information is described in 

Section 4.1. In our research, we obtain vector positions of the bones of the fingers from data 

acquired by the LM. A collection of relevant features is derived from the data produced by 

the LM sensor and we compute finger joint angles for further analysis. 

Different from the Kinect and other similar devices, the LM produces more 

limited information (only a few keypoints rather than a complete depth map) and its 

interaction area is smaller. However, the extracted information that is used to estimate 

finger movements and hand orientation is more accurate [56].  

Figure 4: System set-up displaying a user and Microsoft Kinect [53]. 
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In Figure 5, the palm centre C approximately represents the centre of the palm 

area in 3D space. Hand orientation with reference to two unit-vectors, h, is directed from 

the palm centre to the fingers while n is at right angles with the palm plane directed 

downward from the palm centre. However, it is important to notice that this kind of 

estimation may not be obtained accurately and relies on how the fingers are arranged. 

 

 

2.2 Types of Hand Gestures 

Hand gestures are useful in enhancing strength and dexterity irrespective of 

whether a sick person is gradually starting to restore hand movement or already possesses 

an acceptable range of hand motion. The gestures illustrated in Section 2.2.1 and 2.2.2 may 

assist in enhancing fine motor skills of patients that experience some form of weakness after 

a stroke or hand injury. The gestures to be performed by users undergoing a hand 

treatment restoration procedure can be classified into two types, i.e. static and dynamic 

gestures [57]. 

2.2.1 Static Hand Gestures 

Characteristics for static gestures are primarily established on the basis of palm 

and finger relative lengths [57]. Figure 6 illustrates some examples of static gestures we may 

Figure 5: Data acquisition in Leap Motion [56]. 



  

 

Hussein Walugembe PhD Thesis Page 33 of 145 

 

efficiently recognise. The first line of three gestures are index L gestures, ILY gestures, and a 

fist. The second line of three gestures are thumb up, index pointing, and index and middle 

pointing. The third line of three gestures are V gesture, OK gesture, index and middle L 

gesture. 

The length between the thumb and index finger is utilised to determine the OK 

gesture. The length between the index and middle finger is utilised to identify V gesture and 

the index and middle pointing gesture. The remaining related gestures can be obtained from 

a combination of the aforementioned gestures. 

 

 

2.2.2 Dynamic Hand Gestures 

Dynamic gestures can be readily differentiated from static gestures. Dynamic 

gestures commonly employ velocity of fingertips and orientation of the palm to determine 

movement configurations of the particular dynamic gesture. In comparison to static 

gestures, dynamic gestures are much more complex. An illustration of dynamic gestures is 

presented in Figure  7 (a). This type of gesture is defined as index finger key tapping. Index 

finger key tapping is constructed with reference to the index finger pointing static gesture. It 

is important to notice that the index finger moves vertically for index finger key tapping 

dynamic gesture. Figure 7 (b) demonstrates an example of an index finger circling direction 

Figure 6: Examples of static gestures [57]. 
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dynamic gesture. With this kind of gesture, the circle direction can either be clockwise or 

anticlockwise while the index finger is moving along a circle. 

 

 

2.3 Hand Overview 

We briefly provide a hand overview that is essential for our research. Details 

that are not relevant are omitted. 

2.3.1 Bones of the Hand 

The hand consists of metacarpal bones; that is, 5 bones that run from the wrist 

to first joint of each finger. The hand also consists of 14 thin bones called phalanges. The 

thumb has only 2 phalanges whereas the remaining fingers have 3, i.e. the distal, middle, 

and proximal [58-60]. 

2.3.2 Joints of the Fingers 

In Figure 8 the joints and bones of the hand are illustrated. The joints are formed 

whenever two bones of the finger intersect. It is important to note that the 4 fingers (index, 

middle, ring, and little) have three joints and the thumb only has two. We briefly explain all 

the types of joints [59]. 

Figure 7: (a) Index finger key tapping. (b) Example of index finger circling  [57]. 
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a) Distal Inter-Phalangeal (DIP) Joint 

 The DIP joint is located near the tip of the finger, just before where the 

fingernail starts. It is the joint between the intermediate phalanx and the distal phalanx. This 

joint exists in all fingers with the exception of the thumb [59]. 

 

 

 

b) Inter-Phalangeal (IP) Joint  

The IP joint is located near the tip of the thumb, just before where the nail 

starts. It is the joint between the intermediate phalanx and the distal phalanx [59]. 

c) Meta-Carpo-Phalangeal (MCP) Joint 

The MCP joint is found at the base of all the five fingers. It is the joint between 

the metacarpal bone and the first phalanx bone [59].  

2.4 Kinematic Human Hand Model 

The model of interest to us can be employed in post-stroke or post-hand injury 

and is illustrated in the research work of [61-65]. According to [64], the kinematic hand 

model consists of 19 links that reflect the respective finger bones of a hand, and 24 DOFs 

Figure 8: Hand bones and joints [58]. 
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that represent all the finger joints. The Degree of freedom (DOF) is defined as the minimum 

number of independent coordinates required to represent a system's position. The only 

difference with this model is the inclusion of the Carpo-Meta-Carpal (CMC) joint on each of 

the four fingers (index, middle, ring and little) and the motion concatenation in the MCP 

joint [64]. The CMC joint permits simulation of the palm arc that illustrates the deformation 

in the palm while the hand is in the situation of grabbing tiny objects.  

Two kinematic configurations are considered in this model, one for the thumb 

and other for the rest of the fingers (Details can be found in [65]). Therefore, the same 

kinematic configuration is employed for the index, middle, ring, and the little finger that are 

described by 4 links and 5 DOFs each. In these fingers, MCP joint is modelled by a 2 DOFs 

whereas the CMC joint, the PIP joint and DIP joint possess 1 DOF each. The thumb finger is 

modelled by 3 links and 4 DOFs. The Trapezio-Meta-Carpal (TMC) thumb joint is also 

described by 2 DOFs whereas MCP and IP joints are described by 1 DOF each [64].  

According to [61], the simple Flexion/Extension (F/E) and Abduction/Adduction 

(Ab/Ad) of the thumb and the fingers are executed by the articulation of the 21 DOFs. F/E 

movements take place at every joint throughout the hand. Ab/Ad movements only take 

place at every finger’s MCP joint and at the thumb’s MCP and TM joints. The additional two 

interior DOFs are at the bottom of the metacarpals of the ring and the little finger that 

execute the curve or bend gestures of the palm [61]. If we carefully relate this to our 

preferred model in [64], F/E and Ab/Ad of the thumb and the fingers are illustrated by the 

articulation of only 20 DOFs; 4 DOFs at the CMC, i.e. 1 DOF on every finger apart from 

thumb (index, middle, ring and little), describe the curve or bend gestures of the palm. 

Considering that the human hand is largely articulated with all 23 internal DOFs, 

it is also largely restricted [61]. By applying these restrictions, one may lower the number of 

DOFs in the hand and this renders human hand motion monitoring affordable. 

A general restriction applied on the basis of the hand anatomy stipulates that to 

bend the DIP joints of the index, middle, ring, and little fingers, the respective PIP joints 

should also be bent, and this is well illustrated in Figure 9. In addition, a general technique 

employed to lower the total DOFs of a hand may be obtained on the basis of hand anatomy, 
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where the bending angles of DIP joints of the index, middle, ring, and little fingers are 

related with the PIP joints depending on the following mathematical relation: θDIP = 2/3 θPIP 

where θDIP is the flexion angle of the DIP joint and θPIP is the flexion angle of the PIP joint 

[61].  

  

 

2.5 Summary 

In this chapter, different sensor technologies for human hand motion have been 

discussed. Specifically, these sensor technologies can be categorised into two types, i.e. 

contact-based sensors and non-contact-based sensors. We have considered how these 

types of sensor can be used for hand gestures and the issues that arise. Hand gestures can 

be classified into static and dynamic varieties. We provide a brief overview of the hand that 

is essential for our research in Section 2.3, where we discuss the bones of the hand and 

joints of the fingers. We also discussed a kinematic human hand model that is relevant to 

our research in Section 2.4 to introduce the basic scientific concepts required in human 

hand motion analysis.  

We have reviewed sensor technologies for human hand motion to help us 

choose a suitable approach from the possible alternatives. As will be further explained at 

the beginning of Chapter 3, we selected LM because is one of the most accurate low-cost 

Figure 9: Bending restrictions between the DIP joint and the PIP joint [61]. 
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hand tracking devices. The types of hand gestures we have reviewed have helped us to 

broaden our understanding with regard to hand gesture implementation and also to select 

appropriate hand gestures to evaluate with our proposed machine learning and signal 

processing techniques (as described in Chapters 4-7). In the next chapter the focus shifts to 

a review of the relevant background theory for LM device and multi-dimensional data 

processing. 
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3 Background Theory of LM, PCA, LDA, SVM, DTW, and MDTW  

In this chapter, Leap Motion controller (LM), machine learning and signal 

processing techniques that have been employed in this thesis are discussed. In addition, 

some relevant literature that is closely related to our research is presented where these 

techniques are applied. The techniques that are discussed are PCA, LDA, SVM, DTW, and 

MDTW.  

The authors in [66] have made a thorough comparison of hand tracking sensors 

on the market. They compared sensors such as the Kinect version 1, Kinect version 2, Xtion, 

Xtion Pro Live, Intel RealSense SR300, Intel RealSense D415, Myo Armband, Creative 

SENZ3D, etc. They found that the LM is one of the most accurate low-cost hand tracking 

devices. Owing to this finding, we employ an LM connected to a computing device using a 

USB cable. We then collect finger-joint data associated with hand gestures. 

We employ the PCA filtering technique as described in Chapter 4 to reduce 

variance and hence absolute errors in our dataset. Compared to other filtering techniques 

such as moving average filters, the Savitzky-Golay filter, local regression filters, etc, PCA is 

more efficient and easier-to-use in relation to variance reduction and is able to reduce 

absolute errors in our dataset [33, 34]. LDA and SVM are implemented in Chapter 5 to 

recognise and classify hand gestures. In addition, LDA and SVM have the ability to learn 

about the measurement errors in the LM and hence compensate for them [4]. SVM has 

been proven to perform well in different settings [35] and hence is referred to as a superior 

classifier. LDA performs relatively well compared to other models such as a logistic 

regression model when the classes are separated relatively well [35]. In Chapter 6, we 

implement both DTW and MDTW to quantify how similar or different two dynamic hand 

gestures are from each other [20]. Compared to other dissimilarity measures [20, 37-39], 

DTW and MDTW have an additional advantage since their implementation is simple and 

efficient. Furthermore, DTW and MDTW are remarkable since it is not necessary that both 

time-series being compared are of equal length as needed by typical distances and this is 

referred to as elasticity [20]. 
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3.1 LM Motion Capture System 

We use a low cost “off-the-shelf” markerless sensor known as LM. LM is a 

popular device developed for hand gesture interaction [4]. It is a portable USB device of 

dimension 0.5x1.2x3.0 inches that connects to a computer. It comprises of two cameras and 

three infrared light-emitting diodes (LEDs) that detect hands and all 10 digits as they move 

through the open space between a person and a computing device. There is free LM 

software from its Software Development Kit (SDK) that must be installed to work with the 

LM. The software together with any customised application can detect hand and fingers and 

translate motion data into information that is required for further analysis. Figure 10 shows 

the front side of the LM. 

To use the LM, the user needs to connect it to a computer using a USB cable, 

start the LM software, and then place his or her hands above the LM. Figure 11 illustrates 

how to use the LM. In the figure, The LM in the centre is connecting to a computing device 

on the right. The hand above the LM is tracked and used to interact with virtual objects [67, 

68]. The LM can detect palm and finger movements. The tracking data, in form of frames, 

can be accessed using its SDK. 

 

 

A study concerning LM latency related issues has been made in [66]. The study 

demonstrated fluctuations in the frame rates. The nominal frame rates were 50, 100, and 

200 fps in the modes of high precision, balanced tracking, and high speed. The three modes 

Figure 10: The Front Side of the LM with the Green Signal. 
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experienced delays of 20, 10 and 5 ms, respectively. These latency related issues have no 

impact on our experimental results for both static and dynamic hand gestures since the 

delays are small compared to the durations of dynamic hand gestures. 

 

 

3.1.1 Interaction Area of LM 

The interaction area of the device is approximately 60 cm above the LM, roughly 

60 cm wide on every side (150o angle), and roughly 60 cm deep on every side (120o angle) 

[67]. Owing to its extensive angle lenses, the device possesses a large interaction area of 

eight cubic feet that takes the form of an upside-down pyramid which is the intersection of 

the binocular cameras’ fields of view. In the earlier versions of LM, the field of view was 

restricted to approximately 2 feet (60 cm) above the sensor device. With the 

implementation of Orion beta related software, this was upgraded to 2.6 feet (80 cm). It is 

important to note that this range is restricted by LED light transmission through space, 

because it becomes more complex to detect a hand’s location in 3D above and beyond a 

specific distance [67]. LED light intensity is constrained by the highest current that can be 

carried by the USB connection cable. Figure 12 (a) shows the interaction area of the LM. 

Figure 11: The LM Usage. The hand above the LM interacts with virtual objects [53]. 
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3.1.2 Internal Structure of LM 

The internal structure of the LM can be easily recognised when someone first 

determines its centre. The centre is at the second IR LED as shown in the Figure 12 (b). 

When the LM is working, all 3 IR LEDs are clearly observable displaying red illumination. 

 

 

3.1.3 Simple Calibration Procedure of the Leap Motion Device 

For the LM to be used initially, a user is required to perform a simple calibration 

procedure since the sensors on the LM may have been knocked out of their initial 

arrangement [67]. If a calibration procedure is not performed issues such as jumpiness, 

persistent disruptions in the tracking data, irregularities in tracking data that happen only in 

particular fields of observation, and a smaller tracking area can be experienced. 

In order to calibrate the LM, the following steps are performed [67].  

(a) Start LM application on a computing device. 

(b) Click on File tab and then click on Controller Settings.  

(c) Click on the Troubleshooting tab.  

(d) Click on Recalibrate Device. 

Figure 12: The LM’s (a) Interaction area (b) Internal Structure [67]. 



  

 

Hussein Walugembe PhD Thesis Page 43 of 145 

 

 (e) Pan and tilt the LM to turn the cursor over to paint the screen. 

 (f) Aim at obtaining a calibration mark of 80 or beyond. 

3.1.4 Set-up and Comfortable Use of the Leap Motion Device 

According to [67], the following are suggestions to help make employing the LM 

feel natural and easy. The “do’s” are listed as follows:  

(a) Put down the LM on a desk or flat surface where it is convenient to use.  

(b) When standing or sitting high on a chair, hold your elbows close to your side. Maintain 

your forearms parallel to the floor and perpendicular to your body. 

(c) When sitting at a normal desk height, keep your elbows or forearms on your desk. Keep 

away from uneven and piercing edges. Keep your hands simply above the LM, your wrist 

and hands in approximately a straight line. Figure 13 illustrates the do’s when using LM. 

 

 

The don’ts are listed as follows: 

(a) Don't hunch over the LM. Maintain its field of view free from obstacles, including 

yourself.  

(b) Don't flex your elbows and your wrists with your arms nearly together.  

Figure 13: Illustration of the do’s when using LM [67]. 
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(c) Don't maintain your arms straight ahead of you in the space.  

(d) Don't hold your arms on a surface where it compels your elbows to be pointed out to the 

side. Figure 14 illustrates the don’ts when using LM. 

 

 

3.2 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a multivariate approach that transforms a 

collection of correlated data points into a new collection of orthogonal and uncorrelated 

variables referred to as principal components (PCs) that are linear combinations of the 

original variables [69, 70]. The conversion of the data to the PCA domain is executed by the 

decomposition of the covariance matrix into eigenvalues and eigenvectors, and this method 

has been employed in various application areas under diverse techniques, such as a 

denoising approach, with the advantage of being a suitable tool from a computational point 

of view [71, 72]. 

3.2.1 PCA as a Filtering Mechanism 

Principal Component Analysis (PCA) starts with the arrangement of a dataset in a 

matrix X  of dimension M x N, in which M represents the number of observations and N the 

Figure 14: Illustration of the don’ts when using LM [67]. 
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number of  variables [70], as illustrated in Equation (3.1). 

𝐗 = [

x11 ⋯ x1N

⋮ ⋱ ⋮
xM1 ⋯ xMN

]         (3-1) 

To prevent data points that are distant from the data centre having a significant 

impact rather than closer points, the average of each variable is subtracted from the data 

point. This step is referred to as centralisation of data and is demonstrated by Equation (3-

2). 

𝐲𝐢 = 𝐱𝐢 − μ(𝐱𝐢)         (3-2) 

where yi is the data vector centralised around the average. xi are the N sample vectors and 

μ(xi) is a vector which is a collection of averages of the sample vectors, which can be 

obtained by Equation (3-3). 

μ(𝐱𝐢) =
1

𝑚
∑ xi(j)

m
j=1          (3-3) 

The variables or sample vectors for each column of X [71] are demonstrated 

mathematically by Equation (3-4). 

𝐱𝐢 = [x1i  x2i   ⋯  xMi]
T        (3-4) 

The data matrix arranged and centralised on the average is used to obtain the 

covariance matrix as shown in Equation (3-5). 

𝐂𝐘 = E(𝐘 ∙ 𝐘T)         (3-5) 

in which Y and YT are the data matrices centred on the average and its transpose, 

respectively, and CY is the covariance matrix. 

The diagonal elements of CY  indicate the statistical variance while the off-

diagonal elements demonstrate the covariance between variables. Null diagonal covariance 

signifies the random variables are uncorrelated [73]. In addition, the covariance matrix is 

real and symmetric, and this allows us to decompose CY  into a collection of eigenvalues and 

orthogonal eigenvectors [72] as illustrated in Equation (3-6). 

𝐂𝐘 = 𝐕 ∙ Λ𝐕𝑇          (3-6) 
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where 𝑉 = [Φ1 Φ2  ⋯ Φ𝑚] is a M × M orthogonal eigenvectors matrix and Λ =

𝑑𝑖𝑎𝑔 {𝜆1, 𝜆2, ⋯ , 𝜆𝑚}  is the diagonal matrix of eigenvalues, in which λ1 ≥ λ2 ≥ ⋯ ≥ λm. 

The eigenvectors show the contribution to each of the initial axes to the 

structure of new axes, i.e. the principal components. The eigenvalues, consecutively, are 

related to the original amount of variance described by each of the eigenvectors [74]. 

The final step of the analysis is the creation of the uncorrelated data matrix that 

is referred to as the principal component scores, and which is created by the product of the 

orthonormal eigenvector matrix 𝑉 and the data matrix arranged and centralised on the 

average Y, as illustrated in Equation (3-7). 

𝐏𝐂 = 𝐕T𝐘          (3-7) 

where PC is the matrix of uncorrelated principal component scores. 

From the data in the PCA domain, it is feasible to obtain signal characteristics. 

The signal and the noise in a dataset can be easily separated in the PCA domain, because the 

signal energy and noise energy will settle in various subsets of the uncorrelated data. 

Considering this ability, PCA can be employed as a statistical data filtering approach [74]. 

The inverse PCA transform can also be considered, which is employed to back 

transform the principal component scores (uncorrelated data), consequently building the 

original dataset. Equation (3-8) illustrates the mathematical expression of the inverse PCA 

transform. 

𝐗 = (𝐕 ∙ 𝐏𝐂) + μ(𝐗)         (3-8) 

The inverse PCA transformation is an important operation since rebuilding of 

original data with only several PCs, discarding the remainder, can strengthen relevant 

features not formerly easily observed in the data and/or separate the contribution of 

unwanted features such as noise [71, 72, 74]. 

3.2.2 Application of PCA in Areas Related to our Research 

As we have discussed in Section 3.1.1, PCA is a multivariate statistical approach 

that transforms an orthogonal projection of the data onto a new dimensional linear space, 
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known as the principal subspace [74]. We briefly describe some related applications where 

PCA is employed. 

a) Application of PCA to Detect, Recognize and Interpret Hand Gestures 

PCA was applied together with the LM and the Kinect sensor to detect, recognise 

and interpret hand gestures of Arabic sign language letters. PCA was implemented as a 

means to overcome the challenge of time complexity of acquiring and interpreting data for 

their system [33]. They deleted the least significant principal components they believed 

contributed redundant and irrelevant data due to noise. 

Differently to how they implemented PCA, we apply PCA to compensate for the 

errors that would have originated from the user’s hand moving away from the centreline of 

the LM when performing hand gestures. For reducing absolute errors, we employ PCA on 

our dataset. PCA reduces variance and hence absolute errors as illustrated in equation (4-6). 

We delete the first PC that contains the highest variance and retain the remainder PCs that 

form the feature vector. Details on how PCA is implemented are discussed in Section 4.2.3, 

Chapter 4. 

b) PCA Employed to Lessen Redundant Information of Hand Movement Signals 

In the work [75], PCA is employed to create the hand gesture recognition system 

in order to lessen the redundant information of electromyography (EMG) signals, improve 

recognition efficiency and accuracy, and increase the possibility of real-time hand gesture 

recognition. By employing mechanisms for obtaining key information of human hand 

movements, the required action mode can be detected. In their research, nine hand static 

gestures were implemented where the surface EMG signal of the arm was collected using an 

EMG device to obtain four types of characteristics of the signal [75]. After employing PCA, 

the overall recognition rate of the implemented system achieved 95.1% accuracy. 

3.3 Linear Discriminant Analysis (LDA) 

LDA takes into account multivariate analysis. It makes use of independent 

variables to establish a distinction among groups or categories of dependent variables [4, 

76]. The technique generates discriminant functions that help to determine the group to 
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which a test sample is attached. 

3.3.1 How LDA Solves the Problem 

LDA is a supervised learning technique where the outcome variable is categorical 

and hence can be employed in a classification scenario. LDA can be immensely effective 

when dealing with two response classes [4]. However, it can also be extended to handle a 

multi-dimensional dataset where more than two classes can be classified [4]. In Chapter 5, 

we demonstrate how LDA is implemented to recognise static hand gestures. 

We let a collection of 𝐾 independent gestures be described in a set G i.e. 𝐺 =

{𝑔1, 𝑔2, 𝑔3, ⋯ , 𝑔𝐾}, that represent the position and orientation of the fingers. A gesture is 

represented using a set of measured features describing finger joint angles and these 

features can be measured using an LM. A feature vector in dimensional space of 𝑃 features, 

i.e. 𝑦 = {𝑦1, 𝑦2, 𝑦3, ⋯ , 𝑦𝑃}, is used to represent the position and orientation of the fingers 

for a particular gesture.  

We are required to obtain an appropriate gesture 𝑔𝑘 ∈ 𝐺 which will maximise 

the probability 𝑃(𝑔𝑘|𝑦) = 𝑃(𝑔𝑘|𝑦1, 𝑦2, 𝑦3, ⋯ , 𝑦𝑃) as, 

𝑃(𝑔𝑘|𝑦) =
𝑃(𝑔𝑘)𝑃(𝑦|𝑔𝑘)

𝑃(𝑦)
        (3-9) 

where 𝑃(𝑔𝑘) and 𝑃(𝑦) can be computed, assuming the P features in 𝑦 are independent of 

each other. The probability of a gesture 𝑃(𝑔𝑘) is the ratio of the number of samples in a test 

sample that belong to the category of 𝑔𝑘 to the total number of samples in the test sample. 

Estimation of the likelihood, i.e. 𝑃(𝑦|𝑔𝑘) is required using a machine learning technique on 

a labelled dataset. 

A user performing hand gestures described in Section 5.1.4, Chapter 5 is 

instructed to perform a number of gestures that are recorded in the system and 

measurement features, representing these gestures in form of feature vectors, are 

recorded. The problem to solve is, given a set of gestures 𝐺, our objective is to recognise 

and classify which gesture a user is performing taking into consideration measurement 

errors and noise within the LM. 
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We have employed a multiclass LDA model since we have more than two 

gestures in the set G. The steps involved in multiclass analysis are well described in [4, 76, 

77]. 

Step 1: LDA starts by finding intraclass 𝑆1 and interclass 𝑆2  scatters from 𝐾 

independent gestures in set G [78-80]. The values of 𝑆1 and 𝑆2 can be estimated from the 

training dataset as, 

𝑆1 = ∑ ∑ (𝑥 − 𝑥𝑘̅̅ ̅)(𝑥 − 𝑥𝑘̅̅ ̅)𝑇
𝑥∈𝑔𝑘

𝐾
𝑘=1        (3-10) 

𝑆2 = ∑ (𝑥𝑘̅̅ ̅ − �̅�)(𝑥𝑘̅̅ ̅ − �̅�)𝑇𝐾
𝑘=1        (3-11) 

where 𝑥𝑘̅̅ ̅ is the average of each category of gesture 𝑘 and �̅� is the overall average. These 

aforementioned averages are easily computed as, 

𝑥𝑘̅̅ ̅ =
1

𝑚𝑘
∑ 𝑥𝑥∈𝑔𝑘

         (3-12) 

�̅� =
1

𝑚
∑ 𝑚𝑘𝑥𝑘̅̅ ̅𝑛

𝑖=1          (3-13) 

where 𝑚𝑘 and 𝑚 represent the number of observations in category 𝑘 and the total number of 

observations in all categories, respectively. 

Step 2: After obtaining 𝑆1 and 𝑆2, we can find the transformation Φ that 

maximises  

ℓ(Φ) =
|Φ𝑇𝑆2Φ|

|Φ𝑇𝑆1Φ|
         (3-14) 

The transformation Φ can be finally obtained by finding a solution to the generalised 

eigenvalue problem [81, 82] given as 

𝑆2Φ = 𝜆𝑆1Φ.          (3-15) 

Step 3: Finally, using the transformation Φ, recognising and classifying any 

performed gesture 𝑔𝑘 is achieved in the transformed space. This is made possible by using 

Euclidean distance [4] as a measure that provides a distinction between different classes or 

categories. Any gesture 𝑔𝑘 can be recognised and hence classified as  

argmin
𝑘

𝑑(𝑔𝑘Φ, �̅�𝑘Φ)         (3-16) 
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where �̅�𝑘 in any class 𝑘 is its centroid. 

3.3.2 Applications of the LDA Technique in Areas Related to our Research 

In this section we discuss various applications where LDA has been 

implemented. In particular, we are considering applications where LDA has been 

implemented in hand gesture recognition. This has helped us to review the most recent, 

relevant and feasible techniques that are applicable to hand gesture recognition. 

a) 3D Hand Gesture Recognition based on Polar Rotation Feature and LDA 

In their work [83], researchers implemented a hand gesture recognition system 

using LDA. The hand gestures in their system were obtained from a 3D laser scanner which 

creates depth data. During the system implementation, hand area segmentation, hole-filling 

and normalization are performed first, followed by extraction of a feature of the polar 

rotation distance via polar-coordinate transformation. Through implementation of a 

combination of PCA and LDA, the algorithm proved to be robust and accurate and achieved 

96.7% recognition rate under a set of six different hand gestures. 

b) Multi-feature based Hand Gesture Recognition 

In [84], the researchers implemented an extensive method for recognising hand 

gestures [85-87]. They demonstrated that motion measurements related to the hand 

position, orientation and finger bending can be regarded as time-series data collections and 

be used for the recognition of hand gestures. In order to address the challenges of hand 

gesture recognition, given its multi-feature nature, a novel approach for identifying 

important features for each hand gesture class was implemented [84]. A two-stage 

comparison method with the implemented stratification of hand gesture categories based 

on their important features helped the approach to handle the available huge number of 

hand gesture categories. Finally, hand gesture comparison based on the subspace created 

by LDA of temporal features was implemented in such a way that rhythmic differences 

between hand gesture trials were minimised. 

c) Classification of Hand Motions using LDA 

In their study [88], LDA is employed as a machine learning classifier to recognise 
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six hand motions using surface electromyogram (SEMG) signals recorded from eight muscles 

of the right hand. They obtained 24 features per muscle. Three feature sets, i.e. the original 

feature, the features created by a discriminant analysis (DA), and features selected by a 

multiple regression analysis (MRA) [89, 90], were utilised during machine learning 

classification. LDA performed comparatively well with accuracy above 90.0%. Generally, the 

index finger extension (IFE) had higher classification accuracy than other hand motions. The 

probability of thumb opposition (TO) misclassified as a key pinch (KP) was 1.1%, that of hand 

grasp (HG) misclassified as four-finger flexion (FFF) was 1.0%. 

d) Implementing LDA on a Wearable Human Machine Interface 

In their research [91], machine learning classifiers such as LDA are implemented 

on a dataset. They implemented eight gaming hand gestures i.e. clapping, index finger 

flicking, finger snapping, coin flipping, shooting, wrist extension, wrist flexion, and fist 

making. All these gestures were recognised in real-time. Their system was based on 

wearable human machine interface mechanomyogram (MMG) signals [92-95]. Furthermore, 

a three-axis accelerometer was attached to a specific watch strap to estimate the MMG 

signals that were created by the end of the extensor digitorum muscle.  

In their study, they obtained features from both the time signals and the 

coefficients of the wavelet packet decomposition (WPD). Sequential forward selection (SFS) 

was employed to identify the important features to improve the classification accuracy and 

minimise the processing time. LDA achieved an accuracy of more than 90.0%.   

e) Hand Gesture Recognition Based on Time Domain Features and LDA 

In their approach [96], a hand gesture recognition system is proposed where 

three channels of surface electromyograph (SEMG) signals were used to classify nine 

different hand gestures. In their implemented system, the time domain features, root mean 

square ratio, and autoregressive model were employed to obtain the features of the SEMG 

and compared with the time-frequency domain features. In addition, LDA was employed as 

a machine learning classifier and achieved an accuracy of 91.7%. 

Compared with other related work [97-101], their approach used only three 
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sensors to identify nine hand gestures. The processing time of the LDA classifier greatly 

reduced and therefore the system can be implemented in the real-time recognition 

applications. 

3.4 Support Vector Machine (SVM) 

SVM is a learning method that operates on the basis of the statistical learning 

theory [102, 103]. It is a non-linear classifier [35] which is often reported as a superior 

classifier compared to other machine learning techniques. It is an efficient classifier broadly 

applied in pattern recognition [104]. Despite the fact that SVM operates a binary 

classification, multiple classifiers can be merged to implement multiclass classification [36]. 

The main idea behind the SVM is to project the input data on to higher dimensional feature 

space that is not linearly associated with the input space and establish a hyperplane 

separating any two given classes of feature space with a larger margin [4]. 

3.4.1 How SVM Solves the Problem 

Our objective is to create an SVM model after training a fraction of measured 

observations on our dataset with an aim of correctly recognising and classifying test samples 

of hand gestures.  

If data points are linearly separable [35], the classifier can be expressed as 

𝑓(𝑥) = 𝛽𝑜 + ∑ 𝛼𝑖〈𝑥, 𝑥𝑖〉
𝑛
𝑖=1         (3-17) 

where there are 𝑛 parameters 𝛼𝑖, 𝑖 = 1,⋯ , 𝑛, one for each training observation. 〈𝑥, 𝑥𝑖〉 

represents the inner product of two observations defined as 

〈𝑥, 𝑥𝑖〉 = ∑ 𝑥𝑗
𝑃
𝑗=1 𝑥𝑖𝑗 ,         (3-18) 

where 𝑃 is the number of dimensions for every single measured observation. 

In the process of estimating terms 𝛼1, ⋯𝛼𝑛 and 𝛽𝑜, we are required to compute 

(𝑛
2
) inner products 〈𝑥𝑖, 𝑥𝑖

,〉 among the pairs of all training observations. To obtain 𝑓(𝑥), the 

inner product between any possible new point 𝑥 and every training point 𝑥𝑖  must be 

computed. However, it results in 𝛼𝑖 being non-zero for any measured observations that 

constitute support vectors in the solution, i.e. if a training sample does not belong to 
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support vectors, then 𝛼𝑖 becomes non-existent and equals zero [35].  

If Δ is the set of indices of the support vectors, we can rearrange any possible 

solution function as 

𝑓(𝑥) = 𝛽𝑜 + ∑ 𝛼𝑖〈𝑥, 𝑥𝑖〉𝑖∈Δ         (3-19) 

which basically constitutes far fewer terms compared to Equation (3-17).  

However, if data points are not linearly separable, it is easier to replace 〈𝑥, 𝑥𝑖〉 

with a generalisation of 𝐾(𝑥𝑖 , 𝑥𝑖
,), where K represents a kernel [105]. A kernel can be 

defined as a mathematical relation that quantifies any similar features of two measured 

observations. Examples of mostly used kernels are linear where 𝐾(𝑥𝑖, 𝑥𝑖
,) = ∑ 𝑥𝑗

𝑝
𝑗=1 𝑥𝑖𝑗

, , 

polynomial where 𝐾(𝑥𝑖 , 𝑥𝑖
,) = (1 + ∑ 𝑥𝑗

𝑝
𝑗=1 𝑥𝑖𝑗

, )𝑑, radial where 𝐾(𝑥𝑖 , 𝑥𝑖
,) =

exp(−𝛾 ∑ (𝑥𝑗𝑥𝑖𝑗
, )2𝑝

𝑗=1 ), and sigmoid where 𝐾(𝑥𝑖 , 𝑥𝑖
,) = (tanh(1 + ∑ 𝑥𝑗𝑥𝑖𝑗

,𝑝
𝑗=1 )). It is 

important to note that 𝑑 is a positive integer that represents the degree of a polynomial 

kernel and 𝛾 is a positive constant.  

Finally, the class label for the test gesture 𝑥∗ can be predicted by the sign of 

𝑓(𝑥∗) = 𝑠𝑔𝑛 (𝛽𝑜 + ∑ 𝛼𝑖〈𝑥
∗, 𝑥𝑖〉𝑖∈Δ ).       (3-20) 

3.4.2 Relevant Applications of SVM Technique in Areas Related to our Research 

In this section we review some applications where SVM has been implemented. 

We have considered only those applications that are closely related to our research work 

where researchers implemented SVM in hand gesture recognition. 

a) Application of SVM to recognise hand gestures for hand therapy 

Here SVM was implemented to classify and recognise isolated hand gestures in 

order to facilitate hand therapy for patients recovering from stroke or similar illness [4]. 

These isolated hand gestures were then combined to form hand gesture sequences that 

simulated hand exercises performed by the patients. The experimental results 

demonstrated that the SVM model was fully sensitive to a choice of any of the kernels 

together with their respective parameters. 
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b) Static hand gesture recognition using a mixture of features and SVM 

In their work [106], they proposed a vision-based application for static hand 

gesture recognition. The application considers images of bare hands and permits recognition 

of any hand gesture in illumination and when slight rotated. The implemented application 

comprises three stages: pre-processing, feature extraction, and classification. During 

classification, features are used as input to a multiclass SVM model in order to recognise 

static hand gestures. The recognition accuracy on three different databases were 99.5%, 

93.6%, and 98.3%. 

c) Real-time hand gesture recognition using a bag-of-features and SVM 

This research work considers a real-time system aimed at interacting with an 

application or video game by making use of hand gestures [107]. In addition, the system can 

detect and track a bare hand in a cluttered background employing skin detection and a hand 

posture contour comparison algorithm following face subtraction, recognising hand 

gestures using a bag-of-features and SVM and creating a grammar that develops gesture 

commands to manage an application. 

In the training phase, following derivation of the keypoints for each training 

image employing the scale invariance feature transform (SIFT), a vector quantisation 

approach projects keypoints from each training image to a unified dimensional histogram 

vector (bag-of-words) following K-means clustering. The histogram is considered as an input 

for a multiclass SVM to create a training model. In the testing phase, for each frame taken 

from a webcam, the hand is detected by making use of their algorithm, afterwards the 

keypoints are derived for each small image that comprises the detected hand gesture only 

and is put into the cluster model to project them in a bag-of-words vector that is eventually 

put into the multiclass SVM training model in order to recognise a hand gesture. 

d) Hand gesture recognition using PCA and SVM 

In their research [108], they implement techniques to create a user independent 

finger and palm gesture recognition application taking into account related challenges such 

as illumination variations, difference in user hand shape, and higher inter class 

commonalities. In the implemented gesture recognition application, performance 
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evaluation was performed using pre-trained AlexNet characteristics. The deep 

characteristics were derived from fully connected (FC) layers for instance 'FC6' and 'FC7' of 

pre-trained AlexNet. 

A SVM based classifier having a linear kernel is employed in order to recognise 

hand gestures. The greatest recognition accuracy is estimated by making use of the deep 

feature derived from FC6 and FC7 separately and an integration of the feature vector with 

the SVM classifier. Finally, PCA is employed to reduce the feature dimension of deep 

characteristics in order to improve hand gesture recognition accuracy. 

e) Hand Gesture Recognition using Error Correction Output Code (ECOC) and SVM 

In [109], the researchers proposed a low-cost capacitive sensor device [110-114] 

to recognise hand gestures. Specifically, they implemented a system of a wearable 

capacitive sensor units to obtain the capacitance values from the electrodes fixed on finger 

bones. They extracted 15 features for hand gesture classification training and testing tasks. 

They applied an error correction output code support vector machine (ECOC-SVM), and then 

introduced a feature compression technique obtained from correlation analysis to minimise 

the complexity of SVM and a recognition rate of 97.0% was achieved [109]. 

f) Application of SVM to Recognise Hand Gestures from an EMG Signal 

SVM is implemented to recognise hand gestures. In particular, recognition of 

hand gestures is achieved from the given Electromyography (EMG) signal, obtained via a 

sensor-based band [115]. In order to minimise noise artifacts, the raw EMG signal has to 

pass through pre-processing steps. Subsequently, eight kinds of time-domain features are 

obtained from the raw EMG signal, then a feature matrix is generated. SVM is employed as 

a hand recognition technique and implemented in MATLAB 2019a and achieves an accuracy 

of 83.0%. 

3.5 Dynamic Time Warping (DTW) 

DTW has been in existence for decades, employed mainly to obtain the optimal 

alignment of two signals [21]. DTW derives the distance metric between each possible pair 

of points out of two signals with reference to their respective feature values [116]. It 



  

 

Hussein Walugembe PhD Thesis Page 56 of 145 

 

employs these distances to derive a cumulative distance matrix and obtains the optimal 

path through the matrix [39]. This path illustrates the perfect warp i.e. the synchronisation 

of the two signals that creates the distance between their synchronised points to be as 

minimal as possible. 

Usually, the signals are normalised and smoothed prior to the computation of 

the distances between points. DTW has been employed in a number of fields, for instance 

speech recognition, data mining, and movement detection [117, 118]. Earlier research in the 

field of DTW mostly examined accelerating the algorithm, having a complexity which is 

quadratic in terms of the length of the series that are being compared. Due to such 

complexity related challenges, researchers have devised means to mitigate those 

challenges. For example, constraints to the DTW implementation have been applied [119], 

some form of approximations of the DTW algorithm have been implemented in [120] and 

lower bounding approaches have been suggested in [121]. 

3.5.1 Description of DTW 

The goal of DTW is to make a comparison between two time-dependent 

sequences: a query sequence, 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑁) of length 𝑁 ∈ ℕ and a reference 

sequence 𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑀) of length 𝑀 ∈ ℕ [119]. In the subsequent discussion, to index 

the components in 𝑥 and 𝑦, we shall employ the symbols 𝑖 = 1⋯𝑛 and 𝑗 = 1⋯𝑚 

respectively. In order to establish a comparison between sequences, a local cost measure is 

needed [21, 122, 123]. This measure can be referred to as a local distance or dissimilarity 

measure [122]. To derive this measure, a non-negative function f is established between any 

pair of components 𝑥𝑖  and 𝑦𝑖 as illustrated in Equation (3-21). 

d(i, j) = 𝑓(𝑥𝑖, 𝑦𝑗) ≥ 0 (3-21) 

Generally, if d(i, j) is of a small value, then 𝑥 and 𝑦 are similar to each other and 

when d(i, j) is of a greater value, then x and y are different. The most frequently used 

distance function is the Euclidean distance, other distance functions are squared Euclidean, 

Manhattan, Gower coefficient etc. [117-122]. Let us consider Cartesian coordinates. Given 

𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛) are two points in Euclidean n-space, the 
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distance 𝑑 from 𝑥 and 𝑦 is defined in the subsequent Euclidean distance operation, 

𝑑(𝐱, 𝐲) = 𝑑(𝐲, 𝐱) = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + ⋯+ (𝑥𝑛 − 𝑦𝑛)2 (3-22) 

Using one of the distance functions aforementioned, a local cost measure for 

every pair of components of the respective sequences 𝑋 and 𝑌 is determined [122]. This 

generates a cost matrix 𝐶 ∈ ℝ𝑁+𝑀illustrated by 𝐶(𝑛,𝑚) ≔ 𝑑(𝑖. 𝑗) [122]. The eventual goal 

is to obtain an alignment between X and Y in a manner that the global cost is minimum 

[118-121]. It is important to notice that an optimal alignment runs roughly along the 

diagonal of the cost matrix C [120]. Generally obtaining an optimal alignment requires 

getting the warping curve 𝜙(𝑘), where 𝑘 = 1⋯𝑇 [122].  

𝜙(𝑘) = (𝜙𝑥(𝑘), 𝜙𝑦(𝑘)) (3-23) 

where 𝜙𝑥(𝑘) ∈ {1⋯𝑁} and 𝜙𝑦(𝑘) ∈ {1⋯𝑀}. 

The warping mathematical operations 𝜙𝑥 and 𝜙𝑦 realign both time indices of x 

and y respectively. The mean aggregated distortion between the warped time-series x and y 

can be obtained as follows: 

𝑑𝜙(𝑥, 𝑦) = ∑
𝑑(𝜙𝑥(𝑘),𝜙𝑦(𝑘))𝑚𝜙(𝑘)

𝑀𝜙

𝑇
𝑘=1  (3-24) 

where 𝑚𝜙(𝑘) is a non-negative weighting factor that regulates the input of every temporary 

distortion 𝑑(𝜙𝑥(𝑘), 𝜙𝑦(𝑘)) [122]. Considering that this is normally associated with the slope 

of the local path constraints that will be shortly described in Section 3.4.2. This can also be 

regarded as slope weighting function. The denominator 𝑀𝜙 employs an entire normalisation 

to the aggregated distortion to obtain a mean path distortion which does not consider the 

lengths of any pair of sequences that are being compared [117-122]. Finally, dynamic 

programming is employed to obtain the optimal alignment 𝜙 in such a way that, 

𝐷(𝑥, 𝑦) = min𝑑𝜙(𝑥, 𝑦). (3-25) 

3.5.2 Warping Constraints of DTW 

Generally, the various ways of feasibly warping paths along the grid of the cost 

matrix are numerous. This suggests that the search space must be limited. This limitation is 
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also essential to provide an appropriate time alignment between two sequences that are 

being compared. Following are the usual warping constraints that are considered essential 

[122-124]. 

a) Boundary constraints 

The boundary constraints require application of the subsequent conditions 

[122]: 

𝜙𝑥(1) = 𝜙𝑦(1) = 1 (3-26) 

𝜙𝑥(𝑇) = 𝑁 (3-27) 

𝜙𝑦(𝑇) = 𝑀 (3-28) 

These guarantee that the time sequences' initial position and final position 

match each other. Consequently, the alignment does not take into account incompletely 

one of the sequences [120-124]. On the other hand, during partial time-series matching, 

these conditions can be neglected. The fundamental concept of boundary constraints was 

invented from the understanding that speech patterns under comparison generally possess 

distinct endpoints that indicate the first and the last frames of the pattern [122]. Hence, the 

endpoint data is required to be integrated to achieve an exact match. 

b) Monotonicity conditions 

Monotonicity conditions are described in the following inequalities: 

𝜙𝑥(𝑘 + 1) ≥ 𝜙𝑥(𝑘) (3-29) 

𝜙𝑦(𝑘 + 1) ≥ 𝜙𝑦(𝑘) (3-30) 

The above inequalities ensure that the time-series' time arrangement is maintained.  Hence 

this avoids the alignment path from moving backwards in time. Fundamentally, negative 

slopes of a warp path are eliminated [122-124]. 

c) Local Continuity Constraints 

The primary goal of local continuity or step-size constraints is to guarantee that 

no component in X and Y is neglected, otherwise possible loss of data could happen [122]. 

Hence, a discontinuous warp path is eliminated [124]. Usually, local continuity constraints 
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could be implemented in different forms [122]. Considering the directions of matches 

between i and j that are permitted, they can be classified as symmetric or asymmetric [122]. 

An example of symmetric local constraints is proposed and implemented by [124] as 

follows: 

𝜙𝑥(𝑘 + 1) − 𝜙𝑥(𝑘) ≥ 1 (3-31) 

𝜙𝑦(𝑘 + 1) − 𝜙𝑦(𝑘) ≥ 1 (3-32) 

The above set of constraints in the inequalities (3-31) and (3-32) is known as 

symmetric since it permits an unrestricted number of components of the query X to match 

with a single component of the reference Y , and vice versa [124, 125]. It is important to 

note that for an asymmetric step pattern, multiple components of the query sequence X are 

permitted to match with the same component in the reference sequence Y, but not vice 

versa [124, 125]. 

d) Global Path Constraints 

Along with the local path constraints, global path constraints, also regarded as 

"windowing", can be employed to the warping functions to identify areas in the (i, j) plane 

where warping paths are not expected to exist [120-124]. It guarantees that the warped 

path is always as close to the diagonal as possible. Researchers in [125] propose and 

implement the subsequent adjustment window condition so that the time-axis variation 

does not generate too much of a timing difference: 

|𝜙𝑥(𝑘) − 𝜙𝑦(𝑘)| ≤ 𝑟 (3-33) 

where r represents a suitable positive integer known as the window length. 

3.5.3 Dynamic Programming Algorithm 

To compute the equation (3-25), iterative dynamic programming (DP) algorithms 

are employed [122]. In the subsequent equation, an algorithm that implements a symmetric 

step-pattern is illustrated. 

Starting condition: 𝑔(1,1) = 𝑑(1,1) 

DP equation: 
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𝑔(𝑖, 𝑗) = 𝑚𝑖𝑛 [

𝑔(𝑖, 𝑗 − 1)

𝑔(𝑖 − 1, 𝑗 − 1) + 2𝑑(𝑖, 𝑗)

𝑔(𝑖 − 1, 𝑗) + 𝑑(𝑖, 𝑗)

] (3-34) 

In order to implement an asymmetric step-pattern, a change is required to be 

made on Equation (3-34) as illustrated in the subsequent equation [122].  

𝑔(𝑖, 𝑗) = 𝑚𝑖𝑛 [

𝑔(𝑖 − 1, 𝑗) + 𝑑(𝑖, 𝑗)

𝑔(𝑖 − 1, 𝑗 − 1) + 𝑑(𝑖, 𝑗)

𝑔(𝑖 − 1, 𝑗 − 2) + 𝑑(𝑖, 𝑗)

] (3-35) 

It is important to note that there is no need to specify and limit conditions for 

the global path constraints because normally windowing is not implemented. Equation (3-

34) or (3-35) should be recursively computed in an ascending order with reference to 

coordinates i and j. The algorithm begins from the starting condition at (1,1) and terminates 

at (N,M) [116-125].  

3.5.4 Problem Formulation for Comparing Dynamic Hand Gestures using DTW and 

MDTW 

Our objective is to establish how similar or different a query dynamic hand 

gesture is in comparison to a reference dynamic hand gesture whilst compensating for 

differences in the duration of gestures, rotation of the hand, reasonable distance from LM 

sensor etc. Firstly, we define a dynamic hand gesture. Following that, we illustrate how 

traditional DTW works considering that the feature vector constitutes only one measured 

feature. We then extend DTW to Multi-dimensional Dynamic Time Warping (MDTW) so that 

it suits our proposed framework. 

a) Definition of a Dynamic Hand Gesture 

A dynamic hand gesture is represented as a sequence of hand positions 

changing over time and each position is described by a set of finger joint angles. 

Mathematically, a dynamic hand gesture is described using a set of P measured finger joint 

angles that evolve over time i.e. a dynamic hand gesture 𝑔𝑡 at an instant t is described by 

𝑔𝑡 = {𝜃1𝑡 , 𝜃2𝑡 , ⋯ , 𝜃𝑃𝑡}. 
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b) Problem Formulation using DTW 

We let a query dynamic hand gesture and a reference dynamic hand gesture be 

represented by x and y, respectively [126]. Specifically, 𝐱 = (x1, x2, ⋯ , xM) where 𝑀 ∈ ℕ 

and 𝐲 = (y1, y2, ⋯ , yN) where 𝑁 ∈ ℕ. From now onwards, we use 𝑖 and 𝑗 to represent an 

entry in time-series 𝑥 and 𝑦, respectively. We define the Euclidean distance between any 

two samples in time-series 𝑥 and 𝑦 as [126], 

𝑑(𝑖, 𝑗) = √(𝑥𝑖 − 𝑦𝑗)(𝑥𝑖 − 𝑦𝑗)            1 ≤ 𝑖 ≤ 𝑀,         1 ≤ 𝑗 ≤ 𝑁.   (3-36) 

A two-dimensional 𝑁 by 𝑀 cost matrix 𝐷 is created and every individual value of 

the 𝐷(𝑖, 𝑗) is determined as follows: 

𝐷(1, 1) = 𝑑(1,1)               (3-37) 

𝐷(1, 𝑗) = 𝐷(1, 𝑗 − 1) + 𝑑(1, 𝑗)                  2 ≤ 𝑗 ≤ 𝑁         (3-38) 

𝐷(𝑖, 1) = 𝐷(𝑖 − 1,1) + 𝑑(𝑖, 1)                  2 ≤ 𝑖 ≤ 𝑀         (3-39) 

𝐷(𝑖, 𝑗) = 𝑑(𝑖, 𝑗) + 𝑚𝑖𝑛 {

𝐷(𝑖, 𝑗 − 1)

𝐷(𝑖 − 1, 𝑗 − 1)

𝐷(𝑖 − 1, 𝑗)
}    2 ≤ 𝑖 ≤ 𝑀,   2 ≤ 𝑗 ≤ 𝑁.                     (3-40) 

Then a warping path 𝑤 = 𝑤1, 𝑤2, ⋯ ,𝑤𝑟 is an adjacent collection of some matrix 

constituents that are always close to the diagonal. These matrix elements when added 

together are equivalent to a minimum-distance of a warp path. 

The minimum-distance of a warp path provides a mapping between x and y that 

fulfils the following requirements [124]: 

• Boundary requirements: Given 𝑤1 = (1,1) and 𝑤𝑟 = (𝑀,𝑁) where r is the length of 

the warping path. 

• Continuity conditions: Given 𝑤𝑧 = (𝑎, 𝑏) and 𝑤𝑧−1 = (𝑎′, 𝑏′), then 𝑎 − 𝑎′ ≤ 1 and 

𝑏 − 𝑏′ ≤ 1 must be fulfilled. 

• Monotonicity requirements: Given 𝑤𝑧 = (𝑎, 𝑏) and 𝑤𝑧−1 = (𝑎′, 𝑏′), then 𝑎 − 𝑎′ ≥ 0 

and 𝑏 − 𝑏′ ≥ 0 must be satisfied. 

 

We can now illustrate how to obtain a minimum-distance warp path with an 

example. Given 𝑥 = (1,2,4,3,5,3,2,3,2,5) that represents a query series and 𝑦 =
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(1,1,2,4,3,5,3,2,3,2) that represents a reference series, we can construct a cost matrix 𝐷. 

The minimum-distance of a warp path is traced through the matrix constituents from 

𝐷(1,1) to 𝐷(𝑀,𝑁), highlighted in pink, as shown in Figure 15. The minimum-distance of the 

warp path using Euclidean distance as a metric is three. The above DTW formulation can 

only be implemented if a framework considers a single feature alignment i.e. one 

dimensional measurements [126]. 

 

 

c) Problem Formulation using MDTW 

Since in our framework, we are considering up to 14 joint angles to describe a 

dynamic hand gesture at an instant, we employ MDTW. For MDTW, the two time-series 𝑋 

and 𝑌 have to be initially created as multi-dimensional matrices where each row represents 

the time-series of a single measured feature and each column represents all the measured 

features at a given instant. The matrices 𝑋 and 𝑌 can now be written as shown below. 𝑀 

and 𝑁 are samples of a dynamic query hand gesture and a dynamic reference hand gesture, 

respectively, and 𝑃 is the number of measured features being considered. 

𝐗 = [

x1,1 ⋯ x1,M

⋮ ⋱ ⋮
xP,1 ⋯ xP,M

]     

Figure 15: Cost matrix and the minimum-distance of the warp path. 
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𝐘 = [

y1,1 ⋯ y1,N

⋮ ⋱ ⋮
yP,1 ⋯ yP,N

] 

We now define the Euclidean distance between 𝑋 and 𝑌 as 

𝑑(𝑖, 𝑗) = √(𝑋𝑖 − 𝑌𝑗)
𝑇
(𝑋𝑖 − 𝑌𝑗).          (3-41) 

where 𝑋𝑖 are all fourteen measured joint angles at 𝑖𝑡ℎ frame of 𝑋 and 𝑌𝑗 are the fourteen 

measured joint angles at 𝑗𝑡ℎ frame of 𝑌. 

The entries in the cost matrix 𝐷 can then be determined as shown in Equations 

(3.37), (3.38), (3.39) and (3.40). Then the MDTW algorithm searches for a minimum-distance 

warp path that runs close to the diagonal line from 𝐷(1,1) to 𝐷(𝑀,𝑁). The warping path 

must fulfil all three requirements as described in the case for DTW. If the minimum-distance 

of a warp path is of a lower value, then the two time-series, i.e. the two dynamic hand 

gestures being compared, are similar, otherwise the two dynamic hand gestures being 

compared are effectively different to a quantifiable extent. 

3.5.5 Relevant Applications of DTW and MDTW in Areas Related to our Research 

The following text provides examples where researchers have implemented 

DTW. Specifically, we are considering applications of DTW that are closely related to our 

research.  

a) Using Adaptive DTW to Recognise Natural Gestures 

The work describes a novel technique considered to recognise 3D dynamic composed 

gestures [114]. During experimental analysis, every gesture is illustrated by 

association of angle variations defined as a vector. A composed gesture can be defined as a 

sequence of two simple gestures or more carried out in a sequence. Examples of simple 

gestures included come, recede, point to the right, point to the left and stop. For the 

purpose of recognising all the composed gestures accurately, they combined DTW with an 

Adaptive Sliding Window. In addition, DTW was implemented to compare the reference 

gestures to sequences provided by the adaptive window. Finally, the reference gesture that 
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generates a lower distance metric is regarded as the source class of the tested gesture. 

b) Implementing DTW in Post-Stroke  

The objective of this research was to evaluate the performance of a real-time 

model of DTW in order to recognise motor exercises [21]. When provided with a potentially 

partial input stream of data and a reference time-series, the proposed and implemented 

DTW technique calculates both the size of the prefix of the reference that best matches the 

input, and the dissimilarity between the matched sections. In addition, the implemented 

technique was able to generate real-time feedback to neurological patients performing 

motor hand exercises. This real-time DTW approach is appropriate during the classification 

of condensed quantitative time-series, despite the existence of noise. 

c) Implementing DTW for Recognising Static and Dynamic Hand Gesture 

Research conducted by [127] proposes a natural hand gesture user interface 

that monitors and identifies hand gestures in real-time based on depth data obtained from a 

Kinect sensor. In particular, DTW is employed in selecting gesture candidates and 

recognising hand gestures by establishing a comparison of an observed gesture with various 

pre-recorded reference hand gestures. 

The comparison of their results with state-of-the-art techniques such as in [128, 

129] illustrates that the proposed approach performs better than most of the systems for 

the static hand gesture recognition of sign digits and is similar with regard to performance 

of the static and dynamic hand gesture recognition of popular signs used in the sign 

language alphabet. Their system achieves a recognition rate of 92.4% on average; however, 

to improve this recognition rate, a different version of DTW [130] needs to be taken into 

consideration when performing comparison tasks. 

d) Implementing Weighted DTW for Time-series Classification 

These researchers propose and implement a novel distance measure, referred to 

as a weighted DTW (WDTW), that is a penalty-based DTW [131]. Their technique penalises 

points having greater phase difference between a reference point and a query point with 

the purpose of preventing minimum distance distortion due to outliers. A novel weight 
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operation, referred to as the modified logistic weight function (MLWF), is also implemented 

to regularly allocate weights as a function of the phase difference for both reference point 

and query point. 

By employing various weights to neighbouring points, the proposed and 

implemented algorithm can improve the estimation of similarity between any two specified 

time-series. They employ the proposed and implemented technique to other forms of DTW 

for example derivative dynamic time warping (DDTW). In addition, they propose and 

implement the weighted form of DDTW. The experimental results illustrate that the 

implemented technique can achieve improved outcomes for time-series classification and 

clustering data analysis. 

e) Implementing DTW for Signature Verification 

One of the limitations of DTW was reported when implementing signature 

verification system [132-134]. The implementation involves obtaining correspondence and 

the similarity of two planar curves. The limitation was that in portions of the curves at 

locations with sparse sampling, insufficient resolution in the matching procedure was 

experienced attributed to the fact that DTW matches only individual samples instead of 

continuous curves. The authors in [132] further proposed that a feasible solution to this 

limitation is to oversample the curves. Oversampling can be implemented by employing a 

spline interpolation prior to curve matching.  

f) Applying DTW to Measure Time-series Similarity 

In [135] DTW is implemented to measure time-series similarity, perform 

classification, and identify corresponding portions between two time-series [136-139]. One 

strategy that was implemented applies a multilevel technique which repeatedly predicts a 

measurement from a coarse resolution and improves the predicted measurement. The 

strategy possesses linear time and space complexity and partially solves the issues of 

quadratic time and space complexity experienced by DTW when implemented with large 

time-series datasets [135].  
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g) Applying Improved DTW to Recognise Dynamic Hand Gestures 

In [140], the researchers implemented a dynamic hand gesture recognition 

system using an improved DTW algorithm. The 3D positions of a human hand are acquired 

after the analysis of the depth information, which is obtained through a Kinect sensor. Eight 

points are chosen as the hand motion characteristics, and the mathematical model of the 

hand is created by the approach of weighted distance. In order to improve performance of 

DTW, the distortion threshold is used, and the path constraints are applied in training 

templates. The implemented approach demonstrates that the improved DTW algorithm 

provides a substantial improvement in both speed and accuracy. 

h) Implementing DTW to Recognise 3D Hand Gestures 

In their research [141], the authors propose dynamic time warping to recognise 

3D hand gestures. In their approach, they split the time-series curve of a 3D hand gesture 

into different finger combinations, referred to as fingerlets, that can be learned or be set 

manually to characterise each gesture and to obtain inter-class variations. 

The implemented DTW approach finds the minimal path to warp two fingerlets, 

that are from one observation point and the specific class, respectively. In addition, the 

hand gesture recognition employs an ensemble of multiple DTW fingerlet distances to 

obtain better performance. Their approach was assessed on two 3D hand gesture datasets, 

and they demonstrated that the technique greatly improves hand gesture recognition. 

i) Applying DTW to Recognise Hand Gestures Performing Air-written English 

Alphabet Capital Letters 

DTW is implemented in a hand gesture system in [142]. Hand gestures are 

demonstrated as air-written English alphabet capital letters and the sensor component is a 

Leap Motion controller (LM). Through the application of DTW, the system can identify hand 

gestures that describe capital letters as two-dimensional values despite the input set and 

the reference template possessing a different number of points and, additionally, classify 

hand gestures by obtaining the lowest difference of the standard deviation between the 

input and templates. In their system, LM is employed to locate the position of the finger of 

the user, which acts as the "pen" in air-writing letters (hand gestures). 
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3.6 Summary 

In this chapter, we discussed LM device, PCA, LDA, SVM, and DTW prior to 

describing how we have employed them in our own research. We first explained what an 

LM is, its interaction area, and its internal structure. We outlined the steps undertaken 

when calibrating the LM. We also discussed suggestions on how to make employing the LM 

feel natural and easy. Secondly, we described what PCA is, how it can be applied as a 

filtering mechanism and discuss how researchers have employed it in various applications. 

Thirdly, we illustrate how LDA is applicable to our research, and this is described in three 

steps in Section 3.3.1. Then, we describe applications of LDA in areas related to our 

research. We describe how SVM is relevant to our research problem in regard to hand 

gesture recognition in Section 3.4.1. Other applications of SVM in areas related to our 

research are also discussed. Next, we discuss DTW in detail where we demonstrate that it is 

mainly employed to make a comparison between time-dependent sequences. We also 

discuss warping constraints of DTW, i.e. boundary constraints, monotonicity conditions, 

local continuity constraints, and global path constraints. We also illustrate the problem 

formulation for comparing dynamic hand gestures using DTW and MDTW. Finally, we 

discuss some pertinent applications of DTW in regard to hand gesture recognition. 
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4 Characterising and Reducing Absolute Errors (AEs) when Measuring 

Finger Joint Angles in LM using PCA 

We have configured four parameters in our designed experiments to 

characterise finger joint angle absolute errors. These four parameters are elevation relative 

to the LM, lateral (side-to-side) position relative to the LM, forward-backward position 

relative to the LM, and rotation relative to the LM. Definitions and further explanation of 

these parameters are given in Section 4.2.1. 

4.1 Motion Data Collection Procedure 

We conducted a series of experiments to assess the characteristics of the LM in 

terms of accuracy based on parameters like elevation, lateral (side-to-side) position, 

forward-backward position, and rotation. We used an “artist’s hand” placed above the LM. 

The artist’s hand is more accurate than a human hand in performing static hand gestures as 

it can maintain a fixed posture as long as is necessary. Figure 16 (a) shows the artist’s hand 

when clamped on the stand and placed at the centre above the LM within its interaction 

area. The LM is connected to the PC using a USB cable. The LM software must be started in 

order to record the frames of data. 

A joint angle 𝜃 can be obtained from the two vectors �⃗�  and 𝑣   representing the 

directions of the bones that form the joint as 

𝜃 = arccos
(�⃗⃗� ∙�⃗� )

(∥�⃗⃗� ∥∙∥�⃗� ∥)
.         (4-1) 

Equation (4-1) and Figure 16 (b) show how to obtain a joint angle of a finger. If 𝜃 is the Distal 

Inter-Phalangeal (DIP) joint angle of the middle finger for example, then �⃗�  is the direction 

vector of the intermediate bone and 𝑣  is the direction vector of the distal bone. 

We customise a Java application from the LM Software Development Kit (SDK) to 

obtain frames of data whenever we run it. From the frames of data, we extract direction 

vectors of the metacarpal bone, the proximal bone, the intermediate bone, and the distal 

bone for all five fingers. Figure 17 illustrates an example of a single frame of data. 
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For example, from the frame of data illustrated in Figure 17, we extract direction 

vectors of each bone. Lines 16 to 23 of the frame show the direction vectors of the middle 

finger. We show how we calculate joint angles of the middle finger from the frame. The 

direction vectors for metacarpal bone, proximal bone, intermediate bone, and distal bone 

are (0.169954, -0.148547, 0.974192), (0.176145, -0.269852, 0.946653), (0.352664, -

0.637749, 0.685075), and (0.450808, -0.87293, 0.186452), respectively.  

Using MATLAB software, we demonstrate how to obtain MCP, PIP and DIP joint 

angles from the four direction vectors. We name the vectors in the MATLAB command 

window as follows: a = [0.169954, -0.148547, 0.974192], b = [0.176145, -0.269852, 

0.946653], c = [0.352664, -0.637749, 0.685075], and d = [0.450808, -0.87293, 0.186452]. We 

then calculate the joint angles in two steps as follows:  

Step 1: In the command window of MATLAB, type, cosTheta = dot(a,b)/(norm(a)*norm(b));,  

Step 2: In the command window of MATLAB, type, ThetaInDegrees = acosd(cosTheta);. This 

gives us 7.14o for MCP joint. To obtain PIP and DIP joints we use vectors b and c, c and d, 

respectively, and follow the above two steps. We obtain 28.05o and 32.52o for the PIP and 

DIP joint respectively. 

Figure 16: (a) Artist’s hand at the centre of the LM. (b) How to obtain DIP joint θ. 
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In addition, from Figure 17, the position and orientation of a hand can be 

obtained. The second line of the frame illustrates the palm position. From the third line up 

to the last line, orientations of the finger bones relative to the palm are illustrated. 

We also calculate the Absolute Error (AE) between measured joint angles (𝑥𝑖) 

and the default angle (𝑑) for a given experiment of a parameter, e.g. 5 cm elevation is an 

example of an experiment of the elevation parameter. Other experiments of the elevation 

parameter are 10, 20, 30, 40 and 50 cm as illustrated in the first column of Table 1.  

Equation (4-2) illustrates how to obtain the AE. 

𝐴𝐸 = |𝑑 − �̅�|          (4-2) 

where �̅� = √
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1    and 𝑛 is the number of joint angles measured at a given experiment 

of a parameter. In our experiments the default angle was 90o and we used a protractor to 

measure it. We chose 90o as the default angle because it can be easily and accurately 

measured. We note that the value of 𝑛 for all these the experiments is 5 since there are 5 

measured finger joint angles for every experiment, i.e. the PIP joint of middle finger, MCP 

and PIP joint angles of ring finger, MCP and PIP joint angles of little finger. Five out of 

fourteen finger joint angles were sufficient for the purpose of absolute error related 

investigations since the errors are independent of the finger joints, hence there is no 

significant benefit considering all fourteen joint angles in this study. It is important to note 

that we compute the average, �̅�, before obtaining the absolute error to obtain a value that 

generalises well on how the set of the five joint angles perform as a whole for a given 

experiment of a parameter. In addition, the obtained average is more representative than a 

single value. 

We also compute the 95% confidence interval (95% CI) which is defined as a 

range of values such that with a probability of 0.95, the range contains the true measured 

joint angle. The 95% CI is computed as  

95% 𝐶𝐼 =  𝑥 ̅ ± 𝑡 ∙
𝑆

√𝑛
         (4-3) 

where 𝑥 ̅ is the mean, 𝑡 is the student's t value obtained at the specific degrees of freedom, 
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𝑛 is the number of measured joint angles considered at a particular level of a parameter and 

𝑆 is the standard error defined as  

𝑆 = √
1

𝑛−1
∑ (𝑥𝑖 − 𝑥 ̅)2𝑛

𝑖=1 .        (4-4) 

 

 

4.2 Characterising and Reducing Absolute Errors (AEs) in Finger Joint Angle 
Measurements 

In this section, we present the experimental setup and results for characterising 

and reducing absolute errors in finger joint measurements. All the measurements are 

obtained when a hand is placed above the LM in its area of interaction. The interaction area 

of the LM is described in Section 3.1.1. 

Figure 17: Illustration of a single frame of data. 
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4.2.1 Experimental Set-up to Characterise Absolute Errors (AEs) 

We present an experimental set-up for exploring joint angle absolute errors. We 

arrange an experimental set-up in four different ways to test the accuracy of the LM based 

on elevation, lateral (side-to-side), forward-backward, and rotation movements of the hand 

relative to the LM. We have chosen four parameters because the first three parameters are 

the only possible situations where a hand performing gestures can move away from the 

field of view (interaction area) of LM. The fourth parameter, i.e. rotation movements of the 

hand, can cause finger occlusion depending on how the rotation is performed. Movements 

away from the field of view of the LM and rotation of the hand performing gestures cause 

absolute errors in the LM. We briefly explain the experimental set-up for all four 

parameters. 

(a) Elevation Relative to the LM 

By elevation relative to the LM, we mean the vertical distance from the surface 

of the LM to the palm of the artist’s hand. Figure 18 illustrates an example of this type of 

positioning. 

We varied elevation from 5 to 50 centimetres (cm). In all the elevation 

experiments, the artist’s hand remained aligned with the centre of the LM, i.e. at 0 cm for 

both lateral (side-to-side) and forward-backward positions and was not rotated, it remained 

in the horizontal position with the palm facing downwards. The kinematic variables are joint 

angles measured in degrees and we set five known joint angles to 90o for all the 

experiments. 

(b) Lateral (side-to-side) Position Relative to the LM 

By lateral (side-to-side) positioning, we mean static hand gestures were 

performed at the centre, to the left and to the right relative to the LM. Figure 19 illustrates 

some of these positions. 

The artist’s hand was held at 0, 5, 10, 15 and 20 cm to the right and left of the 

LM centreline. The elevation was maintained at 10 cm from the surface of the LM to the 

palm of the artist’s hand and it was not rotated. It remained in the horizontal position with 

the palm facing downwards. 
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(c) Forward-Backward Position Relative to the LM 

The forward position relative to the LM means the artist’s hand was in front of 

the LM when performing a static hand gesture. A backward position relative to the LM 

means that the artist’s hand was behind of the LM when performing a static hand gesture. 

These positions are illustrated in Figure 20. 

Figure 18: The artist’s hand at an elevation of 40 cm from the LM. 

Figure 19: Lateral  (side-to-side) position, (a) At the centre, (b) to the left, (c) to the right of the LM. 
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The artist’s hand was held at 0, 2, 4, 6, 8 and 10 cm to the front and behind the 

LM centreline. The elevation was maintained at 10 cm from the surface of the LM to the 

palm of the artist’s hand and it was not rotated. It remained in the horizontal position with 

the palm was facing downwards. 

 

 

(d) Rotation Relative to the LM 

For the rotation, a static hand gesture using the artist’s hand is configured where 

the hand is slightly altered as shown in Figure 21. All the alterations are made relative to the 

LM. Figure 21 shows rotation of the artist's hand relative to the LM as follows: (a) 

performing a static gesture at vertical position when the thumb is down, (b) at an angle of 

45o when the thumb is up, (c) at an angle of 45o when the thumb is down, (d) at vertical 

position when the thumb is up, (e) when the palm faces upwards, and (f) when the palm 

faces downwards.  

The elevation was maintained at 10 cm from the surface of the LM to the palm  

of the artist’s hand and it was held along the centreline of the LM in all rotations. This meant  

that the artist’s hand was held at 0 cm for both lateral (side-to-side) and forward-backward 

positions. 

4.2.2 Results of Characterising Absolute Errors (AEs) 

We performed 6 times (trials) for every experiment of a given parameter setting 

( the parameters are elevation, lateral (side-to-side), forward-backward, and rotation as 

Figure 20: Forward-backward position relative to the LM: (a) Forward and (b) 
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explained in Section 4.2.1) and obtained the average which was recorded. The recorded 

values in the second, third, fourth, fifth, and sixth columns of Tables 1, 2, 3, and 4 are the 

averages of these 6 trials. Experiments of the elevation parameter are considered for 5, 10, 

20, 30, 40, and 50 cm as illustrated in the first column of Table 1. Experiments for lateral 

(side-to-side), forward-backward, and rotation are the first columns of Tables 2, 3, and 4, 

respectively. These 6 trials were performed on different days and on different times of a 

particular day i.e. day and night. It is important to notice that the results we obtained were 

achieved by carefully following the guidelines associated with the LM SDK. We have 

identified the four parameters of interest, i.e. elevation, lateral (side-to-side), forward-

backward, and rotation, as described in Section 4.2.1. Since absolute errors (AEs) are 

experienced as a hand is moved away from the centreline of the LM and upwards above its 

interaction area, we investigated how absolute errors vary with these four parameters. For 

example for the elevation parameter, the absolute errors were investigated at 5, 10, 20, 30, 

40 and 50 cm. 

 

 

Figure 21: Rotation relative to the LM. 
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(a) Elevation Experimental Results 

In all the elevation experiments, the artist’s hand remained aligned with the 

centre of the LM i.e. at 0 cm for both lateral (side-to-side) and forward-backward positions 

and was not rotated, it remained in the horizontal position with the palm facing downwards. 

Table 1 and Figure 22 show results obtained for the elevation experiment. 

Roughly, finger joint angles obtained at the lower elevations relative to the LM were closer 

to the default angle of 90o. The finger joint angles at elevations of 5 cm, 10 cm, 20 cm and 

30 cm registered absolute error of less than 10o showing little variation. The finger joint 

angles measured at higher elevations experienced greater variation from the default angle 

of 90o. This can be clearly seen from the elevations of 40 cm and 50 cm. 

Generally, absolute errors increases as the elevation relative to the LM 

increases. However, there could be a better range of elevations where measured joint 

angles are obtained with smaller absolute errors. According to this experiment, we observe 

that this range is established when hand exercises are performed at an elevation of less 

than 30 cm relative to the LM.  

The 95% confidence intervals reveal that elevations of 5, 10 and 20 cm illustrate 

an appropriate range which is close to the default angle of 90o. On the other hand, 

elevations of 30, 40 and 50 cm reveal a much bigger range that shows that the lower limits 

of the respective confidence intervals deviate much more from the default angle of 90o.  

Measured joint angles at PIP joint of the middle finger experienced more 

variation from the default angle compared to MCP joint of the ring finger that experienced 

less variation. This could be attributed to occlusion likely to be experienced by a middle 

finger. In Figure 22, PIP(3) is PIP joint at the middle finger, MCP(4) and PIP(4) are MCP and 

PIP joints at the ring finger, and MCP(5) and PIP(5) are MCP and PIP joints at the little finger. 

From Figure 22, we notice that elevations greater than 30 cm produce much 

variation from the default angle. In this experiment, elevations of 40 and 50 cm produced a 

variation of approximately 25.0o in the worst case scenario. Thus for accurate 

measurements, users using LM for hand exercises, should try to avoid elevations that are 
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greater than 30 cm.  

 

Table 1: Results for Varied Elevation. 

Elevation (cm) 
Middle Ring Little 

�̅� (deg) AE (deg) 
 

95% CI (deg) PIP (deg) MCP (deg) PIP (deg) MCP (deg) PIP (deg) 

5 84.73 85.95 81.35 81.06 89.93 84.60 5.40 [80.07, 89.14] 

10 83.46 86.72 85.64 86.02 89.23 86.21 3.79 [83.63, 88.8] 

20 84.36 88.19 83.69 82.81 86.28 85.07 4.94 [82.38, 87.76] 

30 76.83 85.95 78.81 75.98 82.83 80.08 9.92 [74.85, 85.31] 

40 64.57 75.96 83.95 75.34 72.01 74.37 15.63 [65.66, 83.08] 

50 69.53 80.14 76.39 73.42 78.31 75.56 14.44 [70.36, 80.76] 

 

 

 

(b) Lateral (side-to-side) Experimental Results 

The artist’s hand was held at 0, 5, 10, 15 and 20 cm to the right and left of the 

LM centreline. The elevation was maintained at 10 cm from the surface of the LM to the 

palm of the artist’s hand and it was not rotated. It remained in the horizontal position with 

Figure 22: Sensed Joint Angle for Elevation. 
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the palm facing downwards. 

Table 2 and Figure 23 show results obtained for the lateral (side-to-side) 

experiment. Lowest absolute error was obtained when the artist’s hand was at the centre of 

the LM when performing static hand gestures and this was 4.33o. The highest absolute 

errors were obtained at lateral position of 20 cm to the right of the LM and 20 cm to the left 

of the LM which were 16.97o and 16.20o, respectively. Generally, the joint angles obtained 

at the positions further from the LM registered more variation of joint measured angles 

from the default angle than those that were close to the LM. This is evident from the joint 

measured angles obtained at 20 cm to the right and left of the LM. 

Absolute errors roughly increases as the artist’s hand is moved away from the 

centre of the LM. In this experiment, we have established that the best position to place the 

hand to perform hand gesture/exercises when using the LM is along the centreline or 

roughly up to 10 cm on either right or left of the device. This is because all the measured 

angles when it was at the centre of the LM or closer are fairly accurate. Measured joint 

angles at the PIP joint of the little finger experienced more variation from the default angle 

compared to the DIP joint of the same finger that experienced less variation.  

Table 2: Results for Varied Lateral (side-to-side) Position. 

Lateral Position (cm) 
Index Middle Little 

�̅� (deg) AE (deg) 
95% CI 

(deg) DIP (deg) PIP (deg) DIP (deg) PIP (deg) DIP (deg) 

20 to the right of the LM 73.80 77.34 70.90 68.45 74.67 73.03 16.97 [68.76, 77.30] 

15 to the right of the LM 78.67 76.56 83.25 74.46 75.92 77.77 12.23 [73.53, 82.01] 

10 to the right of the LM 80.71 75.46 84.56 76.98 78.54 79.25 10.75 [74.85, 83.65] 

5 to the right of the LM 79.46 79.42 80.68 78.96 82.88 80.28 9.72 [78.31, 82.25] 

Centre of the LM 79.41 86.77 85.78 87.12 89.25 85.67 4.33 [81.05, 90.29] 

5 to the left of the LM 78.77 80.55 81.35 79.61 80.45 80.15 9.85 [78.93, 81.37] 

10 to the left of the LM 77.46 76.76 82.13 79.45 76.86 78.53 11.47 [75.70, 81.37] 

15 to the left of the LM 81.26 74.94 73.50 73.46 75.57 75.75 14.25 [71.76, 79.74] 

20 to the left of the LM 75.06 79.26 72.98 69.79 71.93 73.80 16.20 [69.34, 78.26] 

 

The 95% confidence intervals that correspond to the centre of the LM and that 

correspond to 5 cm to the left of the LM illustrate an appropriate range since the intervals 

are close to the default angle of 90o. The 95% confidence intervals for 5, 10, and 15 cm to 

the right of the LM and that for 10 cm to the left of the LM indicate somewhat good 

intervals though the lower limits for these intervals are not as close to the default angle of 
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90o as the upper limits. In contrast, confidence intervals that correspond to 20 cm to the 

right of the LM, 15, and 20 cm to the left of the LM exhibit an inappropriate range of values 

since both lower and upper limits of these intervals are not close to the default angle of 90o.   

 In Figure 23, 25 and 26, DIP(2) is DIP joint at the index finger, PIP(3) and 

DIP(3) are PIP and DIP joints at the middle finger, and PIP(5) and DIP(5) are PIP and DIP 

joints at the little finger. Negative distances are distances moved to the left of the LM, 0 is 

the position at the centre of the LM, and positive distances are distances moved to the right 

of the LM. 

 From this experiment, we see it is appropriate for users performing hand 

exercise using LM to avoid moving their hands more than 10 cm on either the left or the 

right of the LM. It is preferred for the users to perform hand exercises/gestures at the 

centreline of the LM or near to it. 

 

 

Figure 23: Sensed Joint Angle for Lateral (side-to-side). 
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(c) Forward-Backward Experimental Results 

The artist’s hand was held at 0, 2, 4, 6, 8 and 10 cm to the front and behind the 

LM centreline. The elevation was maintained at 10 cm from the surface of the LM to the 

palm of the artist’s hand and it was not rotated. It remained in the horizontal position with 

the palm facing downwards. Negative distances are distances moved behind of the LM, 0 is 

the position at the centre of the LM, and positive distances are distances moved in front of 

the LM, closer to the user. 

Table 3 and Figure 24 show results obtained for the forward-backward 

experiment. From the results, the lowest absolute error was obtained when the artist’s 

hand was at the centre of the LM field of view when performing static hand gestures and 

this was 6o. Highest absolute errors were obtained at forward-backward positions of 8 cm 

behind of the LM, 10 cm in front, and behind of the LM which were 17.76o, 18.02o and 

19.24o, respectively. Generally, the joint angles obtained for the forward-backward positions 

further from the LM registered more variation from the default angle than those that were 

close to the LM, as expected. This is evident from the measured joint angles obtained at 10 

cm in front, and behind of the LM, 8 cm in front, and behind of the LM, 6 cm in front, and 

behind of the LM. Compared with all the five measured joints, the PIP joint at the middle 

finger registered more variation from the default angle and DIP joint of the little finger 

registered less variation. This could be caused by occlusion of the middle finger by 

neighbouring fingers.  

Generally, absolute errors increase as the artist’s hand is moved away from the 

centre of the LM. In this experiment, we have established that the best position to place the 

hand to perform hand gestures/exercises when using LM is along the centreline of the 

device or up to 4 cm from it. This is because all the measured joint angles when the artist’s 

hand was at the centre of the LM field of view or closer are reasonably accurate.  

The 95% confidence intervals that correspond to the centre of the LM, 2 and 4 

cm in front of the LM, and 2 cm behind of the LM illustrate an appropriate range since the 

intervals are close to the default angle of 90o. The 95% confidence interval that corresponds 

to 4 cm behind the LM indicates a somewhat good interval though the lower limit for this 
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interval is not as close to the default angle of 90o as the upper limit. On the other hand, the 

95% confidence intervals that correspond to 6, 8, and 10 cm in front of the LM and those 

that correspond to 6, 8, 10 cm behind the LM reveal unsuitable ranges since both lower and 

upper limits of these  intervals are not close to the default angle of 90o.  

Table 3: Results for Forward-Backward Position. 

Forward-Backward Position (cm) 
Index Middle Little 

�̅� (deg) AE (deg) 
95% CI (deg) 

DIP (deg) PIP (deg) DIP (deg) PIP (deg) DIP (deg) 

10 in front of the LM 73.46 69.95 75.91 69.51 71.08 71.98 18.02 [68.66, 75.30] 

8 in front of the LM 78.46 70.13 71.26 72.55 77.76 74.03 15.97 [69.28, 78.78] 

6 in front of the LM 74.78 78.46 74.46 74.46 78.23 76.08 13.92 [73.50, 78.66] 

4 in front of the LM 80.45 78.65 79.76 79.25 81.92 80.01 9.99 [78.45, 81.57] 

2 in front of the LM 86.33 78.97 83.43 84.86 80.44 82.81 7.19 [79.02, 86.60] 

Centre of the LM 81.63 85.44 86.25 78.94 87.69 83.99 6.00 [79.52, 88.47] 

2 behind of the LM 78.45 77.78 80.25 81.70 83.56 80.35 9.65 [77.42, 83.29] 

4 behind of the LM 75.57 74.46 75.61 82.35 81.76 77.95 12.05 [73.26, 82.64] 

6 behind of the LM 72.87 75.24 76.87 74.67 77.94 75.52 14.48 [73.08, 77.96] 

8 behind of the LM 71.91 76.05 69.23 74.46 69.56 72.24 17.76 [68.53, 75.95] 

10 behind of the LM 75.49 70.98 68.91 69.53 68.90 70.76 19.24 [67.31, 74.21] 

 

 

Figure 24: Sensed Joint Angle for Forward-Backward. 
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(d) Rotation Experimental Results 

For rotation experiments, the elevation was maintained at 10 cm from the 

surface of the LM to the palm of the artist’s hand and it was held along the centreline of the 

LM in all of the rotations. This meant that the artist’s hand was held at 0 cm for both lateral 

(side-to-side) and forward-backward positions. 

Table 4 and Figure 25 show results obtained for the rotation experiment. The 

lowest absolute error was obtained when the palm of the artist’s hand was facing down 

when performing static hand gestures and this was 5.42o. The highest absolute errors were 

obtained at rotations when the artist’s hand was at 45o with the thumb down, when the 

artist’s hand was at the vertical position with the thumb down, and when the palm of the 

artist’s was facing up and these were 12.83o, 13.08o and 18.36o, respectively. Compared 

with all five measured joints, the PIP joint at the middle finger registered more variation 

from the default angle and DIP joint of the little finger registered less variation. This could 

be attributed to occlusion likely to be experienced by the middle finger caused by 

neighbouring fingers.  

Table 4: Results for Rotation Relative to the LM. 

Rotation of the Hand Relative to the LM 
Index Middle Little �̅� 

(deg) 

AE 

(deg) 

95% CI 

(deg) DIP (deg) PIP (deg) DIP (deg) PIP (deg) DIP (deg) 

Palm faces down 79.56 83.85 84.44 85.78 89.25 84.58 5.42 [80.23, 88.93] 

At 45o and thumb up 84.69 77.57 85.05 83.45 87.70 83.69 6.31 [79.03, 88.35] 

At Vertical position and thumb up 89.95 77.25 79.26 78.16 86.75 82.27 7.73 [75.19, 89.35] 

Palm faces up 70.10 65.44 77.91 64.78 79.97 71.64 18.36 [62.94, 80.34] 

At 45o and thumb down 83.46 70.66 74.26 77.46 80.01 77.17 12.83 [71.01, 83.33] 

At Vertical position and thumb down 69.59 74.44 77.84 80.06 82.68 76.92 13.08 [70.60, 83.24] 

 

The 95% confidence intervals that were obtained when palm faces down and at 

45o when thumb up illustrate an appropriate range since the intervals are close to the 

default angle of 90o. The 95% confidence intervals obtained at the vertical position when 

the thumb is up, when palm faces up, at 45o when thumb is down, and at the vertical 

position when thumb down indicate somewhat good intervals though the lower limits for 

these intervals are not as close to the default angle of 90o as the upper limits. 

 Small alterations such as placing a hand above the LM so that it makes an 

angle of 45o or less do not trigger much variation from the default angle of 90o. However, 
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the same alterations may trigger much variation if the palm of the hand is facing up while 

the thumb pointed down. Therefore, users operating the LM for hand exercise purposes 

should avoid rotations that make their palms face upwards, and rotations that make the 

thumbs face downwards.   

The above results confirm that the magnitude of the absolute errors varies with 

displacement from a “sweet spot”. This implies some form of set-up protocol may be 

needed to ensure exercises only take place when the hand is within a limited range of this 

ideal location. Periodically, the LM should be able to tell if the hand is in this sweet spot or 

has drifted a few centimetres. If this is the case, the user must stop hand exercises and try 

to locate the sweet spot before starting the exercises again. 

 

 

4.2.3 Experimental Set-up to Reduce Absolute Errors (AEs) using PCA 

Absolute Error (AE) between a measured joint angle 𝑥𝑖  by the LM and the 

default joint angle 𝑑 measured by a protractor has been defined in Equation (4-2), Section 

Figure 25: Sensed Joint Angle for Rotation. 
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4.1. It is important to note that PCA is capable of reducing absolute errors that are largely 

due to a hand moving away from the centreline of the LM, moving a hand outside the range 

of the interaction area of the LM (as described in Section 3.1.1), and unreasonable rotations 

of a hand relative to the LM when performing hand gestures/exercises.  

We have applied PCA to the raw data to reduce absolute errors in LM 

measurements. Figure 26 shows the proposed PCA error reduction pipeline. Data is 

transferred to the PCA domain using a PCA transform. We then select PCs and transfer data 

back by projecting onto selected PCs that form a feature vector.  

If no absolute errors (AEs) and noise were experienced, our dataset would have 

0.0o as variance for each of the five variables however this was not the case as each variable 

experienced variance. This motivated us to devise techniques that reduce variance in a 

dataset. In particular, we devised a filtering technique that is able to reduce variance and 

hence AEs in a dataset. Some of the known techniques that can be employed include 

moving average filter, Savitzky-Golay filter, local regression filter [143], PCA [34] etc. 

Compared to other filtering techniques, PCA is more efficient and easier-to-use in relation to 

variance reduction in a dataset. PCA computes a new set of variables, i.e. principal 

components (PCs), that expresses a dataset in order of higher variance attached to the first 

PCs. In order to reduce absolute errors (AEs) and noise, we employ PCA on our dataset. PCA 

reduces variance and hence AEs as illustrated in Equation (4-5). We delete the first PC that 

contains the highest variance and retain the remainder PCs that form the feature vector. 

According to our dataset, deleting the first PC while retaining the remaining PCs in the 

feature vector is the best means of minimising absolute errors. The steps involved in 

absolute error reduction are described below. 

Step 1: We systematically arrange our data in a matrix form 𝑋 e.g. data from one 

of the sets of experiments is arranged in such a way that it has 6 rows and 5 columns (see 

matrix 𝑋 on the next page, derived from Table 1). The 6 rows correspond to elevations of 5, 

10, 20, 30, 40, and 50 cm. The 5 columns correspond to the PIP joint of the middle finger, 

PIP and MCP joints of the ring finger, and the MCP and PIP joints of the little finger. It is 

important to note that the matrix 𝑋 contains only five data variables, all measured in 
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degrees, and therefore there no need to perform normalisation of the data variables.  

 

𝐗 =

[
 
 
 
 
 
84.73 85.95 81.35 81.06 89.93
83.46 86.72 85.64 86.02 89.23
84.36 88.19 83.69 82.81 86.28
76.83 85.95 78.81 75.98 82.83
64.57 76.96 83.95 75.34 72.01
69.53 80.14 76.39 73.42 78.31]

 
 
 
 
 

 

 

Step 2: We input 𝑋 in the R statistical package using ‘prcomp()’ function and 

eigenvectors (PCs) together with their respective standard deviations are obtained as 

output. From the obtained standard deviations, we compute the variance that corresponds 

to each of the PCs. 

Step 3: We select PCs and form the feature vector 𝑣. In our experiments, we 

delete the first PC that contributes much variation and retain the rest to form 𝑉.  

Step 4: We derive the absolute error reduced data matrix 𝑌 as  

𝐘 =  𝐗𝐕𝐕𝑇          (4-5) 

where 𝑉𝑇  is the transpose of 𝑉. 

 

4.2.4 Results of Absolute Error Compensation using PCA 

We present results after applying PCA on all the four parameters. All the results 

show that the measured joint angles are fairly close to the default joint angle after applying 

PCA. 

Figure 26: The proposed PCA error compensation technique pipeline. 
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(a) Elevation Experimental Results 

Figure 27 (b) shows the results after applying PCA on the elevation experimental 

results. There is a considerable improvement after applying PCA, i.e. the highest absolute 

error is reduced by 37.5%. Most of the joint angles are relatively closer to the default angle 

(90o). This shows that PCA is an effective and efficient technique to compensate for the 

absolute errors arising from inadvertent hand misalignment from the central position of the 

LM. 

 

 

(b) Lateral (side-to-side) Experimental Results 

Figure 28 (b) shows the results after applying PCA on lateral (side-to-side) 

experimental results. There is a significant improvement after applying PCA, i.e. the highest 

absolute error is reduced by 28.3%. Almost all the joint angles are closer to the default angle 

(90o) than before applying PCA. 

(c) Forward-Backward Experimental Results 

Figure 29 (b) shows the results after applying PCA on forward-backward 

experimental results. We notice a considerable improvement after applying PCA, i.e. the 

highest absolute error is reduced by 33.0%. More joint angles are closer to the default angle 

(90o) than before applying PCA. 

Figure 27: Varied Elevation. (a) Before Applying PCA. (b) After Applying PCA. 
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Figure 28: Varied Lateral (side-to-side). (a) Before Applying PCA (b) After Applying PCA. 

Figure 29: Varied Forward-Backward. (a) Before Applying PCA. (b) After Applying PCA. 
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(d) Rotation Experimental Results 

Figure 30 (b) shows the results after applying PCA on rotation experimental 

results. There is a noticeable improvement after applying PCA, i.e. the highest absolute error 

is reduced by 22.4%. Most of the joint angles are above 75o which clearly shows a 

reasonable improvement than before applying PCA. 

PCA has been applied to reduce joint angle absolute errors. It can be observed 

that it is not perfect. One would have expected most measured joint angles to have been 

close to 90o. In some experiments like the elevation experiment, PCA performed reasonably 

well. For lateral (side-to-side) and forward-backward, PCA performed fairly, and poorly on 

rotation experimental results. 

 

 

4.3 Variation of Errors with Finger Joint Angles 

We performed a set of experiments to study variation of errors with the size of 

the measured finger joint angles. For these experiments, the elevation was maintained at 10 

cm from the surface of the LM to the palm of the artist’s hand and it was held along the 

Figure 28: Varied Rotation. (a) Before Applying PCA  (b) After Applying PCA. 
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centreline of the LM. This meant that the artist’s hand was held at 0 cm for both lateral 

(side-to-side) and forward-backward positions. The artist’s hand was not rotated. It 

remained in the horizontal position with the palm facing downwards. 

4.3.1 Experimental Set-up to Investigate Variation of Errors with Finger Joint Angles 

In this experimental set-up and the results Section 4.3.2, we define error as 

𝐸𝑟𝑟𝑜𝑟 =  |𝑑 − 𝑥𝑖|         (4-6) 

where 𝑑 is the default joint angle measured by a protractor, 𝑥𝑖  is the measured joint angle 

by the LM. The default varied angles are 0o, 10o, 30o, 50o, 70o, and 90o. 

4.3.2 Results of Variation of Errors with Finger Joint Angles 

We measured the four finger joints i.e. PIP(2), DIP(2), PIP(5), and DIP(5) of each 

default joint angle 6 times using the LM device. The recorded values in Figure 31 are the 

averages for these 6 measurements. The default joint angles are 0o, 10o, 30o, 50o, 70o, and 

90o. PIP(2) and DIP(2) are PIP and DIP joints at the index finger, PIP(5) and DIP(5) are PIP and 

DIP joints at the little finger. These 6 times were performed on different days and on 

different times of a particular day, i.e. day and night. Figure 31 shows the results. The 

elevation was maintained at 10 cm from the surface of the LM to the palm of the artist’s 

hand and it was held along the centreline of the LM. This meant that the artist’s hand was 

held at 0 cm for both lateral (side-to-side) and forward-backward positions. The artist’s 

hand was not rotated. It remained in the horizontal position with the palm facing 

downwards.  

From Figure 31, the lowest error was registered when the default angle was 0o 

and this was 0o. Compared with all the default angles, the highest error was registered when 

the default angle was 50o and this was 4.7o. The errors are much less compared to other 

results, e.g. experimental results in Section 4.2.2 simply because we maintained suitable 

conditions for all the four parameters of elevation, lateral (side-to-side), forward-backward, 

and rotation. Generally, the default angles of 0o, 10o, and 70o registered smaller errors. DIP 

and PIP joints of the index and little fingers registered greater errors compared to PIP and 

DIP joints of the index and little fingers. 
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We can conclude that measured joint angle errors are independent of the size of 

the joint angle though the LM was able to register 0o of error when the angle was set to 0o. 

Regardless of the size of the angle, errors will be encountered in joint angle measurement. 

 

 

4.4 Determining whether Absolute Errors (AEs) are Consistent in Leap Motion Devices 
(LMs) 

We carry out this study to determine whether absolute errors (AEs) are 

consistent where we have used two LMs i.e. first Leap Motion (LM1) and second Leap 

Motion (LM2). In the following Section 4.4.1, we describe the experimental setup and the 

results are discussed in Section 4.4.2.   

4.4.1 Experimental Set-up for Determining whether AEs are Consistent in LMs 

As for the case of characterising AEs in finger joint angle measurements, all 

experimental set-ups are similar and we use four parameters i.e. elevation, lateral (side-to-

Figure 29:  Errors in Measured Joint Angles. 
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side), forward-backward and rotation movements of the hand relative to the LM. We use 

one LM at a time to test errors for the four parameters and then use the second LM and 

repeat the experiments. 

4.4.2 Results for Determining whether Absolute Errors are Consistent in LMs 

We performed each experiment 6 times (trials) for each given parameter ( the 

parameters are elevation, lateral (side-to-side), forward-backward, and rotation as 

explained in Section 4.2.1) for the two LMs and obtained the average which was recorded. 

The recorded values in the second, third, fourth, and fifth columns of Tables 5, 6, 7, and 8 

are the averages of these 6 trials. Experiments for elevations of 5, 10, 20, 30, 40, and 50 cm 

are provided in the first column of Table 5. Experiments for lateral (side-to-side), forward-

backward, and rotation are recorded in the first columns of Tables 6, 7, and 8, respectively. 

These 6 trials were performed on different days and at different times of a particular day, 

i.e. day and night.  

(a) Elevation Experimental Results 

In all the elevation experiments, the artist’s hand remained aligned with the 

centre of the LM i.e. at 0 cm for both lateral (side-to-side) and forward-backward positions 

and was not rotated, it remained in the horizontal position with the palm facing downwards. 

In all the four parameters, we set 90o at the DIP joints of the middle and little 

fingers. We chose 90o for convenience, but this could be any angle between 0o and 90o. 

Table 5 and Figure 32 show the results obtained for LM1 and LM2. �̅�1  and �̅�2 are averages, 

AE1 and AE2 are absolute errors that correspond to LM1 and LM2 respectively. LM1-DIP(3) 

represents the DIP joint measured at middle finger using LM1 and LM2-DIP(5) represents 

the DIP joint measured at little finger using LM2. 

AE1 and AE2 at same elevations generally have little variation, i.e. they are almost 

the same. As in the case of characterising errors in Section 4.2.2, higher absolute errors 

were registered at higher elevations of 30, 40, and 50 cm and lower absolute errors were 

registered at lower elevations of 5, 10, and 20 cm. From Figure 32, measured joint angles at 

the DIP joint of the little finger registered somewhat similar readings for LM1 and LM2. 
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Absolute errors are more when the artist’s hand is moved at higher elevations. 

From Figure 32, the two LMs behave similarly. For both LMs, little variation is 

registered for lower elevation and much variation is registered when static gestures are 

performed at higher elevations, e.g. at 40 and 50 cm. There is no clear distinction between 

the performance of the two LMs in regard to elevation experiments. 

Table 5: Results for Varied Elevation. 

Elevation (cm) 

LM1 LM2 
�̅�𝟏 (deg) �̅�𝟐 (deg) AE1 (deg) AE2 (deg) Middle Little Middle Little 

DIP (deg) DIP (deg) DIP (deg) DIP (deg) 

5 83.43 85.33 80.93 87.34 84.38 84.14 5.62 5.86 

10 84.46 85.94 87.01 89.15 85.20 88.08 4.80 1.92 

20 83.11 89.93 85.55 87.19 86.52 86.37 3.48 3.63 

30 78.15 79.00 81.12 79.20 78.57 80.15 11.43 9.85 

40 74.19 76.14 75.52 77.19 75.17 76.36 14.83 13.64 

50 73.14 75.34 74.00 74.52 74.24 74.26 15.76 15.74 

 

 

 

(b) Lateral (side-to-side) Experimental Results 

The artist’s hand was held at 0, 5, 10, 15 and 20 cm to the right and left of the 

Figure 30: Varied Elevation for 2 LMs. 
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LM centreline. The elevation was maintained at 10 cm from the surface of the LM to the 

palm of the artist’s hand and it was not rotated. It remained in the horizontal position with 

the palm facing downwards. Table 6 and Figure 33 show the results obtained. 

AE1 and AE2 at the same lateral (side-to-side) positions are almost the same. For 

example, at 5 cm to the right of the LM, AE1 is 8.25o and AE2 is 8.43o. This also applies to 

other lateral positions in this experiment. As in the case of characterising absolute errors in 

Section 4.2.2, smaller absolute errors are registered when the artist’s hand performs 

gestures near the centreline of the LM and greater absolute errors are registered when 

static gestures are performed far away from the centreline for example at 20 cm to the right 

and left of the LM. Figure 33 confirms that the performance of LM1 and LM2 are almost 

identical.  

Table 6: Results for Varied Lateral (side-to-side). 

Lateral Position (cm) 

LM1 LM2 
�̅�𝟏 (deg) �̅�𝟐 (deg) AE1 (deg) AE2 (deg) Middle Little Middle Little 

DIP (deg) DIP (deg) DIP (deg) DIP (deg) 

20 to the right of the LM 74.81 77.01 74.68 76.11 75.91 75.40 14.09 14.60 

15 to the right of the LM 77.15 77.90 80.15 79.66 77.53 79.90 12.47 10.10 

10 to the right of the LM 80.34 79.45 79.00 80.45 79.89 79.73 10.11 10.27 

5 to the right of the LM 81.45 82.04 83.05 80.09 81.75 81.57 8.25 8.43 

Centre of the LM 85.04 84.24 86.41 84.01 84.64 85.21 5.36 4.79 

5 to the left of the LM 83.00 84.01 84.99 82.45 83.51 83.72 6.50 6.28 

10 to the left of the LM 79.41 81.41 80.45 83.41 80.41 81.93 9.59 8.07 

15 to the left of the LM 81.41 79.00 78.41 79.44 80.21 78.93 9.79 11.07 

20 to the left of the LM 75.11 76.42 77.02 76.82 75.77 76.92 14.23 13.08 

 

(c) Forward-Backward Experimental Results 

The artist’s hand was held at 0, 2, 4, 6, 8 and 10 cm to the front and behind the 

LM centreline. The elevation was maintained at 10 cm from the surface of the LM to the 

palm of the artist’s hand and it was not rotated. It remained in the horizontal position with 

the palm facing downwards. Table 7 and Figure 34 show the results obtained. 

AE1 and AE2 are almost identical for the same forward-backward position. For 

example, at 2 cm in front of the LM, AE1 is 3.74o and AE2 is 3.44o. Much variation from the 

default angle (90o) is experienced when static hand gestures are performed relatively far 

away from the centreline of the LMs. Less variation is registered when static hand gestures 

are performed at the centre or near the centreline of the LMs. From Figure 30, LM1 and 
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LM2 perform relatively the same, i.e. the difference in performance is negligible. 

 

 

Table 7: Results for Forward-Backward. 

Forward-Backward Position 

(cm) 

LM1 LM2 
�̅�𝟏 

(deg) 
�̅�𝟐 

(deg) 
AE1 (deg) AE2 (deg) 

Middle Little Middle Little 
DIP 

(deg) 

DIP 

(deg) 

DIP 

(deg) 

DIP 

(deg) 

10 in front of the LM 74.11 69.19 75.24 71.24 71.65 73.24 18.35 16.76 

8 in front of the LM 77.41 72.41 75.01 71.08 74.91 73.04 15.09 16.96 

6 in front of the LM 77.50 75.04 74.35 78.42 76.27 76.39 13.73 13.61 

4 in front of the LM 81.44 79.61 80.41 80.00 80.53 80.21 9.47 9.79 

2 in front of the LM 87.41 85.11 83.12 90.00 86.26 86.56 3.74 3.44 

Centre of the LM 86.44 85.40 86.00 84.09 85.92 85.05 4.08 4.95 

2 behind of the LM 79.44 82.09 83.11 80.09 80.77 81.60 9.23 8.40 

4 behind of the LM 78.00 84.11 82.00 82.95 81.06 82.48 8.94 7.52 

6 behind of the LM 79.44 81.01 78.46 83.00 80.22 80.73 9.78 9.27 

8 behind of the LM 77.00 76.45 79.11 75.10 76.72 77.11 13.28 12.89 

10 behind of the LM 75.41 74.15 73.49 74.13 74.78 74.46 15.22 15.54 

 

(d) Rotation Experimental Results 

For rotational experiments, the elevation was maintained at 10 cm from the 

surface of the LM to the palm of the artist’s hand and it was held along the centreline of the 

LM in all the rotations. This meant that the artist’s hand was held at 0 cm for both lateral 

(side-to-side) and forward-backward positions. Table 8 and Figure 35 show the results 

obtained. 

Figure 31: Varied Lateral (side-to-side) for 2 LMs. 
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Generally, AE1 and AE2 are almost identical for the same rotation, e.g. when 

static gestures are performed with the palm of the artist’s hand facing down, the AE1 is 

6.87o and AE2 is 5.60o. As in the case of characterising errors in Section 4.2.2, larger errors 

are registered when the palm faces up. This can be attributed to the LM being unable to 

detect the direction vectors of the finger bones as well. From Figure 35, there is no clear 

distinction in the performance of LM1 and LM2.  

 

 

Table 8: Results for Varied Rotation. 

Rotation of the Hand Relative to 

the LM 

LM1 LM2 
�̅�𝟏 

(deg) 
�̅�𝟐 

(deg) 

AE1 

(deg) 

AE2 

(deg) 

Middle Little Middle Little 
DIP 

(deg) 

DIP 

(deg) 

DIP 

(deg) 

DIP 

(deg) 

Palm faces down 81.41 84.85 85.14 83.65 83.13 84.40 6.87 5.60 

At 45o and thumb up 83.05 80.15 83.45 82.68 81.60 83.06 8.40 6.94 

At Vertical position and thumb up 79.45 81.09 80.15 80.61 80.27 80.38 9.73 9.62 

Palm faces up 74.09 75.18 76.64 75.74 74.64 76.19 15.36 13.81 

At 45o and thumb down 83.77 80.80 82.14 81.98 82.28 82.06 7.72 7.94 

At Vertical position and thumb 

down 
78.45 79.68 80.66 79.86 79.06 80.26 10.94 9.74 

 

Figure 32: Varied Forward-Backward for 2 LMs. 
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In this experiment, our aim was to determine whether absolute errors are 

consistent across LMs. We have used two LMs to ascertain that worse absolute errors are 

experienced by movements away from the centreline of the LM. This was actually the case 

for characterising absolute errors in Section 4.2.2 but we wanted to confirm this by using a 

second LM. We can therefore conclude that whichever LM you use, substantial absolute 

errors are likely to be encountered when hand gestures are performed away from the 

centreline of the LM. 

 

 

4.5 Summary 

We have described the motion data collection procedure where we illustrated 

how a joint angle is calculated from the frames of the data that are in form of direction 

vectors of the finger bones. We have also defined joint angle 𝜃, absolute error  and 95% CI. 

We have illustrated our designed experiments to characterise finger joint angle absolute 

errors based on four parameters i.e. elevation, lateral (side-to-side), forward-backward, and 

Figure 33: Varied Rotation for 2 LMs. 
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rotation movements of the hand relative to the LM. We have also described the 

experimental set-up to study variation of joint angles with absolute errors, to determine 

whether absolute errors are consistent with LMs, and to reduce absolute errors using PCA.  

We have presented our results and discussion of characterising finger joint angle 

absolute errors. Absolute errors were characterised based on four parameters i.e. elevation 

movements, lateral (side-to-side) movements, forward-backward movements and rotation. 

We have discussed that absolute errors are mainly experienced when these movements are 

away from the centreline of the LM.  

We also applied PCA on the raw data in order to reduce absolute errors. 

Absolute errors were reduced by 37.5%, 28.3%, 33.0%, and 22.4% for the experimental 

results of elevation, lateral (side-to-side), forward-backward, and rotation, respectively. In 

addition to restraining users from movements away and far above the centreline of the LM, 

PCA can be applied to improve the accuracy of measured joint angles. 

We have also presented results on the variation of errors with joint angles 

where we observed that lowest errors were registered when the default angle was 0o and 

highest errors were registered when default angle was 50o. Furthermore, we discovered 

that whichever size of joint angle you measure, errors will be experienced. We also 

presented results to determine whether absolute errors are consistent using two LMs.  

During experimentation, systematic errors that are mainly associated with a 

fault in a measuring device were minimised by performing an initial simple calibration 

procedure when the LM was being used for the first time. If the simple calibration 

procedure is not performed, it may affect LM measurements since the sensors in the LM 

may have been knocked out of their initial alignment. Absolute errors are largely due to 

moving a hand away from the centreline and outside the range of the interaction area of the 

LM. Unreasonable rotations of a hand relative to the LM when performing hand 

gestures/exercises also exacerbate absolute errors. 
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5 Hand Gesture Recognition in LM Using LDA and SVM 

In Chapter 4 we implemented PCA to reduce absolute errors in LM 

measurements, however these kinds of errors can also be reduced by implementing 

machine learning techniques such as LDA and SVM. In this chapter, we implement LDA and 

SVM in order to recognise and classify hand gestures. In addition, LDA and SVM can learn 

about measurement errors in the LM and hence compensate for them. LDA performs 

relatively well compared to other models such as a logistic regression model when the 

classes are separated relatively well [35]. SVM has been shown to perform well in various 

settings and is normally known to be a superior classifier [35]. Machine learning techniques 

are able to learn parameters that describe the hand gestures [4]. After training the LDA and 

SVM models, the models can accurately recognise and classify the hand gestures in given 

test samples and therefore measurement errors experienced during dataset creation are 

reduced. 

5.1 Methodology 

We use a markerless LM sensor that can be easily acquired by a user at low cost. 

The LM can detect palm and finger movements. The tracking data, in the form of frames, 

can be accessed using its Software Development Kit (SDK). 

5.1.1 Architecture of the Proposed System 

In our proposed framework, an input signal is acquired by use of the LM. The 

customised application that operates in conjunction with LM software on a computing 

device produces frames of data when it is run. After obtaining these frames of data, 

extraction of direction vectors of all the finger bones is performed. We then obtain joint 

angles for all the finger joints, and this forms the feature vector. 

Once we obtain feature vectors for our dataset, we partition the dataset into 

training and test samples. We then apply LDA and SVM on the training samples using 

RStudio. After training, we then apply our trained model on test samples to observe to what 

extent the model accurately classifies the gestures. Figure 36 illustrates the architecture of 

our proposed framework.  
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5.1.2 Signal Acquisition 

To obtain meaningful recognition and classification of the performed hand 

gestures, accurate knowledge concerning hand location and orientation is a prerequisite 

[144-148]. LM is used to record finger joint angles for each of the performed gestures. In 

order to obtain frames of data in form of direction vectors of the bones of the fingers, we 

run the Java customised application with the LM SDK application simultaneously. We then 

compute joint angles using direction vectors of the bones of the specified fingers. Details are 

explained in Section 4.1, Chapter 4. 

 

 

5.1.3 Description of the Feature Vector 

The feature vector consists of all fourteen finger joint angles i.e. 𝑃 = 14 as 

described in Table 9. Other parameters such as the angles between the fingers and palm 

position can be considered as features. However, our experimental trials suggest that 

including such features does not have a significant impact on classification accuracy. 

Because of this, we limit the feature vector to a collection of 14 measured features, all joint 

angles. 

Figure 34: Architecture of the proposed system [53]. 
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5.1.4 Gestures Under Consideration 

We have provisionally limited the number of gestures to 4 as depicted in Figure 

37. In this figure, (a) is 𝑔1 when the hand is open and the palm facing down, (b) is 𝑔2 when 

the fist is closed, (c) is 𝑔3 when the middle, ring, and little finger are closed, and (d) is 𝑔4 

when the thumb and index finger are closed. This set of gestures can be updated as 

necessary.  

Table 9: Feature Vector. 

Finger MCP Joint PIP Joint DIP/IP Joint 

Thumb y1  y2  

Index y3 y4 y5 

Middle y6 y7 y8 

Ring y9 y10 y11 

Little y12 y13 y14 

 

 

 

5.2 Results and Discussion 

The machine learning techniques described in Sections 3.3.1 and 3.4.1 have 

been tested with a dataset of 600 samples. We begin this section with a description of how 

we collected our dataset. Later, results of experiments are presented and analysed. 

Figure 35: A set of gestures to facilitate gesture recognition using LDA and SVM. 
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5.2.1 Dataset for Experiments 

We created a dataset using an artist’s hand fixed above the LM. This is because 

artist’s hand gives more accurate measurements than a human hand since it is good at 

maintaining a required posture for as long as necessary. 

 We collected our dataset taking into consideration all four parameters as 

described in Section 4.2.1. These parameters were elevation, lateral (side-ways) 

movements, forward-backward positioning, and rotation; all relative to the LM. For 

elevation, the artist’s hand was moved roughly between 5 to 30 cm. For lateral positioning, 

it was moved approximately between 0 to 15 cm to the right and left of the LM middle 

position. For forward-backward positioning, it was moved roughly between 0 to 10 cm to 

the front and behind of the LM middle position. For rotation, the hand was in some cases 

not rotated, ensuring that the palm was facing down while performing various gestures. In 

other cases, it was rotated at slightly less or equal to 45o. The specified movements relative 

to the LM are in the field of view (interaction area) of the LM and this reduces absolute 

errors (AEs) as described Section 4.2.2. In addition, sensible rotations of a hand relative to 

the LM reduce absolute errors also as discussed in Section in 4.2.2. 

We collected 150 samples from each gesture, g1, g2, g3, and g4. Therefore, a total 

of 600 samples were collected. We used 62.5% of 600 samples in training and the remaining 

37.5% in testing. Usually when implementing machine learning techniques, data scientists 

divide any dataset into a bigger proportion as a training dataset and a smaller one as a test 

dataset in order to avoid overfitting and to ensure the trained models generalise well on 

new observations (data patterns) that are not seen in a training dataset [34]. 

We employed two popular machine learning techniques, i.e. LDA and SVM, so 

that our framework can learn about the errors in order to compensate for them. In our 

previous work [34], we discovered that hand displacements away from the middle position 

and significantly above the screen surface of the LM give rise to serious errors hence 

resulting in inaccurate measures of finger joint angles. We therefore maintain the hand 

close to the centreline of the LM. 
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5.2.2 Results of Application of LDA to Recognise Hand Gestures 

We present and analyse results obtained after applying LDA on our dataset. 

Table 10 depicts the confusion matrix obtained for the LDA model on a test data samples. 

The confusion matrix is a table layout that illustrates the performance of the two applied 

machine learning techniques i.e. LDA and SVM on a test dataset. Our confusion matrices are 

demonstrated in Tables 10, 11, 12 and 13. For example in Table 10, the total number of 

gestures in category g1 is 58 (53+0+2+3) obtained after adding the four elements in the first 

row of the table. The same addition operations are applied to obtain the total number of 

gestures in category g2, g3 and g4 in the second, third and fourth rows, respectively. Out of 

58 gestures in category g1 in a test dataset, 53 were classified correctly and assigned g1 by 

the LDA model. It misclassified 2 gestures and assigned them to gesture g3 and misclassified 

3 gestures and assigned them to category g4. Out of 59 gestures that are in category g2, 55 

are classified correctly and assigned g2 by the LDA model. One gesture is misclassified and 

assigned to category g1, and 3 gestures are further misclassified and assigned to category g3. 

Out of 51 gestures that belong to category g3, 45 are classified correctly and assigned to g3 

by the model. Six gestures are misclassified and assigned to category g2. Out of 57 gestures 

that belong to category g4, 46 gestures are classified correctly, and 11 gestures are 

misclassified and assigned to category g1. The model recognised 11 gestures of class g4 as 

those that belonged to class of g1. This could be attributed to noise related issues during 

data collection. 

To compute the accuracy of each category of the four gestures, the number of 

gestures classified correctly in a category is divided by the total number of gestures in the 

same category. From Table 10, accuracy of g1 is computed as 53/58=91.4%, the accuracy of 

g2 is 55/59=93.2%, the accuracy of g3 is 45/51=88.2%, and the accuracy of g4=46/57=80.7%. 

The overall accuracy of the LDA model is computed as a percentage of gestures classified 

correctly in a test sample divided by the total number of gestures in the test sample. From 

Table 10, the total number of gestures in the test sample is 58+59+51+57=225. Gestures 

that are classified correctly are 53+55+45+46=199. Therefore, the overall accuracy of the 

LDA model is 199/225=88.4%. A similar computational procedure is applied in Tables 11, 12 
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and 13 to obtain accuracy of SVM models. 

Figure 38 shows how the LDA model performed on each of the 4 gestures. The 

model performed better on classifying g2 with an accuracy of 93.2% while it performed 

poorly on g4 with an accuracy of 80.7%. This can be attributed to noise and measurement 

errors in the LM.  

Table 10: Confusion Matrix for LDA Model. 

Predicted 

  g1 g2 g3 g4 

 g1 53 0 2 3 

Actual g2 1 55 3 0 

 g3 0 6 45 0 

 g4 11 0 0 46 

 

5.2.3 Results of Application of SVM to Recognise Hand Gestures 

We present and analyse results obtained after applying SVM models on our 

dataset. We varied the SVM models using kernels. In Section 3.4.1, we described that SVM 

enlarges the feature space efficiently using kernels. These kernels are linear, polynomial, 

radial, and sigmoid. We shall use K when referring to kernel in our experimental results. We 

first present confusion matrices for all our SVM models varied with four kernels in Tables 

11-13. We note that the confusion matrix tables for SVM radial and sigmoid are exactly the 

same; hence we present one table for both. All the four gestures are predicted in the same 

way by the SVM radial and the SVM sigmoid model. 

For all the confusion matrix Tables 11-13, the four SVM models almost agree on 

the prediction of g2 and g3. Only 6 gestures that were labelled as g3 were classified as g2 and 

only 3 gestures that belonged to g2 were recognised as g3. Furthermore, for the SVM linear 

and SVM polynomial models, 9 gestures belonging to g4 were recognised as g1 and for SVM 

radial and SVM sigmoid models, 11 gestures that belong to g4 were classified as g1. This 

could be attributed to the fact that g1 and g4 have nine identical variables out of fourteen in 
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their respective feature vectors and this applies to g2 and g3 as well. 

 

 

Table 11: Confusion Matrix for SVM, K = Linear. 

Predicted 

  g1 g2 g3 g4 

 g1 54 1 0 3 

Actual g2 1 55 3 0 

 g3 0 6 45 0 

 g4 9 0 0 48 

 

From Figure 39, linear and polynomial kernels perform relatively better 

especially in recognising gesture g4 than the radial and sigmoid kernels on our dataset. All 4 

kernels recognise and classify gestures 1 and 2 more accurately than gestures 3 and 4. This 

could be because, when performing gesture 3 and 4, finger occlusion is likely to be 

experienced. This further contributes to measurement errors in the LM. 

Figure 36: Accuracy of each gesture by LDA model. 
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We finally compare the accuracy of the two machine learning algorithms with a 

baseline. The baseline is the accuracy obtained when we directly observe the test samples 

and assign all the samples to the gestures they supposedly represent. We use a threshold of 

joint angles for straightening and bending fingers. For example, for all straightened fingers, 

all joint angles were less or equal to 30o and for all bent fingers, the joint angles were 

greater or equal 60o. For example, a test sample with all the fourteen joint angles that are 

equal or less than 30o is identified as g1 by the baseline. A test sample with the joint angles 

for the middle, ring, and little fingers that are equal to or greater than 60o and the joint 

angles for the thumb and index that are equal to or less than 30o is identified as g3 by the 

baseline. This is because all the fingers are straightened for g1. For g3, the thumb and index 

are straightened whereas the middle, ring, and little fingers are bent (see Section 5.1.4). This 

similarly applies to g2 and g4.  Out of 225 test samples, 151 satisfied the above baseline 

criteria and this resulted in a baseline performance of 67.1%. It is challenging for the human 

eye to obtain a greater accuracy since the four different gestures possess some similar 

finger joint angles in their respective feature vectors. For example, g1 and g4 have nine 

similar joint angles for little, ring and middle finger that stay straight when both gestures are 

performed. The same applies for g2 and g3 where the two gestures have nine similar joint 

angles for the little, ring and middle finger that are bent when both gestures are performed. 

Table 12: Confusion Matrix for SVM, K = Polynomial. 

Predicted 

  g1 g2 g3 g4 

 g1 53 2 0 3 

Actual g2 1 55 3 0 

 g3 0 6 45 0 

 g4 9 0 0 48 
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Table 13: Confusion Matrix for SVM, K = Radial/Sigmoid. 

Predicted 

  g1 g2 g3 g4 

 g1 53 0 2 3 

Actual g2 1 55 3 0 

 g3 0 6 45 0 

 g4 11 0 0 46 

 

 

 

Figure 40 shows a comparison between the performances of all machine 

learning models used on our dataset. We notice that all the models perform better than the 

baseline approach, showing the benefit of applying these techniques on our dataset. LDA 

and SVM radial and sigmoid models perform similarly. However, the linear and polynomial 

Figure 37: Accuracy of SVM for 4 Kernels on 4 gestures. 
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SVM models perform somewhat better than the others. 

 

 

5.3 Summary 

In this chapter, we illustrate our methodology for hand gesture recognition using 

LDA and SVM. In the chapter, we describe architecture of the system, signal acquisition, and 

the feature vector. In addition, we introduce the four different static hand gestures that we 

consider during data collection. We implement LDA and SVM techniques so that our 

framework can learn more about measurement errors in order to achieve better 

compensation for these errors. All these techniques achieve an accuracy above 88.0% 

compared to the baseline performance of 67.1%. This demonstrates the significant benefit 

of employing machine learning techniques in this context. 

 

Figure 38: Accuracy of applied techniques compared to a baseline. 
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6 Comparing Dynamic Hand Gestures in LM Using MDTW 

We explore the efficacy of performing a comparison between a dynamic hand 

gesture that would be performed by a patient with a reference dynamic hand gesture that is 

recommended by a physiotherapist using Multi-dimensional Dynamic Time Warping 

(MDTW). MDTW quantifies how similar or different two dynamic hand gestures are from 

each other [20]. In our approach, factors such as difference in duration of hand gestures, 

rotation of hand, reasonable distance from LM sensor etc. do not have significant impact on 

the performance of hand gestures (See Sections 6.2.2, 6.2.3, 6.2.4, 6.2.5, and 6.2.6 for 

further information).  

DTW can be applied to establish to what extent any two time-series are similar 

or different. Both DTW and MDTW techniques utilise a distance metric between a query 

time-series and a reference one and create a discriminating value: a low distance value 

when the two time-series are similar and a high distance value when the two time-series are 

different [22]. DTW is employed to measure the similarity between hand gesture orientation 

trajectories [149], increase recognition accuracy by categorising hand movements [150], 

compare the hand movement direction and estimate the difference, and hence reflects the 

characteristics of the hand gesture direction [151], etc. 

In this chapter we implement both DTW and MDTW, however there exist other 

possible dissimilarity measures such as the Longest Common SubSequence (LCSS) [20, 37], 

Edit distance with Real Penalty (ERP) [20], Edit Distance on Real sequences (EDR) [20, 38], 

and Time Warp Edit Distance (TWED) [20, 39]. However DTW and MDTW have an advantage 

since their implementation is simple and efficient. In addition, DTW and MDTW are superior 

because it is not essential that both time-series being compared are of equal length as 

required by typical distances and this behaviour is termed elasticity [20]. 

During MDTW implementation, we selected four dynamic gestures (See Section 

6.1.4) that are similar to the hand gestures/exercises recommended by NHS (National 

Health Service) physiotherapists [152-154] for patients recovering from rheumatology 

related complications and those performing hand therapy related exercises. It is important 
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to note that in [152-154], MDTW or any signal processing technique was not implemented 

as done in this thesis. We have referenced these hand gestures to illustrate that this study 

could be extended to a hand rehabilitation setting. 

6.1 Methodology 

6.1.1 Architecture of the Proposed System 

We obtain an input signal when a hand is placed above the LM that is connected 

to a computing device using a USB cable. On a computing device, the LM application and a 

Java customised application are started simultaneously and frames of data that represent 

palm and finger movements are displayed. We then calculate joint angles of the fingers 

from the frames of data and, consequently, obtain feature vectors that represent various 

dynamic hand gestures. 

After obtaining feature vectors that represent both the dynamic query hand 

gesture and the dynamic reference hand gesture, we apply MDTW on both feature vectors 

and the minimum-distance value of a warp path is obtained. The minimum-distance value 

signifies how similar or different the two hand gestures are. A low minimum-distance value 

implies the two hand gestures that are compared are similar. On the other hand, a high 

minimum-distance value implies the two hand gestures vary to a certain extent. Figure 41 

illustrates the architecture of the MDTW comparison process.  

6.1.2 Description of the Feature Vector 

A dynamic hand gesture is represented using a set of fourteen measured finger 

joint angles that evolve over time. The fourteen finger joint angles that constitute the 

feature vector are illustrated in Table 14. Other features, e.g. the angles between the finger 

and palm position, are sufficient to be included in the feature vector. However, we choose 

to limit the feature vector to only finger joint angles since including other features does not 

contribute a considerable change to the experimental results regarding our application of 

MDTW. 
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6.1.3 Robotic Hand 

In order to simulate the repetitive nature of dynamic hand gestures and to 

provide carefully controlled experimental conditions, we used a robotic hand during data 

collection. In addition, compared to a human hand, a robotic hand permits gestures to be 

performed frequently in a short time provided the movements of all the necessary servo 

controllers are suitably programmed for a specific hand gesture. Furthermore, the dynamic 

hand gestures are performed with minimum positional or temporal errors and this provides 

a suitable working environment to reduce errors during experimentation. The robotic hand 

was fitted with a glove so that it can be easily recognised by the LM. Figure 42 illustrates the 

robotic hand performing a dynamic hand gesture. 

6.1.4 Gestures Under Consideration 

We have considered 4 different dynamic hand gestures. Dynamic hand gesture 1 

is when a hand is performing a full fist gesture where all the five fingers move close to the 

palm. Dynamic hand gesture 2 is where only the thumb and index move close to the palm 

whereas the rest of the 3 fingers remain stationary. Dynamic hand gesture 3 is performed 

when the middle, ring and little fingers move close to the palm whereas the thumb and 

Figure 39: Architecture of the proposed MDTW implementation set-up. 
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index do not move. Lastly, dynamic hand gesture 4 involves motion of the index, middle, 

ring and little fingers moving close to the palm whereas the thumb remains stationary. 

Figure 43 illustrates two of these dynamic hand gestures. 

Table 14: Feature Vector in the Experimental Set-up. 

Finger MCP Joint PIP Joint DIP/IP Joint 

Thumb 𝜃1  𝜃2   

Index 𝜃3 𝜃4 𝜃5 

Middle 𝜃6 𝜃7 𝜃8 

Ring 𝜃9 𝜃10 𝜃11 

Little 𝜃12 𝜃13 𝜃14 

 

 

 

These selected hand gestures or exercises are similar to those recommended by 

Salford Royal NHS hospital [152] and Milton Keynes University NHS hospital [153] for 

patients performing rheumatology related hand exercises. In addition, Derbyshire 

Figure 40: An illustration on how the robotic hand performs a dynamic 

gesture. 
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Community NHS Health Services [154] recommends similar exercises for hand therapy. 

 

 

6.2 Results and Discussion 

6.2.1 Evaluation of MDTW  

Here, we compare a particular hand gesture with itself, meaning the same 

vector describing how the fourteen finger joints evolve over successive time frames is 

compared to itself. When the comparison is completed, the minimum-distance value of a 

warping path obtained is 0.0o. This is a perfect result since the similarity is 100.0%. 

6.2.2 Comparing Different Gestures to a Reference Gesture 

Here we designed 4 different hand gesture comparisons where in comparison 1 

i.e. cf. #1, hand gestures 2, 3 and 4 are compared to hand gesture 1. In cf. #2, hand gestures 

1, 3 and 4 are compared to hand gesture 2. In cf. #3, hand gestures 1, 2 and 4 are compared 

to hand gesture 3 and finally in cf. #4, hand gestures 1, 2 and 3 are compared to hand 

gesture 4. 

From Figure 44, hand gesture 1 and hand gesture 4 are similar since a minimum-

distance value of 35.9o is obtained. Further, hand gesture 2 and hand gesture 3 experience 

Figure 41: All the four hand gestures to facilitate implementation of MDTW. 
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the largest variation since a high value of minimum-distance of 248.5o is obtained. From our 

experimental design, this makes sense since hand gesture 1 is nearly identical to hand 

gesture 4 whereas hand gesture 2 can be regarded as the direct opposite to hand gesture 3. 

6.2.3 Comparing Gestures at Varied Distances from the LM 

In this experiment we considered four different configurations i.e. D1 is 5 cm to 

the right of the centreline of the LM from the middle of the palm of the robotic hand 

whereas D2 is 5 cm to the left. D3 is 5 cm in front of the centreline of the LM from the 

middle of the palm of the robotic hand whereas D4 is 5 cm behind. During the execution of 

a dynamic hand gesture, we maintained a moderate speed, a vertical distance of 15 cm from 

the surface of the LM to the palm of the robotic hand, and the robotic hand was fixed in a 

horizontal position with its palm facing downwards. 

For comparison purposes, D1D2 implies the dynamic hand gesture performance 

at D1 is compared with the dynamic hand gesture performance at D2. This notation is 

applied to the remaining cases as well, for example D3D4 implies dynamic hand gesture 

performance at D3 is compared with dynamic hand gesture performance at D4. 

We choose a distance parameter as one of the parameters where a hand 

performing gestures relative to the LM can experience measurement errors as recorded by 

the LM. However, when the distances are relatively close to the LM, these measurement 

errors are inconsequential. This has been discussed in Section 4.2.2 (b), Chapter 4. This 

section considers experimental results where measurement errors in the LM are 

investigated and characterised with respect to lateral distances from the LM. 

From Figure 45, the minimum-distances range is from around 5.0 to 12.5o. These 

are quite low values compared to minimum-distance values obtained in Figure 44 where we 

compared dynamic hand gestures to a specific gesture. Hence positioning a reasonable 

distance from the centreline of the LM to the middle of the palm of a hand does not affect 

gesture performance significantly. 
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Figure 42: Minimum-distance against gesture comparison. 

Figure 43: Varied distances for hand gesture comparisons. 
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6.2.4 Comparing Gestures at Varied Speeds 

In this experiment we arranged four different configurations, i.e. S1 is when a 

dynamic hand gesture is performed at a moderate speed, S2 is when a dynamic hand 

gesture is performed at a speed twice as fast as a moderate one, S3 is when a dynamic hand 

gesture is performed at a speed three times faster than the moderate case and S4 is when a 

dynamic hand gesture is performed at a speed four times faster than the moderate one. 

For comparison purposes, S1S2 implies the dynamic hand gesture performance 

at S1 is compared with the dynamic hand gesture performance at S2. This notation applies 

to the remainder of the results as well, for example S3S4 implies dynamic hand gesture 

performance at S3 is compared with dynamic hand gesture performance at S4. During a 

dynamic hand gesture evaluation we placed the robotic hand at its centreline, maintaining a 

vertical distance of 15 cm from the surface of the LM to the palm of the robotic hand, and 

the robotic hand was fixed in a horizontal position with its palm facing downwards. 

As illustrated in Figure 46, the minimum-distances range from approximately 3.0 

to 11.0o. It is important to note that these values are in the same range as those obtained 

when comparisons are made based on distances from the LM to the robotic hand (Figure 

45). This implies variable speed of hand gestures does not significantly affect gesture 

comparison performance. 

6.2.5 Comparing Gestures when the Robotic Hand is Rotated 

In this experiment we rotate the robotic hand while performing dynamic hand 

gestures for four different scenarios, i.e. R1, R2, R3, and R4. R1 is when the palm of the 

robotic hand is in horizontal position and facing downwards. R2 is when the robotic hand is 

roughly rotated at 30o and its thumb facing upwards. R3 is when the robotic hand is roughly 

rotated at 60o and its thumb facing upwards. R4 is when the robotic hand is in a vertical 

position and its thumb facing upwards. During this dynamic hand gesture evaluation we 

placed the robotic hand at its centreline, maintained a vertical distance of 15 cm from the 

surface of the LM to the palm of the robotic hand, and maintained a moderate speed. 
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For comparison purposes, R1R2 implies the dynamic hand gesture performance 

at R1 is compared with the dynamic hand gesture performance at R2. This notation applies 

to the remaining results as well, for example R3R4 implies dynamic hand gesture 

performance at R3 is compared with dynamic hand gesture performance at R4. 

We choose rotation of a robotic hand as one of the parameters when 

performing hand gestures relative to the LM to explore measurement errors as recorded by 

the LM. However sensible rotations of hand gestures relative to the LM lead to insignificant 

measurement errors. This has been discussed in Section 4.2.2 (d), Chapter 4 where 

experimental results provide the measurement errors as the hand is rotated. 

As shown in Figure 47, the minimum-distances range from approximately 4 to 

14o. These minimum-distance values are in the same range as those in Figures 45 and 46. 

However, it is important to note that the RIR2 comparison registers the lowest minimum-

distance values. On the other hand, RIR4 registers the highest minimum-distance values. 

This may suggest that a physiotherapist should encourage patients to always avoid 

unnecessary rotations of their hands. 

Figure 44: Varied speeds for hand gesture comparisons. 
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From the preceding analysis of the results, in regard to hand gesture 

comparisons with the reference gestures, there is no significant concern about operating 

with a reasonable horizontal distance from the LM to the hand of a user, sensible rotations 

of the hand, and varying speed of gestures performed by different users as these factors do 

not significantly affect the comparison performance. However, it is important to note that 

we maintained a vertical distance of roughly 15 cm from the screen of the LM to the palm of 

the robotic hand in all our experiments simply because, in our previous work [34], we 

established that accurate LM readings are obtained around this height. 

6.2.6 Detailed Comparison for Hand Gestures 

Here we undertake a comprehensive comparison of dynamic hand gestures 

performed in all the scenarios we have explained in Sections 6.3.3 through to 6.3.5 i.e. at 

various distances (D1, D2, D3 and D4), at various speeds (S1, S2, S3 and S4), and at various 

rotations (R1, R2, R3, and R4). Tables 15 to 18 record these comparisons for all of the four 

dynamic hand gestures. All the minimum-distance values in these tables are measured in 

degrees. 

As illustrated in Table 15, the lowest minimum-distance value is 0.0o and the 

highest value is 12.8o. From Table 16, it can be observed that minimum-distance values 

range from 0.0o to 18.2o. In Table 17, the minimum-distance values range from 0.0o to 17.4o 

and in Table 18, the minimum-distance values range from 0.0o to 18.8o. Zero degrees was 

obtained when a dynamic hand gesture was compared to itself, and this is expected since 

the similarity is 100.0%. On the other hand, other minimum-distance values are lower 

compared to those obtained when comparison is made with different hand gestures. This 

signifies the acceptable distance from the LM to the hand and indifference to speed of hand 

gestures during performance of hand exercises. Sensible rotations of the hand also have 

little impact on hand gesture comparison performance. 
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6.3 Summary 

In this chapter, we proposed, implemented and evaluated Multi-Dimensional 

Dynamic Time Warping (MDTW) to establish how similar or different a query dynamic hand 

gesture is in relation to a reference dynamic hand gesture. We described our methodology 

where we presented the architecture of the proposed system, described the feature vector, 

showing the robotic hand we used during experimentation, and described the gestures we 

considered during experimentation. 

Experimental results show that MDTW is robust in the way that it can distinguish 

quite different hand dynamic gestures by yielding a high value of a minimum-distance 

metric. Furthermore, the method is capable of producing a low value of a minimum-

distance if the dynamic hand gestures under comparison are similar. In addition, the results 

show that when we compare a specific hand gesture with itself, we obtain a minimum-

distance value of 0.0o. This is a perfect result since the similarity is 100.0%. Furthermore, 

when we compare two closely similar hand gestures, i.e. gesture 1 and gesture 4, a 

Figure 45: Varied rotations for hand gesture comparisons. 
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minimum-distance value of 35.9o is obtained. However, when we compare two quite 

different gestures, i.e. gesture 2 and gesture 3, a minimum-distance value of 248.5o is 

obtained. 

In Section 6.2.6, a detailed comparison of the same hand gestures at various 

reasonable distances, at various speeds, and at sensible hand rotations is performed. The 

highest minimum-distance obtained is 18.8o. This implies that 35.9o is not acceptable when 

the same hand gestures are compared. However, 35.9o is acceptable for different hand 

gestures and this indicates that the two hand gestures being compared are similar as 

illustrated in Section 6.2.2. 

 

Table 15: Detailed Comparison for Hand Gesture 1. 

     Q U E R Y     

  D1 D2 D3 D4 S1 S2 S3 S4 R1 R2 R3 R4 
 D1 0.0 5.8 6.4 6.2 6.4 7.3 5.9 6.1 7.4 7.1 11.3 9.9 

R D2 5.8 0.0 6.1 10.1 8.7 12.3 7.7 8.3 10.3 5.6 9.4 10.5 
E D3 6.4 6.1 0.0 12.2 6.4 8.8 11.2 9.3 10.2 11.6 7.8 9.3 
F D4 6.2 10.1 12.2 0.0 8.4 12.3 9.5 10.4 7.9 4.8 12.2 7.8 
E S1 6.4 8.7 6.4 8.4 0.0 4.9 9.1 5.5 10.3 12.4 9.4 12.6 
R S2 7.3 12.3 8.8 12.3 4.9 0.0 4.5 7.5 7.9 12.4 7.9 12.8 
E S3 5.9 7.7 11.2 9.5 9.1 4.5 0.0 5.1 6.8 10.7 12.3 8.6 
N S4 6.1 8.3 9.3 10.4 5.5 7.5 5.1 0.0 7.5 9.1 3.9 11.8 
C R1 7.4 10.3 10.2 7.9 10.3 7.9 6.8 7.5 0.0 4.9 10.1 12.5 
E R2 7.1 5.6 11.6 4.8 12.4 12.4 10.7 9.1 4.9 0.0 5.5 12.5 
 R3 11.3 9.4 7.8 12.2 9.4 7.9 12.3 3.9 10.1 5.5 0.0 6.1 
 R4 9.9 10.5 9.3 7.8 12.6 12.8 8.6 11.8 12.5 12.5 6.1 0.0 
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Table 16: Detailed Comparison for Hand Gesture 2. 

     Q U E R Y     

  D1 D2 D3 D4 S1 S2 S3 S4 R1 R2 R3 R4 
 D1 0.0 7.1 10.2 10.5 9.7 12.1 8.1 7.9 10.2 12.4 11.6 9.6 

R D2 7.1 0.0 8.2 8.9 5.9 6.4 11.0 9.3 5.6 10.4 13.4 14.5 
E D3 10.2 8.2 0.0 9.2 7.3 9.1 12.4 8.0 11.5 13.6 12.4 7.4 
F D4 10.5 8.9 9.2 0.0 15.2 14.8 7.9 12.4 16.4 14.7 11.3 14.9 
E S1 9.7 5.9 7.3 15.2 0.0 2.5 7.5 9.5 15.9 6.8 17.1 10.3 
R S2 12.1 6.4 9.1 14.8 2.5 0.0 8.9 9.6 12.1 7.0 6.2 14.0 
E S3 8.1 11.0 12.4 7.9 7.5 8.9 0.0 3.6 7.3 11.4 8.4 16.3 
N S4 7.9 9.3 8.0 12.4 9.5 9.6 3.6 0.0 18.2 9.2 7.5 13.4 
C R1 10.2 5.6 11.5 16.4 15.9 12.1 7.3 18.2 0.0 5.5 7.5 10.5 
E R2 12.4 10.4 13.6 14.7 6.8 7.0 11.4 9.2 5.5 0.0 6.9 9.6 
 R3 11.6 13.4 12.4 11.3 17.1 6.2 8.4 7.5 7.5 6.9 0.0 9.6 
 R4 9.6 14.5 7.4 14.9 10.3 14.0 16.3 13.4 10.5 9.6 9.6 0.0 

 
 

Table 17: Detailed Comparison for Hand Gesture 3. 

     Q U E R Y     

  D1 D2 D3 D4 S1 S2 S3 S4 R1 R2 R3 R4 
 D1 0.0 8.4 7.1 9.2 9.3 10.4 5.5 16.3 7.4 13.5 14.4 8.0 

R D2 8.4 0.0 10.1 10.9 5.9 10.3 7.7 9.3 5.7 7.6 13.2 4.9 
E D3 7.1 10.1 0.0 10.2 11.4 6.6 8.5 9.5 7.9 6.4 11.6 9.3 
F D4 9.2 10.9 10.2 0.0 8.4 9.5 12.2 10.4 4.8 16.4 17.4 8.0 
E S1 9.3 5.9 11.4 8.4 0.0 7.0 9.5 8.6 12.3 7.0 6.1 13.6 
R S2 10.4 10.3 6.6 9.5 7.0 0.0 5.6 10.6 14.9 15.7 6.3 12.8 
E S3 5.5 7.7 8.5 12.2 9.5 5.6 0.0 5.1 7.1 9.0 16.7 15.7 
N S4 16.3 9.3 9.5 10.4 8.6 10.6 5.1 0.0 5.0 11.7 15.3 14.5 
C R1 7.4 5.7 7.9 4.8 12.3 14.9 7.1 5.0 0.0 4.0 8.5 11.6 
E R2 13.5 7.6 6.4 16.4 7.0 15.7 9.0 11.7 4.0 0.0 3.6 10.6 
 R3 14.4 13.2 11.6 17.4 6.1 6.3 16.7 15.3 8.5 3.6 0.0 8.1 
 R4 8.0 4.9 9.3 8.0 13.6 12.8 15.7 14.5 11.6 10.6 8.1 0.0 

. 
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Table 18: Detailed Comparison for Hand Gesture 4. 

     Q U E R Y     

  D1 D2 D3 D4 S1 S2 S3 S4 R1 R2 R3 R4 
 D1 0.0 6.1 8.3 12.4 7.4 13.7 16.7 10.4 9.6 18.4 7.2 14.5 

R D2 6.1 0.0 9.4 8.1 6.9 14.4 16.3 13.7 10.7 7.5 18.5 15.0 
E D3 8.3 9.4 0.0 9.2 7.2 10.5 6.2 14.6 12.3 14.6 9.9 9.2 
F D4 12.4 8.1 9.2 0.0 5.3 15.7 12.0 13.1 11.4 9.1 7.3 11.6 
E S1 7.4 6.9 7.2 5.3 0.0 4.6 9.5 8.6 7.7 13.3 9.4 4.5 
R S2 13.7 14.4 10.5 15.7 4.6 0.0 6.1 6.8 11.3 17.6 9.7 12.5 
E S3 16.7 16.3 6.2 12.0 9.5 6.1 0.0 3.2 7.8 14.7 12.9 10.6 
N S4 10.4 13.7 14.6 13.1 8.6 6.8 3.2 0.0 18.8 13.4 14.6 12.1 
C R1 9.6 10.7 12.3 11.4 7.7 11.3 7.8 18.8 0.0 4.6 10.5 13.6 
E R2 18.4 7.5 14.6 9.1 13.3 17.6 14.7 13.4 4.6 0.0 7.1 8.8 
 R3 7.2 18.5 9.9 7.3 9.4 9.7 12.9 14.6 10.5 7.1 0.0 7.2 
 R4 14.5 15.0 9.2 11.6 4.5 12.5 10.6 12.1 13.6 8.8 7.2 0.0 
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7 Applying PCA to Improve the Performance of LDA, SVM and MDTW 

In Chapter 4, we have implemented PCA to reduce absolute errors in LM finger 

joint measurements. However in this chapter PCA is implemented on datasets of LDA, SVM 

and MDTW to improve the performance of LDA, SVM, and MDTW by selecting the best 

combination of principal components (PCs) when forming feature vectors during the PCA 

implementation. 

7.1 Implementing PCA to Improve the Performance of LDA and SVM 

We have used the same dataset as illustrated in Section 5.2.1 that was employed 

to recognise static hand gestures using two popular machine learning techniques i.e. LDA 

and SVM. 

We apply PCA on the whole dataset and then employ LDA and SVM to recognise 

static hand gestures. As described in Section 5.2.1, out of a total of 600 samples collected, 

we used 62.5% of the 600 samples in training and the remaining 37.5% in testing. 

7.1.1 Experimental Set-up to Improve the Performance of LDA and SVM Using PCA 

We apply PCA to the raw dataset to see whether the performance of LDA and 

SVM could be improved. The steps involved are described below. 

Step 1: Our dataset is a matrix 𝑋 that comprises of 600 rows (observations) and 

14 columns (variables of finger joint angles).  

Step 2: We input 𝑋 in the R statistical package using ‘prcomp()’ function and 

eigenvectors or principal components (PCs) together with their respective standard 

deviations are obtained as output. From the obtained standard deviations, we compute the 

variance that corresponds to each of the PCs. 

Step 3: In our experiments, the R statistical package generated 14 PCs. From 

these PCs, we formed three feature vectors as follows. The feature vector V1 constituted 13 

PCs after discarding PC1, V2 constituted 13 PCs after discarding PC2, and V3 constituted 12 

PCs after discarding PC1 and PC2. This implies PCA was implemented in three different 

ways. PC1 had 68.0% of the total variability whereas PC2 had 25.8%.  
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Step 4: We derive the PCA integrated dataset 𝑌 as  

𝐘 = 𝐗𝐕𝐕𝑇          (7-1) 

where 𝑣𝑇 is the transpose of 𝑉. 

It is important to note that we had 3 different feature vectors i.e. V1, V2 and V3, hence giving 

us 3 different PCA implementations. This resulted in three different PCA results i.e. PCA(1), 

PCA(2), and PCA(3). 

7.1.2 Results and Discussion Regarding the Performance of LDA and SVM Using PCA 

Here we analyse how PCA performs regarding the accuracy of LDA and SVM 

techniques. Accuracy has been defined and described in Section 5.2.2, Chapter 5. We 

considered the overall performance of LDA and SVM on recognising the four static hand 

gestures. As shown in Figure 48, there is an improvement in accuracy from 88.4% to 91.4% 

after PCA(1) has been implemented on LDA. For SVM Linear, PCA(1) registered an 

improvement from 89.7% to 93.6%, for SVM Polynomial, the improvement was from 89.3% 

to 93.9%, for SVM Radial, the improvement was from 88.4% to 92.5% and for SVM Sigmoid, 

the improvement was from 88.4% to 90.1%.  

We registered a desired outcome regarding the improvement in accuracy when 

selecting the feature vector used in implementing PCA discarded PC1 that contained 68.0% 

variability. However when the feature vector selected discarded both PC1 and PC2 that both 

contained 93.8% variability, the accuracy of LDA and SVM reduced greatly and from Figure 

48, this is shown as the PCA(3) performance. PCA can only perform well if we select the right 

feature vector i.e. when we discard the first principal component (PC1) and the rest form 

the feature vector. Since PCA(1) registers a significant improvement compared to PCA(2) 

and PCA(3), PCA can be employed to improve the accuracy of LDA and SVM in recognising 

the static hand gestures. 

7.2 Implementing PCA to Improve the Performance of MDTW 

We have used the same dataset that was used in Section 6.3.2 to compare 

dynamic hand gestures using MDTW. It is important to note here that we had four different 

matrices each representing one of the four dynamic gestures. A description of this type of 
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matrix can be found in Section 6.1.3. We then apply PCA on each matrix followed by 

implementing MDTW as explained in the next section. 

 

 

7.2.1 Experimental Set-up to Improve the Performance of MDTW Using PCA 

We apply PCA to the raw dataset to see whether the performance of MDTW  

could be improved. The steps involved are described below. 

Our dataset contains four matrices, each matrix representing one of the four 

dynamic hand gestures. It is important to note that rows represent the joint angles, and 

columns represent successive time frames. Since the steps are exactly the same as 

described in Section 7.1.1 we shall only highlight the differences. 

The first difference was that we had to transpose the matrices because originally 

the variables (joint angles) were represented in rows. We also had to transpose other 

mathematical terms in Equation (7.1) so that they suit the implementation of PCA with 

MDTW accordingly. Such terms include V and 𝜇.  

Figure 46: PCA Performance on LDA and SVM. 
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As in Section 7.1, we had 3 different feature vectors i.e. V1, V2 and V3 for each of 

the dynamic hand gesture giving us 3 different PCA implementations. This resulted in three 

different PCA results i.e. PCA(1), PCA(2), and PCA(3). In particular, V1 was obtained after 

discarding PC1, while retaining the remaining 13 principal components. V2 and V3 were also 

obtained after discarding PC2 and PC3, respectively. Table 19 shows the percentage 

variability of PC1, PC2, and PC3 for each of matrix i.e. each of the dynamic hand gesture.  

 

Table 19: Percentage Principal Components Variability for each Gesture. 

Gesture Percentage 

Variability for PC1 

Percentage 

Variability for PC2 

Percentage 

Variability for PC3 

1 76.4 16.4 6.8 

2 75.3 16.4 6.8 

3 76.7 16.4 6.9 

4 76.7 16.4 6.9 

 

7.2.2 Results and Discussion Regarding the Improved Performance of MDTW Using PCA 

The lower the minimum-distance value, the better the MDTW performance is in 

terms of establishing the extent of similarity of the two dynamic hand gestures. Overall, 

PCA(1) registers more significant results compared to PCA(2) and PCA(3). This is because all 

the minimum-distance values obtained by PCA(1) are lower compared to those obtained 

before PCA is implemented. PCA(2) performs fairly well in obtaining lower values in 

comparison to those obtained before implementing PCA. The only situation where a higher 

value is obtained is during gesture comparison of G1 with G2 where a value of 39.7o is 

obtained whereas the original value was 35.9o. PCA(3) registers three values out of six that 

are higher than the original minimum-distance values. These three values are obtained 

when gesture comparison was done between G1 with G2, G1 with G4 and G2 with G4. This 

means the implementation of PCA(3) does not give us the desired results. Since PCA(1) is 

capable of lowering all the minimum-distance values in comparison to those obtained 
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before PCA implementation, it is beneficial to implement PCA on the raw dataset of dynamic 

hand gestures before employing MDTW to improve accuracy. 

7.3 Summary 

In this chapter, we implemented PCA to see if it could improve on the 

performance of LDA, SVM and MDTW. We have noted that the feature vector should be 

carefully selected after discarding one or more PCs. In particular, when we discard the first 

PC and retain the remainder as the feature vector, the PCA implementation give us 

significant results regarding an improvement in the performance of LDA, SVM and MDTW. 

However, when we try to alter the feature vector by discarding other PCs, such as the 

second and third one, the results were not as good as those when we discarded the first PC. 

Therefore, for our experimental datasets, discarding the first PC in the feature vector proved 

to be more beneficial than discarding the second, third or both. 

 

 

 

Figure 47: PCA Performance on MDTW. 
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8 Conclusion 

In this thesis, we have examined a low-cost device that can be used in a hand 

gesture recognition framework although users with missing fingers or shaky hands are not 

considered in this research. During the initial stages of the research, we noticed that 

absolute errors are triggered by four parameters, i.e. elevation, lateral (side-to-side), 

forward-backward, and rotation movements of the hand relative to the LM. We used an 

artist’s hand placed above the LM. The artist’s hand is more accurate than a human hand in 

performing static hand gestures as it can maintain a fixed position as long as is necessary. 

We further describe the experimental set-up to study variation of finger joint angles with 

errors, to determine whether absolute errors are consistent, and then to compensate for 

absolute errors using PCA. We discovered that absolute errors are mainly experienced when 

hand movements are away from the centreline of the LM. We proposed and implemented 

PCA on the raw data in order to compensate for these absolute errors (AEs). AEs were 

reduced by 37.5%, 28.3%, 33.0%, and 22.4% for the experimental results of elevation, lateral 

(side-to-side), forward-backward, and rotation, respectively. The experimental results have 

demonstrated that using PCA is feasible, allowing meaningful benefits to be obtained. 

We then performed additional research and formulated a mathematical 

problem for recognising static hand gestures. This problem formulation was further 

extended to suit the application of LDA and SVM machine learning techniques. We 

implemented LDA and SVM techniques so that our framework can learn more about 

measurement errors in order to achieve better compensation for these errors. All these 

techniques achieved an accuracy above 88.0% compared to the baseline performance of 

67.1%. This demonstrates the significant benefit of employing machine learning techniques 

in the context of performing hand gestures. 

In a further research contribution, we proposed, implemented and evaluated 

Multi-dimensional Dynamic Time Warping (MDTW) to establish how similar or different a 

query dynamic hand gesture could be in relation to a reference dynamic hand gesture. The 

approach is robust in the way that it can distinguish quite different hand dynamic gestures 

by yielding a high value of a minimum-distance metric. Furthermore, the method can 
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produce a low value of minimum-distance if the hand dynamic gestures under comparison 

are very similar. Therefore, in the context of dynamic hand gesture comparison, a clear 

distinction can be obtained between a query hand gesture and a reference hand gesture. 

In the final part of our research, we applied PCA to investigate whether it could 

improve the performance of LDA, SVM and MDTW. This was achieved on condition that the 

feature vector was carefully selected during PCA implementation. This was executed in such 

a way that, the first PC was discarded while retaining the remaining PCs to form a feature 

vector. We further investigated altering the feature vector by discarding other PCs like the 

second and third PC and the results obtained were not as good as those obtained when only 

the first PC was discarded. Therefore, to obtain significant results in regard to improving the 

performance of LDA, SVM and MDTW, careful PCs selection to form a feature vector proved 

to be relevant when implementing PCA. 

8.1 Future Work 

In the future we would like to focus on our part of research where we 

implemented Multi-dimensional Dynamic Time Warping (MDTW) to compare dynamic hand 

rehabilitation gestures that would be performed by a patient relative to hand gestures 

prepared by a physiotherapist. Although the four different hand dynamic gestures were 

sufficient for the implementation and evaluation of MDTW, it would be desirable to extend 

the number of gestures. In this research we were constrained by the robotic hand 

performing only flexing and extending finger gestures. It was unable to execute complex 

hand gestures like abduction and adduction of fingers. With the appropriate resources, we 

could extend on the types of hand gesture examined by possibly employing a different 

robotic hand that can perform abduction and adduction of fingers gestures. The benefit of 

using a robot hand is two-fold. First it avoids the needs for ethical approval. Second it is able 

to repeat gestures in a controlled manner. 

Owing to limited time, we were unable to extend our research to a hand 

rehabilitation setting. If we had extended our research, we could have recruited patients 

with hand related injuries like those recovering from stroke. However, it would be 

interesting to recruit both patients with hand related injuries and healthy individuals and 
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evaluate how the two groups perform hand rehabilitation gestures. The obtained results 

could provide significant benefits in the field of hand therapy where a physiotherapist can 

generate more realistic feedback to the patient. However, this would require the 

implementation of a suitable feedback mechanism so the patients could assess how well 

they were performing the exercise and adapt their actions accordingly. 

Finally, since the recognition rate in LM varies slightly depending on the speed of 

hand gestures, this could also be an interesting area for future research. In their work [155], 

it is reported that the LM is capable of recognising the user hand gesture precisely by 

obtaining the fingertip position and direction details of the hand. Experimental results 

demonstrate that implemented scheme can effectively solve the issues of reduction in the 

recognition rate of the LM owing to the measurement errors attributable to finger overlap 

[155]. In their research [156] they proposed and implemented a scheme to improve the 

recognition rate of the LM. The recognition rate is hampered owing to the fact that 

fingertips covered some part of the palm [156]. This made the part of the palm 

undetectable to the LM sensor. Their approach was centred on data correction of the 

fingertip direction by employing a Hidden Markov Model (HMM). By applying the Viterbi 

algorithm, the palm can be more easily detected by the LM [134] hence improving the 

recognition rate. The research work [155-157] could form the basis for further research 

regarding variability in the recognition rate of LM.  
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