
AS Domain Tunnelling for
User-Selectable Loose Source Routing

Habiba Akter

PhD Thesis

School of Electronic Engineering and Computer Science
Queen Mary University of London

2020

Abstract

The use of the Internet as a ubiquitous means of e-commerce, social
interaction and entertainment is well established. However, despite
service diversity, all traffic is treated the same. Although this clearly
“works” and is considered “fair” in terms of net neutrality, there are
times when it would be particularly beneficial, if the end-user could
have some control over the path his or her traffic takes, either avoid-
ing geographic regions or exploiting lower latency options, should they
exist.

In this research work, we propose to design and evaluate a scheme
that allows end-users to selectively exploit a sequence of tunnels along
a path from the source to a chosen destination. The availability of such
tunnels is advertised centrally through a broker, with the cooperation of
the Autonomous System (AS) domains, allowing end-users to use them
if so desired. The closest analogy this scheme is that of a driver choosing
to use one or more toll roads along a route to avoid potential congestion
or less desirable geographic locations. It thus takes the form of a type
of loose source routing. Furthermore, the approach avoids the need
for inter-operator cooperation, although such cooperation provides a
means of extending tunnels across AS peers.

In particular, we aim to ascertain the benefit in terms of delay and
reliability for a given degree of tunnel presence within a portion of the
Internet. The expectation is that a relatively small number of tunnels
may be sufficient to provide worthwhile improvements in performance,
at least for some users. Based on this premise, we first design and
implement a simulation tool that uses Dijkstra’s Algorithm to calculate
the least cost path(s) for differing percentages of randomly placed intra-
AS tunnels. We consider end-to-end delay as the cost metric associated
with each route and a number of experiments have been performed to
confirm the improvement in delays using the tunnels.

We then consider the inclusion of a small financial cost that the user
would be expected to pay in order to use selected tunnels. Details of the
payment mechanism is outside the scope of this thesis, however, the fi-
nancial burden is taken into account when choosing a route. There is
thus a trade-off between delay reduction and a financial penalty. First
we explore a heuristic approach using a Genetic Algorithm (GA) we cre-
ate whereby these conflicting goals are combined into a weighted fitness

score associated with the alternative routes, allow a near-optimal com-
promise to be found, based on the weighting.

The downside of this approach is that there is typically a single solu-
tion for a given selected weighting. It may be that the user wishes to see
the spectrum of alternatives and decide a suitable “sweet spot” based
on their current preferences. As such, we then design, implement and
evaluate an end-user path selection tool using Multi-Objective Evolu-
tionary Algorithm (MOEA). Unlike the GA, this approach presents a set
of optimal solutions for different compromises between the performance
objectives, which form a Pareto front. This scheme currently takes into
account cost and delay but provides an extensible mechanism for other
fitness factors to be considered.

2

Acknowledgements

First and foremost, I would like to thank the Almighty for blessing me
with the strength and patience to accomplish the research work.

I am immensely thankful to my supervisor, Dr Chris Phillips. Not
only he has been a great mentor to me, he was also the friendliest of
supervisors any PhD student could ask for. I cannot thank him enough
for his guidance and assistance towards improving my academic knowl-
edge and research skill. Whatever I have been able to produce so far
would not be possible if I did not have his support by me during every
instance ever since the start of my PhD life.

I acknowledge the support and encouragement from my second su-
pervisor, Professor Steve Uhlig. Without his support, it would have been
difficult for me to attend a good number of conferences to present my
work.

I am grateful to my independent assessor, Dr John Schormans, who
has initially inspired me to aim for a PhD in Networks and has helped
me with his suggestions for the past few years.

I also thank Dr Raul Mondragon for his valuable time and guide-
line. In addition, I would also like to thank Dr Damilola Ibosiola for his
contribution.

I am thankful to everyone from Networks Research Group, QMUL.
All my colleagues and friends have been very supportive.

Finally, I would like to thank my parents, Md Hamidul Islam and
Mrs Shirin Akter and my brother, Shihab Shonglap for their support
and encouragement on the research journey.

3

Contents

1 Introduction 17
1.1 Research Background and Motivation 18
1.2 Claims of Novelty . 19
1.3 Overview of the Thesis . 20

2 Background 23
2.1 Internet Architecture . 23

2.1.1 Autonomous System 24
2.1.2 Border Gateway Protocol (BGP) 25

2.2 Latency . 27
2.2.1 Definition of Latency 27
2.2.2 Impact of Latency . 28

2.3 Net Neutrality and Quality of Experience 29
2.3.1 Net Neutrality . 29
2.3.2 Net Neutrality in Different Countries 30
2.3.3 Issues with Net Neutrality 31

2.4 Loose Source Routing (LSR) 32
2.4.1 Definition . 32
2.4.2 Use of Loose Source Routing 33

2.5 Tunnelling Mechanisms . 34
2.5.1 Layer 2 Tunnelling Protocol (L2TP) 34
2.5.2 G-MPLS (Generalised) Multi-Protocol Label Switching 34
2.5.3 Intra-Domain Tunnelling 37
2.5.4 Inter-Domain Tunnelling 38

2.6 Internet Topology Generator 39
2.6.1 Importance of Internet Topology Generator 40
2.6.2 Internet Topology Generating Models 40
2.6.3 Existing Topology Generator Tools 41
2.6.4 Choice of Internet Topology Generator 42
2.6.5 PFP (Positive Feedback Preference) 43

2.7 Dijkstra’s Algorithm . 44

4

2.7.1 Definition . 44
2.7.2 Adapting the Algorithm for Routers 45
2.7.3 Example of Dijkstra’s Algorithm 46

2.8 Multi-Objective Optimisation Problem (MOOP) 53
2.8.1 MOOP Problem . 53
2.8.2 Pareto Dominance . 54
2.8.3 Pareto Optimality . 56
2.8.4 Solving MOOP . 57

2.9 Evolutionary Algorithm (EA) 58
2.9.1 Similarities and Differences 59
2.9.2 Flowchart for EA . 59
2.9.3 Key Components of EA 60
2.9.4 Advantages . 62
2.9.5 Genetic Algorithm (GA) 63

2.10Multi-Objective Evolutionary Algorithm (MOEA) 63
2.10.1Advantages . 65
2.10.2Different Types of MOEA 65

2.11Summary . 66

3 Overall Tunnelling Framework 67
3.1 Network Operator Functions 69
3.2 Broker Function . 70
3.3 End-User Functions . 71
3.4 Best Route Selection . 72
3.5 Ticketing Service . 73
3.6 Summary . 74

4 Design and Implementation of the Baseline Route Selection
Tool 75
4.1 Design and Implementation 75

4.1.1 AS Topology . 76
4.1.2 ASBR Topology . 78
4.1.3 Presence of Tunnels 80
4.1.4 Least Cost Path . 82
4.1.5 Flowchart . 84
4.1.6 Pseudo Code . 86
4.1.7 Data Structure . 87

4.2 Results and Evaluation . 89
4.2.1 Results for Different Topologies 90
4.2.2 Results for Different Cost Ratio 95

5

4.2.3 Results for Different Node Degree 97
4.2.4 Considering “Hotspot” Area 99

4.3 Summary .100

5 Path Computation Algorithm for Tunnels using GA (PCAT–I)102
5.1 Design and Implementation103

5.1.1 AS Topology .103
5.1.2 Generating Tunnels105
5.1.3 Calculating the Best Suitable Path106
5.1.4 Implementation of GA106
5.1.5 Flowchart .116
5.1.6 Pseudo Code .119

5.2 Validation .124
5.2.1 Possible Paths and Initial Population124
5.2.2 Calculation of Fitness Value125
5.2.3 Selection .126
5.2.4 Reproduction .127
5.2.5 Final Set of Paths .128

5.3 Results and Evaluation .128
5.3.1 Results for Different Topologies130
5.3.2 Results for Different Node Degree134
5.3.3 Results for Different Weights of the Constraints . . .136
5.3.4 Results Considering Peak Time140

5.4 Summary .142

6 Path Computation Algorithm for Tunnels using SPEA (PCAT–
II) 143
6.1 Design and Implementation143

6.1.1 Implementation of SPEA144
6.1.2 Flowchart .147
6.1.3 Pseudo Code .150

6.2 Validation .153
6.3 Results and Evaluation .156

6.3.1 Results for Different Crossover Probability (ρc) and
Mutation Probability (ρm)157

6.3.2 Results for Different Topologies164
6.3.3 Results for Different Percentages166
6.3.4 Results Considering Peak Time168

6.4 Summary .169

7 Discussion and Conclusion 170

6

7.1 Overview .170
7.2 Novel Contributions Revisited171

7.2.1 Feasibility of the Tunnelling Framework171
7.2.2 Exploring Benefits of Tunnels: Are Internet Tunnels

Worthwhile? .171
7.2.3 Path Selection Tool for End User Software172

7.3 Publications .173
7.4 Future Work .174
7.5 Concluding Remarks .174

Appendices 197

A Initial Tool 198

B Path Computation Algorithm for Tunnels (PCAT) 222

7

List of Figures

2.1 Internet architecture . 25
2.2 Internal and external BGP 25
2.3 Loop prevention . 26
2.4 A fully meshed IBGP autonomous system topology 27
2.5 Example Label Switched Path (LSP) 36
2.6 Example topology comprising seven routers with different

costs . 47
2.7 Routing tree showing the least cost path from router R1 . . 52
2.8 Decision and objective spaces in MOOP [1] 54
2.9 Pareto dominance . 55
2.10Pareto optimality in a general Multi-objective Optimisation

Problem [2] . 57
2.11Evolutionary Algorithm flowchart 59

3.1 User-selectable AS-domain tunnelling framework 68

4.1 Graph of AS topology for a part of the Internet 77
4.2 Graph of ASBR topology obtained from Figure 4.1 80
4.3 Example Intra-AS paths with and without tunnels 80
4.4 Randomly generated tunnels in a small topology 82
4.5 A small topology with tunnels in two ASes 82
4.6 Flowchart showing the steps to validate the baseline frame-

work . 85
4.7 Illustration of the data structures used for developing the

framework . 88
4.8 Average and standard deviation of cost benefit for Topology

1 (Ratio of tunnel to no-tunnel cost = 1:3) 92
4.9 Average and standard deviation of cost benefit for Topology

2 (Ratio of tunnel to no-Tunnel cost = 1:3) 93
4.10Average and standard deviation of cost benefit for Topology

3 (Ratio of tunnel to no-Tunnel cost = 1:3) 94

8

4.11Average and standard deviation of cost benefit for Topology
4 (Ratio of tunnel to no-Tunnel cost = 1:3) 94

4.12Average and standard deviation of cost benefit for Topology
5 (Ratio of tunnel to no-Tunnel cost = 1:3) 95

4.13Average of cost benefit for different cost ratio 96
4.14Standard deviation of cost benefit for different cost ratio . . 97
4.15Average and standard deviation of cost benefit for different

node degree . 98
4.16Average of cost benefit for different node degree and cost

ratio . 99
4.17Average and standard deviation of cost benefit for tunnel-

no tunnel = 1:15) .100

5.1 AS topology of 7 ASes .105
5.2 Example of compacting duplicate nodes108
5.3 Example encoding of an initial population109
5.4 The overall procedure of crossover: (a) Parent paths; (b) Paths

after crossover with loop; (c) Children paths after crossover.113
5.5 Mutation operation .115
5.6 Flowchart of PCAT–I .116
5.7 Flowchart showing the steps in GA implemented for path

computation .118
5.8 Two output Paths after crossover127
5.9 Console output for a path after mutation128
5.10Average and standard deviation of the fitness score for topol-

ogy 1 .131
5.11Average and standard deviation of the fitness score for topol-

ogy 2 .132
5.12Average and standard deviation of the fitness score for topol-

ogy 3 .133
5.13Average and standard deviation of the fitness score for topol-

ogy 4 .133
5.14Average and standard deviation of the fitness score for topol-

ogy 5 .134
5.15Average and standard deviation of the fitness score for topol-

ogy of average node degree 2135
5.16Average and standard deviation of the fitness score for α = 0138
5.17Average and standard deviation of the fitness score for α =

0.25 .139

9

5.18Average and standard deviation of the fitness score for α =

0.75 .139
5.19Average and standard deviation of the fitness score for α = 1140
5.20Average and standard deviation of the fitness score con-

sidering peak time .142

6.1 Flowchart of PCAT–II .148
6.2 Flowchart showing the steps of SPEA implemented for path

computation .150
6.3 Input paths for fitness validation using SPEA153
6.4 Output non-dominated paths for Figure 6.3153
6.5 Output non-dominated paths155
6.6 Graph showing Pareto optimal solutions156
6.7 Number of total solutions for 20% tunnels using different

ρc and ρm .158
6.8 Number of total solutions for 40% tunnels using different

ρc and ρm .159
6.9 Pareto fronts after: (a) 1 run; (b) 10 runs; (c) 20 runs (for

20% tunnels when ρc = 0.6 and ρm = 0.02)160
6.10Pareto fronts after: (a) 1 run; (b) 10 runs; (c) 20 runs (for

20% tunnels when ρc = 0.8 and ρm = 0.05)161
6.11Pareto fronts after: (a) 1 run; (b) 10 runs; (c) 20 runs (For

40% tunnels when ρc = 0.6 and ρm = 0.02)162
6.12Pareto fronts after: (a) 1 run; (b) 10 runs; (c) 20 runs (For

40% tunnels when ρc = 0.8 and ρm = 0.05)163
6.13Pareto front for 20% tunnels in Topology 2165
6.14Pareto front for 20% tunnels in Topology 3165
6.15Pareto front for 20% tunnels in Topology 4166
6.16Pareto front for 20% tunnels in Topology 5166
6.17Pareto front for 10% tunnels in Topology 1167
6.18Pareto front for 20%, 30% and 40% tunnels in Topology 1 .167
6.19Pareto front for different tunnel percentages during peak

time .168

10

List of Tables

2.1 Label data for the “Purple” LSP 36
2.2 List of routers, their neighbours and the cost to them . . . 47
2.3 Implementing Dijkstra’s Algorithm 48
2.4 Final tree for the least cost paths from Router 1 52

4.1 AS-Level topology from Figure 4.1 77
4.2 A small topology of 7 ASes 78
4.3 ASBR Topology for Table 4.1 79
4.4 Parameters used in the baseline route selection tool 90
4.5 Number of tunnels in the AS topology consisting of 30 ASes 90
4.6 Average and standard deviation of the benefits of using

tunnels . 91

5.1 PFP-generated AS-level topology of 7 ASes103
5.2 Source and destination ASes from Table 5.1104
5.3 Input format AS-topology for the PCAT104
5.4 All possible Paths from AS2 to AS7124
5.5 Possible paths using tunnels for Path1125
5.6 Fitness scores for the paths shown in Table 5.4126
5.7 Fitness values for the paths shown in Table 5.5126
5.8 Number of tunnels in the a 30-AS topology129
5.9 Parameters used in the PCAT–I129
5.10Parameters used in GA .130
5.11Average and standard deviation of the fitness score for dif-

ferent topologies .131
5.12Average and standard Deviation of the fitness score for two

different topologies of different average node degree136
5.13Average and standard deviation of the fitness score for dif-

ferent values of α .137
5.14Average and standard deviation of the fitness score for peak

time .141

11

6.1 Fitness values of 30 paths154
6.2 Paths sorted from Table 6.1155
6.3 Parameters used in the PCAT–II157
6.4 Parameters used in SPEA .157
6.5 Total number of Pareto optimal paths for different values

of crossover probability ρc and mutation probability ρm . .164
6.6 Number of Pareto optimal paths for different tunnel per-

centages .167
6.7 Number of Pareto optimal paths for different tunnel per-

centages .169

12

List of Algorithms

1 Underlying Framework . 86
2 PCAT–I . 120
3 Initialisation of Paths . 121
4 Evaluation . 121
5 Crossover . 122
6 Mutation . 123
7 PCAT-II . 151
8 Evaluate with Dominance . 152
9 Pareto Optimality . 152

13

List of Equations

2.1 Propagation delay . 28
2.2 Transmission delay . 28
2.3 Power Law . 41
2.4 Probability of new node degree in PFP 43
5.1 Link between ASBRs .108
5.2 Viable path .108
5.3 Delay of a path .109
5.4 Delay fitness of a path .110
5.5 Financial cost of a path .110
5.6 Cost fitness of a path .110
5.7 Fitness score of a path .110
5.8 Fitness score for α = 0.5 .130
5.9 Fitness score for α = 0 .137
5.10 Fitness score for α = 0.25 .138
5.11 Fitness score for α = 0.75 .138
5.12 Fitness score for α = 1 .140
6.1 Dominance count of a path .146
6.2 Total dominance count of a path146
6.3 Dominance score of a path .146
6.4 Finding non-dominated paths146

14

List of Abbreviations

AF Assured Forwarding
AS Autonomous System
ASBR Autonomous System Border Router
ATM Asynchronous Transfer Mode
BA Barabasi-Albert
BGP Border Gateway Protocol
BRITE Boston university Representative Internet Topology gEnerator
CAGW Citizens Against Government Waste
DSB Directory Service Broker
DSCP DiffServ Code Point
EA Evolutionary Algorithm
EF Expedited Forwarding
EP Evolutionary Programming
EGP Exterior Gateway Protocol
FCC Federal Communications Commission
FEC Forwarding Equivalence Class
FIB Forwarding Information Base
GA Genetic Algorithm
GMPLS Generalised Multi-Protocol Label Switching
GT-ITM Georgia Tech Internetwork Topology Models
HOT Heuristically Optimal Topology
IETF International Engineering Task Force
IGP Interior Gateway Protocol
Inet Internet Topology Generator
IP Internet Protocol
ISP Internet Service Provider
ITU Internet Telecommunication Union
L2F Layer 2 Forwarding
L2TP Layer 2 Tunnelling Protocol
LER Label Edge Router

15

LSP Label Switched Path
LSR Label Switched Router
MOEA Multi-objective Evolutionary Algorithm
MOGA Multi-objective Genetic Algorithm
MOOP Multi-Objective Optimisation Problem
MPLS Multi-Protocol Label Switching
NSGA Nondominated Sorting Genetic Algorithm
OSPF Open Shortest Path First
PAES Pareto Archived Evolution Strategy
PCE Path Computation Element
PCAT Path Computation Algorithm for Tunnels
PD-FE Policy Decision Function Entity
PFP Positive Feedback preference
PHB Per-Hop Behaviour
PLOD Power Law Out-Degree
PLRG Power Law Random Graph
PoP Point of Presence
PPP Point-to-Point Protocol
PPTP Point-to-Point Tunnelling Protocol
QoE Quality of Experience
QoS Quality of Service
RACF Resource and Admission Control Function
RIP Routing Information Protocol
RSVP Resource reSerVation Protocol
SOOP Single Objective Optimisation Problem
SPEA Strength Pareto Evolutionary Algorithm
TCP Transmission Control Protocol
ToS Type of Service
TRAI Telecom Regulatory Authority of India
TRC-FE Transpot Resource Control Function Entity
VEGA Vector Evaluated Genetic Algorithm
VPN Virtual Private Network
WAN Wide Area Network

16

Chapter 1

Introduction

Although the Internet has been both robust and flexible due to its feder-
ated nature, providing delivery of time-critical data that needs travers-
ing multiple Autonomous System (AS) domains is still challenging [3].
This is hampered by the unwillingness of network operators to sup-
port inter-operator signalling coupled with the control of the associated
forwarding infrastructure. Mechanisms for such signalling exist with
functional entities such as the ITU Resource and Admission Control
Function (RACF) [4, 5] and the IETF Path Computation Element (PCE)
[6]. Although these operator-owned control plane entities have been
proposed and refined over many years, their adoption outside of the
academic community is no closer [3, 7].

The signalling mechanism to support reliable end-to-end delivery ei-
ther remains limited to exploiting AS path information provided by the
Border Gateway Protocol (BGP) [8] or the construction of overlay net-
works [9]. Despite much published material on the RACF and PCE con-
cerning how these entities could function across multiple inter-provider
domains [4, 7, 10, 11] practical schemes are no nearer adoption.

However, the focus of this research is not concerned with estab-
lishing end-to-end paths, or tunnels spanning multiple AS domains.
Rather we aim to design a scheme where the tunnels available in the
network will be advertised by a “Service Broker” to the end-users, giving
the users (i.e. typically via some automated path selection algorithm)
the opportunity to select which of those to use, if any, while sending
their data from a source to destination address. We assume that at
least some operators will be cooperative, letting the broker know about
the available tunnels and their characteristics, since we also consider a
mechanism of financial recompense. Two different versions of a tool, us-

17

ing Genetic Algorithm (GA) and Multi-Objective Evolutionary Algorithm
(MOEA) are also proposed to be present at the users’ access point, which
will select the most “appropriate” path for a given data stream and this
selection will be made depending on constraints such as the amount of
money the user is ready to pay and the end-to-end delay.

1.1 Research Background and Motivation

The motivation for tunnelling over segments or the entire end-to-end
path across the Internet is to overcome limitations inherent in the tra-
ditional next-hop forwarding mechanism. With next-hop forwarding the
path taken by the traffic is determined by the router node at each “hop”
point using information held in its Forwarding Information Base (FIB).
The FIB data is typically constructed based on automatically configured
routing information obtained via intra- and inter-gateway routing pro-
tocols along with operator policy filtering [12]. This presents two key
issues.

First, the end-user has no say in how their data is forwarded. Here,
end-users can be defined as the users of the computer network to send
their data over.

Second, the lack of traffic differentiation means that information
flows along paths based on a simple “least cost” metric leading to load
imbalances and “best effort” equal treatment of all traffic irrespective of
its importance to the user.

A signalling mechanism, e.g., a classification and label switching
mechanism can be used to address both of these issues. Tunnelling
has already been implemented using various technologies [13]. We aim
to give end-users some control over choosing the path their data flows
by making the presence of these tunnels visible, advertised centrally
using a broker, along with a means of steering traffic in sequence be-
tween them. Although the broker we have proposed is expected to know
where the tunnels are, along with the characteristics, it does not need
to know how the tunnels are established or operated. Operator security
is not compromised as the details of the technology used to provide the
tunnels are hidden, and their establishment and maintenance remain
fully under the control of the operator.

Users can choose to use the tunnels, if they wish, for a nominal
fee. The idea of charging customers for better service is not new [14].
However, in our case electing to use the tunnels is optional and it is

18

up to the user which flow(s) are directed through them. As such, some
customers may be happy to pay to obtain flow transport with a better
Quality of Experience (QoE).

In our research work, we have proposed the end-user as the one to
decide whether specific tunnels will be used or not, knowing the “finan-
cial cost” and the expected benefits. Operators are expected to cooperate
as they receive extra revenue by providing the tunnels. However, these
tunnels, only straddle ingress to egress points of specific AS domains
between AS Border Routers (ASBRs). The location, delay, cost and per-
haps resilience of these tunnels (comprising an IP address of the ingress
ASBR and additional information) are passed to the broker. A tool at the
end-user’s access point can see the information advertised by the bro-
ker and offers suitable paths optionally deciding to direct traffic flows
via one or more tunnels if the perceived benefits are sufficient relative
to the cost involved.

1.2 Claims of Novelty

The work outlined in this thesis is based on a number of existing con-
cepts. The concept of tunnelling, label switching via Multi-Protocol La-
bel Switching (MPLS), IP-in-IP encapsulation, and the use of Internet
brokers already exist and are well understood. However, we exploit these
technologies in a novel way:

• The first novel aspect of this proposal is the framework consisting
of a Directory Service Broker (DSB) that operates with the coop-
eration of a number of individual network operators that provide
end-users with selectable access to one or more AS tunnels be-
tween their traffic source and destination. This enables users to
make a choice of their paths in order to avoid certain Internet re-
gions or to receive preferential treatment if their packets are to flow
through them, assuming a tunnel alternative is available.

• A second novel element is two versions of a path selection algo-
rithm, PCAT (GA and MOEA based) at the end-user that dynam-
ically chooses suitable or fittest paths across the Internet based
on two constraints, the need for the traffic to be delivered within a
certain time, and financial cost.

• We further explore the hypothesis that providing even a small den-
sity of tunnels to the customers will be advantageous in terms of

19

Quality of Service (QoS) to the extent that customers be prepared
to pay for a better service and operators would be motivated to pro-
vide such a service. To this end, our third contribution is to assess
the magnitude of this benefit as a function of the tunnel density
under different traffic loading conditions.

Based on the novelty that we have claimed here, a framework is
built to investigate the benefits of using different percentages of tun-
nels present in a part of the Internet for sending data from one AS to
another. The observed results confirm that even for a small number
of tunnels, the end user can obtain some benefits depending on the
location of the tunnels in the network.

1.3 Overview of the Thesis

Chapter 1 provides an introduction to the research topic. It also presents
the research background and motivation for the research, stating
the proposed novelty.

Chapter 2 serves as a brief introduction to Internet architecture, the
impact of latency and neutrality on the Internet and Loose Source
Routing. The chapter also gives a description of tunnelling mech-
anism explaining the basic concepts of one of the possible ways
of implementing tunnels, via Generalised / Multi-Protocol Label
Switching (G/MPLS), as well as defining intra- and inter-domain
tunnelling and the issues with the latter. It then discusses about
some existing internet topology generators, explaining the topol-
ogy generator tool PFP (Positive Feedback Preference) that we are
using for our tool. Next, it describes Dijkstra’s algorithm illustrat-
ing how it works, which is implemented to provide a baseline route
selection algorithm for this research. The chapter ends with the
explanation of the Multi-Objective Optimisation Problem (MOOP)
since the research employs a MOOP, giving further introduction
to Evolutionary Algorithms, one of which is implemented in the
developed path computation tool.

Chapter 3 explores the framework that is implemented to reach the
goal of this research, including an explanation of the role of the
network operator, the directory service broker (DSB) and end-users.
It also gives a view of the selection method of the best or least cost

20

route selection. Finally, the chapter discusses the process of tick-
eting service for the proposed framework.

Chapter 4 has two main sections. Firstly, the section of design and
implementation part describes the development of the intial sim-
ulation tool that has been used to evaluate the proposed frame-
work. The sections in the chapter gives a brief explanation about
how topologies at Autonomous System Border Router (ASBR) level
is generated from that of an Autonomous (AS) level which was pre-
developed by PFP topology generator tool. Then it introduces the
mechanism of generating tunnels and calculating least cost path
by implementing Dijkstra’s Algorithm. A flowchart and a pseu-
docode are included to give an easy idea about how the tool is de-
veloped. Some useful example outputs of the code used to develop
the framework are included in the appendix.

Secondly, It is shown that the framework developed, successfully
calculates the least cost path for no tunnels in the network topol-
ogy and for the presence of different percentages of tunnels. From
these least cost paths, the benefits of tunnels present in the in-
ternet is observed. Chapter 4 evaluates the efficacy of the tunnels
after running several simulations for a number of regional topolo-
gies. Average and standard deviation of the benefits for the use of
tunnels are calculated and graphical representations are included
to show the results. This chapter then ends with a summary of
the observed results that eventually confirms the benefit of even a
small number of tunnels.

Chapter 5 describes the path computation tool, PCAT–I (Path Compu-
tation Algorithm for Tunnels) developed using Genetic algorithm
(GA) with a brief introduction about how the MOOP is converted
to a Single Optimisation Problem (SOOP) where GA is applied.

The design part shows how a PFP-generated AS-level topology is
altered into an input format for the GA, from which the connections
of the nodes are obtained to use for the path computation. Then
the adaption of GA for the tool is explained in the problem context
by describing all the steps included in finding the least cost path.
The parameters of the GA are also described here as they vary
between different engineering applications.

The PCAT–I is then validated comparing the outputs with manually
calculated paths for a small topology. Finally, Chapter 5 includes

21

the results showing appropriate path computation by the tool. The
observation from the results matches the claimed benefit of using
Internet tunnels by showing improvement in the average end-to-
end delay.

Chapter 6 describes the path computation tool, PCAT–II developed us-
ing Strength Pareto Evolutionary Algorithm (SPEA). The main dif-
ference in the application of GA and MOEA is described here after
stating the requirement of finding path(s) where both the cost met-
rics i.e., the fitness values for the paths, are considered without
converting the problem into a SOOP.

The results presented in Chapter 6 confirms that the PCAT–II cal-
culates one or more optimal paths which are the outputs of the end
user software, from which a suitable compromise can be selected.

Chapter 7 concludes the thesis. This chapter discusses the observa-
tions from the developed tools explaining how the research goals
have been achieved. It also confirms the novel contributions, pro-
viding the scope of potential future work.

22

Chapter 2

Background

The focus of this research is on improving the end-to-end communica-
tion performance of the Internet, driven from an end-user perspective.
To provide a suitable context for this work the Section 2.1 summarises
the Internet architecture and some of its relevant protocols, including
the review of several issues in Sections 2.2 and 2.3. Section 2.5 cov-
ers the use of tunnelling protocols, referring to recent publications, as
appropriate. Section 2.6 discusses about the existing internet topology
generator, arguing for the chosen one for performing the required tests
for this research work. This chapter also introduces the algorithms
which have been designed and implemented to prosper the research
framework.

Finally, a summary provides a lead into this research, aimed at ad-
dressing the identified shortfalls.

2.1 Internet Architecture

An “internet” is a group of interconnected networks or a collection of
rapidly growing network connections [15]. The Internet, on the other
hand, is the collection of networks that permits communication be-
tween most research institutions, universities, and many other organi-
sations around the world. In addition, it is defined as a global system of
interconnected computers networks, which are usually termed as Au-
tonomous Systems (ASes).

23

2.1.1 Autonomous System

One of the best basic descriptions of an Autonomous System (AS) can
be found in the IETF document, RFC 4271 [16]:

“The classic definition of an Autonomous System is a set of routers
under a single technical administration, using an interior gateway pro-
tocol (IGP) and common metrics to determine how to route packets
within the AS, and using an inter-AS routing protocol to determine how
to route packets to other ASes. Since this classic definition was devel-
oped, it has become common for a single AS to use several IGPs and
sometimes several sets of metrics within an AS. The use of the term Au-
tonomous System here stresses the fact that, even when multiple IGPs
and metrics are used, the administration of an AS appears to other ASs
to have a single coherent interior routing plan and presents a consistent
picture of what destinations are reachable through it [16, 17].”

In short, an AS is a connected group of one or more IP prefixes run
by one or more network operators which has a single and clearly defined
routing policy. In other words, the routers which are used to move in-
formation through one particular group of networks under the same
administrative authority and control are known as an AS (Autonomous
System). ASes are organised hierarchically into tiers. Tier-1 AS domains
provide support for transit traffic over large geographical areas. Tier-2
domains typically provide regional inter-connectivity. Lower tiers then
function as access networks. If they have a single point of contact to the
rest of the Internet, they are referred to as stub networks or domains.

The routers used for information exchange within a single Autonomous
System are called interior routers and the routing protocol used for this
purpose is called Interior Gateway Protocol (IGP). In the case of an AS,
the route between a pair of nodes is usually selected using distance vec-
tor protocols, e.g., Routing Information Protocol (RIP) or link state pro-
tocols, e.g., Open Shortest Path First (OSPF) based on detailed intra-AS
information. However, when it comes to inter-AS routing, the intra-
AS information is filtered before passing to other ASes for security and
aministrative reasons. Routers that move information between ASes are
called exterior routers and they use an Exterior Gateway Protocol (EGP)
such as Border Gateway Protocol (BGP) [18, 19]. The basic routing ar-
chitecture is shown in Figure 2.1.

The IGPs of an AS are not aware of the internet topology outside their
local AS. They still know, through route redistribution, which of their
edge routers, i.e., the Autonomous Systems Border Routers (ASBRs), to

24

Figure 2.1: Internet architecture

transfer packets to for delivery outside of the local AS. These ASBRs are
the routers to provide connectivity to other ASes [12].

2.1.2 Border Gateway Protocol (BGP)

Border Gateway Protocol (BGP) is the de facto protocol for routing across
multiple ASes in the Internet [17]. In short, it can be described as “the
core routing protocol that makes the Internet work” [20]. Unlike the
RIP or OSPF, it is a policy-based path vector protocol that is designed
to perform the exchange of routing and reachability information among
ASes across the Internet [20].

Every BGP router contains a table to store all the possible reachable
destination address prefixes in the Internet and it is more than 600,000
entries long [21]. For BGP, network prefixes, i.e., a block of IP addresses,
indicate the reachable networks via alternative paths learned from the
neighbours. A BGP router chooses the best path for the data to be sent
through to reach the particular prefix or destination IP address based
on path length or policy requirements. It also lets the neighbours know
about any changes in the path (if there is any) through BGP update
messages [20].

BGP sessions can be established to pass information either between
neighbours of the same AS or between neighbours of different ASes.
The first one is called Internal BGP (IBGP) and the latter is External
BGP (EBGP). Neighbours in the same AS use IBGP and neighbours in
different ASes use EBGP [22]. Figure 2.2 illustrates this.

Figure 2.2: Internal and external BGP

25

In Figure 2.2, AS2 is such an example where an IBGP session is im-
plemented to pass the BGP information in between its routers. More-
over, the traversal of the information from a router of AS1 to a router
of AS2 is made possible by an EBGP session. It is same for the case in
between the routers of AS2 and AS3. A combination of IBGP and EBGP
sessions helps the router from AS1 to be able to advertise a route to
the router of AS3. IBGP sessions included in the routers enable pack-
ets to be forwarded with externally learned destination addresses. BGP
-learnt route information is distributed to the interior gateway protocol,
such as OSPF.

However, let us consider another example with the AS2 having three
routers named as RTR1, RTR2 and RTR3, as shown in Figure 2.3, and
a problem of looping might arise if each of the routers makes an entry
in the AS path. Hence, to avoid this problem, a router adds its AS
number to the AS path only when the route needs to be sent to an
EBGP neighbour and avoids doing so for the routes to be sent to an
IBGP neighbour. Since BGP sessions are run over the Transmission
Control Protocol (TCP), which is a unicast point-to-point protocol, the
risk of looping along the transit path between BGP routers is avoided.
Moreover, if only EBGP routers (RTR2 and RTR3 in Figure 2.3) are aware
of the destination address, the router RTR2 might drop the packet. This
can be solved with the presence of IBGP session in all the routers of the
AS2.

Figure 2.3: Loop prevention

For more reliable routing, a full mesh of IBGP sessions is established
amongst all the routers in an AS, ensuring that all of these routers have
the information they need to direct the packets to the next hop correctly.
After any ASBR of a specific AS gets any information from its neighbour
AS, it passes that to all the routers of the same AS. An example fully

26

meshed IBGP Autonomous System topology is shown in Figure 2.4.

Figure 2.4: A fully meshed IBGP autonomous system topology

2.2 Latency

Implementation of tunnels in the network contributes to reducing net-
work latency. This section discusses the impact of latency in network.

2.2.1 Definition of Latency

In networks, latency is an important constraint. It measures the time
taken by some data to reach its destination address from the source.
Network latency can be measured as either one-way (this is the time
taken for sending data from the source to start to being received at the
destination) or round-trip (this is the time taken for any information to
get to its destination and back again) [23]. The round-trip delay has
an important impact on network services, because a computer using
a TCP sends a certain amount of data to its destination and then the
next data is sent only after receiving an acknowledgement. In AT&T,
latency is measured as the round-trip time of a packet which is sent to
the destination and returned to the sender [24].

In simple words, latency of the packets can be defined as “the delay
from the time of the start of packet transmission at the sender host to
the end of packet transmission at the receiver host [23].”

The following are the main contributors to network latency[25]:

• Propagation Delay: It is the time taken by a packet to travel between
two places, i.e., from sender to receiver. This type of delay depends

27

on the distance to be traversed and it is calculated as:

Dp =
D

S
(2.1)

where D is the distance from sender to receiver and S is the prop-
agation speed.

• Transmission Delay: This is usually the delay introduced by the
medium itself, which varies depending on what the medium is.
Moreover, the size of packet also has an impact on the round-trip
delay since the larger packets need more time. It is calculated as:

Dt =
L

B
(2.2)

where L is the number of bits in a packet and B is link capacity (B
bits per second).

• Processing Delay: This is the time taken by each gateway node to
examine the packet.

• Queuing Delay:It includes the waiting time for the lines to become
available, due to presence of all other traffic that share the same
medium in each hop. This type of delay depends on the link ca-
pacity, type of the traffic and arrival rate of incoming traffic.

• Other computer and storage delays: At the end of a journey in the
network, a packet may experience storage or hard disk access de-
lays. However, this delay is not considered as part of the network
delay.

Ideally, latency is as close to zero as possible and is typically mea-
sured in milliseconds (ms).

2.2.2 Impact of Latency

Internet latency is a focus of attention at the leading edge of the indus-
try. It has been found from several studies [26, 27] that even a slightly
increased latency results in a significant reduction in visits to web pages
from users and revenue.

In 2009, an experiment was run by Eric Schurman and Jake Brut-
lag to find the impact of latency on Bing and Google, respectively. With

28

Bing it was found that a 2 second slowdown changed queries/user by
-1.8% and revenue/user by -4.3% [26]. In addition, it was observed
that an increase of latency of 100 to 400 ms resulted into 0.2% to 0.6%
fall in the number of daily searches via Google [27]. More importantly,
even after returning the latency to its previous level, the users still had
0.21% fewer searches which indicated the long-lasting impact of latency
on user-behaviour [26, 27]. More case studies of Google were also car-
ried out by Marissa Mayer. One experiment resulted from a rise in the
number of search results per page from 10 to 30, with a corresponding
increase in page load times from 400 milliseconds to 900 milliseconds.
This created a 25% drop in first result page searches. When a shopping
cart was included, it resulted into further 2% slower performance that
resulted in a 2% decline in searches. However, image optimisations in
Google Maps made the page load times 2-3 times faster, with significant
increase in user interaction with the site [26].

2.3 Net Neutrality and Quality of Experience

The net neutrality relates to the QoE and the work done for this re-
search is not against the neutrality. This section discusses net neutral-
ity briefly.

2.3.1 Net Neutrality

The term “net neutrality” was first used in 2003, by Tim Wu, as an aug-
mentation of the idea of “common carrier” for telephone systems which
transports data for any person or company with taking the responsibil-
ity of any possible loss [28].

Net neutrality is the idea stating that “all Internet traffic should be
treated equally” [29]. According to this idea, Internet Service Providers
(ISPs) and the governments regulating the Internet treat all the data
equally, without making any discrimination or taking different charges
based on user, content, website, platform, application, type of attached
documents, e.g., emails, audio, video, or mode of communication [28,
30]. Hence, according to this policy, the ISPs cannot have the capabil-
ity of prioritising any data over others while sending it from the source
to the expected destination. In 2014, an information security archi-
tect, Hagai Bar-El, suggested a technical definition of net neutrality as
follows [31]:

29

“Network neutrality is the adherence to the paradigm that op-
eration at a certain layer, by a network component (or provider)
that is chartered for operating at that layer, is not influenced
by interpretation of the processed data at higher layers”.

2.3.2 Net Neutrality in Different Countries

Chile became the first country in the world to enact a law in support
of net neutrality [32] by doing so on June 13, 2010. The second coun-
try in the world and also the first in Europe to do the same was the
Netherlands on June 4, 2012. The second country in Europe to sup-
port net neutrality by enacting a law was Slovenia. Slovenia legislated
a law of electronic communication at the end of 2012. In early 2016,
the differential pricing of data services was prohibited in India by Tele-
com Regulatory Authority of India (TRAI). Nevertheless, violating net
neutrality is a very common situation in India.

In Canada, a decision of using usage-based billing system was made
by Canadian Radio-Television and Telecommunications Commission on
January 25, 2011 [33]. In the UK, PlusNet used “deep packet inspec-
tion” in 2007 in order to implement limits and differential charges for
peer-to-peer, file transfer protocols, and online game traffic, with a clar-
ification by their network management philosophy that each package
they sold was consistent between different websites [34].

The topic of net neutrality is mostly of focus in the USA. There has
been a huge debate on whether the net neutrality law is something nec-
essary. It has been claimed by the opponents of this law that investment
for the improvement of broadband infrastructure is being deterred by
the law [35]. Initially, in February 2015, the Federal Communications
Commission (FCC) voted for regulating ISPs more strictly according to
the law of net neutrality after receiving millions of comments (between
July 2014- September 2014) in favour of changing the internet to a
telecommunication service. Hence, FCC reclassified broadband carri-
ers as “common carriers” [36].

However, AT&T and telecom industry did not support it. In April
2017, the then FCC chairman Ajit Varadaraj Pai does not support the
net neutrality law and he has also stated that he has the plan to “mod-
ernise” FCC policies to “match the reality of the modern marketplace” [37].
His proposal also aims at reclassifying the broadband access as an in-
formation service and a loosening in the strict rules on ISPs. According
to him, this would help the growth of infrastructural investment and

30

innovation of the broadband companies [38].

2.3.3 Issues with Net Neutrality

It can be argued that a few milliseconds delay while sending an email
will not bother the sender or receiver much. On the other hand, the
same amount of delay in a video streaming will leave negative impact on
the Quality of Experience (QoE) of the user.

In 2016, the ITU (Internet Telecommunication Union) accepted the
following definition, which was stated in 2013

“The degree of delight or annoyance of the user of an appli-
cation or service. It results from the fulfilment of his or her
expectations with respect to the utility and / or enjoyment of
the application or service in the light of the user’s personality
and current state [39].”

The issues related to net neutrality have made it an extensive re-
search field. The argument against the regulations of net neutrality is
supported by economists, ISPs, technologists. Even the operators like
Comcast, AT&T, Verizon, IBM, Intel, Nokia, Broadcom, Juniper, QUAL-
COMM, D-link, Wintel, Alcatel-Lucent, Corning, Panasonic, and Erics-
son also oppose net neutrality. In 2006, a website named “Hands Off
The Internet” was created by some of the opponents in order to promote
the arguments against net neutrality, which was mostly financially sup-
ported by AT&T. BellSouth, Alcatel, Cingular and “Citizens Against Gov-
ernment Waste” (CAGW) were included in the member of the site [28].

According to Eric Schimdt, the chairman of Google, from their point
of view, although Google treats the similar type of data equally, it does
not think that treating different types of data differently is wrong. And
this view of Google is something both Google and Verizon generally agree
on. The Wall Street Journal stated on February 24, 2015 that Schimdt
told a white house official that President Barack Obama was making a
wrong decision when he supported the net neutrality rules in the US.

Moreover, net neutrality hinders the investment from broadband com-
panies. This is proved from the statement in a letter sent to FCC leaders
from 60 major ISP technology providers that says:

“instead of billions of broadband investment driving other
sectors of the economy forward, any reduction in this spend-
ing will stifle growth across the entire economy. This is not

31

idle speculation or fear mongering. . . . Title II (common carri-
ers) is going to lead to a slowdown, if not a hold, in broadband
build out, because if you don’t know that you can recover on
your investment, you won’t make it [28].”

A motivation behind our research is that certainly from the point of
view of an end-user, treating all the traffic in the Internet equally is cre-
ating problems. There is a lot of debate going on the topic of whether it
is a good idea to give operators the chance to decide about how differ-
ent traffic should be treated. However, our system is not about charging
users for the services, rather it gives the users the opportunity to choose
if they want to pay for getting a better service and also provides some
control over how their traffic moves across the Internet. Hence, in a
way, we are not against net neutrality, rather we are aiming to give more
control to the users to decide how they want their traffic to be handled
by the Internet.

2.4 Loose Source Routing (LSR)

2.4.1 Definition

Defined in RFC 791 [40], Source Routing is a methodology where the
sender of a packet has some control over the route the packet is going
to traverse through the network. As discussed before, in the traditional
next-hop forwarding mechanism, the next hop is decided by each router
that the packet encounters by examining the address of the destination
node. In contrast, in source routing, the sender has some opportunity
to make some of these decisions based on the information provided by
the source [40, 41].

The two types of Source Routing are “Strict Source Routing” and
“Loose Source Routing”. In Strict Source Routing, each and every hop
along the path is stipulated by the source as a sequence of addresses
that form the route [40]. On the other hand, in Loose Source Routing,
the source can identify a partial route or any number of nodes or inter-
mediate gateways, i.e., some hop-by-hop behaviour mid-path to send its
packet to the next address [40] and only the high-level path is specified
by the source [41]. Effectively it identifies specific points along a path
that the packet must pass through rather than dictate the complete
path. This research supports the use of Loose Source Routing.

32

2.4.2 Use of Loose Source Routing

Although traditional Source Routing is no longer supported in the In-
ternet due to the per packet overhead and security issues [42, 43], a
number of research works have considered leveraging the technology of
Loose Source Routing. This is due to the evident contribution of LSR
in enhancing network flexibility, improving network scalability, and re-
ducing traffic congestion by embracing different routing strategies to
balance network traffic.

Source Routing contributes in the application of reverse path cal-
culation and local link failure recovery [42]. IETF has proposed Seg-
ment Routing to achieve better traffic engineering and faster rerout-
ing [44]. A noteworthy number of research works have been performed
in the field of SDN (Software Defined Network) implementing source
routing. AXON [45], SecondNet [46], Rain Man [47] are proposed models
in datacenters using the idea of source routing. [45] proposes Ethernet-
compatible devices, Axons which use source-routed Ethernet between
themselves. This work also determines the advantages of source-routed
Ethernet over the traditional switched Ethernet for better network scala-
bility and flexible routing algorithm. The research work in [47] presents
the idea of a datacenter network architecture, named “Rain Man” lever-
aging the benefits of source routing after a clear explanation of the rea-
sons to choose source routing over hop-by-hop routing.

With the use of Loose Source Routing, a public-access site can have
some control with filtering incoming traffic which helps during Dis-
tributed Denial of Service (DDoS) attacks [48]. [49] has proposed a
system named “Binder” for aggregating multiple Internet gateways in a
community network implementing finite Loose Source Routing avoiding
any security issues. Moreover, [42] has explored the possibility of us-
ing this routing mechanism in SDN-based WAN (Wide Area Network) as
a substitute for traditional routing as LSR helps improve SDN conver-
gence performance as well as network scalability.

As mentioned in the Introduction, the routing mechanism in our
research takes the form of Loose Source Routing where an end user
is offered with the power to decide whether or not to use one or more
tunnels to send its data over the network. Doing so allows a route to be
partially “pinned”. This is a separate benefit from any delay reduction
packets would experience by traversing tunnels relative to the regular
intra-AS sequence of nodes. Furthermore, in case of any network failure
or traffic congestion, a tunnel can help a host to detour its traffic around

33

the hindrance avoiding affected intermediate AS domains if it wishes to.

2.5 Tunnelling Mechanisms

2.5.1 Layer 2 Tunnelling Protocol (L2TP)

Layer two Tunnelling Protocol (L2TP) is an Internet Engineering Task
Force (IETF) standard tunnelling protocol. It is an extension of PPTP
(Point-to-Point Tunnelling Protocol). L2TP is used to encapsulate Point-
to-Point Protocol (PPP) frames for transmission over TCP/IP, X.25, frame
relay, or Asynchronous Transfer Mode (ATM) networks [50, 51].

In 1996, L2TP was proposed as an extension of two protocols: PPTP
(Point-to-Point Tunnelling Protocol) from Microsoft and, L2F (Layer 2
Forwarding) from Cisco, and combines their best features [52]. Since it
is an IETF standard, unlike the PPTP and L2F, it facilitates compatibility
between VPN (Virtual Private Network) vendors. So L2TP can be used
for creating VPNs over public networks, such as the Internet.

The driving forces behind the development of L2TP include Microsoft
and Cisco Systems; L2TP is supported on many Cisco Systems plat-
forms and by Microsoft operating systems [51].

2.5.2 G-MPLS (Generalised) Multi-Protocol Label Switch-
ing

In a traditional Internet Protocol (IP) network, routing decisions are
made using a longest prefix match. When a packet arrives, the router
examines its header; the destination address is compared with infor-
mation held in a FIB to find the most specific match. The router then
sends the packet to the next hop depending on the destination ad-
dress [12]. This is considered slow and complex. Although mechanisms
have been introduced that ameliorate the delays in this look-up process,
label switching has since been widely adopted due to its traffic engineer-
ing benefits. Conversely, label switching requires a simple lookup of a
fixed-length label to determine the forwarding decision. This is typically
much quicker. Moreover, when there are two traffic flows for the same
destination address, once they intersect, they will be directed along the
same path. Using Multi-Protocol Label Switching (MPLS) technology,
different flows destined for the same address can be assigned to differ-
ent paths and retain their uniqueness even if they intersect at a router.
The operator has additional control both in terms of which flows are

34

assigned to particular paths and the sequence of hops each path takes,
enabling a greater degree of traffic engineering. Indeed, some paths
can be established and used redundantly. Depending on conditions
the traffic can be directed along one or other pre-configured paths with
little switch-over time.

MPLS defines a way to move data between network nodes by consult-
ing a look-up table at each node using a fixed-length label or tag that is
carried in each packet. The main reason for the IETF’s interest in MPLS
is that the signalling protocol, used to establish, maintain and release
these Label Switched Paths (LSPs) is IP based and MPLS can operate
alongside traditional IP forwarding [53].

Label Switched Paths

In hop-by-hop routing, the next hop is decided at each router. In MPLS,
complete Label Switched Paths (LSPs) are pre-established between par-
ticular source-destination pairs. Therefore, unlike the hop-to-hop packet
switching, MPLS is regarded as a form of circuit switching [54].

At the edge of the MPLS domain the Label Edge Router (LER) deter-
mines which LSP to assign an ingress packet to, if any. This operation is
performed by consulting a Forwarding Equivalence Class (FEC) to Label
Binding table. A FEC is a collection of analogous features associated
with a class of packets which may be forwarded in a similar way [53].
If a match is found, then a label is “pushed” onto the packet and the
packet is directed to a specific egress interface. If not, traditional IP
forwarding can be invoked.

Assuming a packet is assigned a label, once it is received at the next
hop Label Switched Router (LSR) the label is used to determine the next
action. This is typically a forwarding operation where the packet label is
updated, and the appropriate egress interface is selected. This is label
swapping. The process repeats from LSR to LSR until the final LSP hop.
In this instance, the label is “popped”, i.e. removed and the packet is
subsequently forwarded using traditional IP means.

The above process is illustrated in Figure 2.5. In particular, it shows
an LSP (i.e. the purple line) carrying data from a host in subnet 47.3.0.0/16
to a host in subnet 47.1.0.0/16 where the MPLS network contains seven
LSRs. At each router, there are interfaces and a corresponding label ta-
ble. Each label number is associated with a particular LSP but its value
is otherwise not significant.

A “FEC to Label Binding” table at the Label Edge Router, “A” is con-

35

Figure 2.5: Example Label Switched Path (LSP)

sulted when traffic arrives from outside the MPLS domain. The LER
selectively determines whether to assign the traffic to an existing LSP
and, if so, pushes a label onto the packet(s). Alternatively, it can for-
ward the traffic using traditional IP forwarding. It may also trigger the
establishment of a new LSP.

Assuming the FEC to label binding operation pushes a label onto the
packets of a particular flow, the traffic is passed along the LSP using
the information held in the label swapping tables of the LSRs.

Figure 2.5 shows the swapping information in the LSRs for the “pur-
ple” LSP. At each hop the ingress interface and packet label are used
to determine the label and egress interface for the next hop. However,
at router “D”, the popping action is invoked, removing the label from
the packet and passing it to an egress interface from where it will be
delivered using traditional IP forwarding.

The label swapping information is set up using a signalling protocol.
This is typically Resource reSerVation Protocol (RSVP) for Traffic Engi-
neering (RSVP-TE). In the case of the “purple” LSP the resulting entries
are as shown in Table 2.1.

Table 2.1: Label data for the “Purple” LSP

LSR Incoming interface Incoming label Outgoing interface Outgoing label

A 1 - 3 50
B 1 50 3 40
C 1 40 2 12
D 1 12 2 -

Another useful feature of MPLS is the concept of label stacking. This

36

mechanism is useful since it allows many LSPs to be treated similarly
over a truck-route whilst maintaining their individuality at the edges.
It is akin to bundling multiple wires into a single conduit for routing
between particular ingress and egress points. At either end of the LSPs
can be unbundled and treated individually. This greatly enhances the
scalability of MPLS.

DiffServ (Differentiated Services)

MPLS provides a mechanism for pre-configuring circuit paths along
which particular packet flows are directed. However, it does not control
how these packets are treated within a router. Differentiated Services
(Diffserv) is a packet classification mechanism that labels each packet
with a DiffServ Code Point (DSCP) that determines how it should be
treated within a router [12]. Typically, the DSCP reuses part of the Type-
of-Service field in the IP version 4 packet header. Its value determines
the Per-Hop Behaviour (PHB) as follows:

• Expedited Forwarding (EF) PHB — Dedicated to low-loss, low-latency
traffic, where packets are placed in a high priority queue for pref-
erential forwarding.

• Assured Forwarding (AF) PHB — Gives assurance of delivery under
prescribed conditions. Typically, packets are placed in a selection
of weighted fair queues.

• Default PHB — Used for best-effort traffic. This class is for the
lowest priority traffic.

A key benefit of DiffServ is that it can easily co-exist with MPLS.
This allows operators to both control the flow path and how the flow is
handled at each hop along that path. This provides considerable traffic
engineering support. Most operators that use MPLS also use DiffServ,
putting the DiffServ code in the header to indicate the priority of the
traffic.

2.5.3 Intra-Domain Tunnelling

Intra-domain tunnelling means the use of tunnelling within an AS do-
main. This approach is widely adopted using MPLS as well as Gen-
eralised MPLS (G-MPLS) where the circuit paths are typically optical
channels. The principal aim is to enable the operator to operate their

37

telecommunications infrastructure more effectively by load balancing
and providing redundancy. The success of such tunnelling deployment
results from the fact that the same operator owns and administers the
entire infrastructure concerned, so trust and the use of a common sig-
nalling mechanism throughout the network are not issues.

The presence of such tunnels is not usually advertised to anyone
outside of the AS domain administration. As such other operators and
end-users have no knowledge of whether tunnels are being used, or
the form they take, unless the operator wishes to make such knowl-
edge known. For example, in some instances, a “large” end-user might
arrange with an operator to link up multiple campus networks at the
edge of the operator’s domain using leased line tunnel(s). These may
have dedicated network resources allocated to them.

In our framework we assume that some operators have chosen to
setup a selection of tunnels across their own AS domain infrastructure
between AS Border Routers. The form that these tunnels take need not
be stated. Some of them may, for example, be implemented as LSPs
with DiffServ class-based support. Additionally, some may provide re-
dundancy using 1:N or 1+1 protection backup paths. Unlike the usual
traffics ending process, in a 1+1 architecture (spoken of as “One Plus
One”),dual copies are sent through two routes in parallel so that, in case
of any network failure, the alternate route can be chosen for receiving
the packet flow. Indeed, some may even be monitored to provide tun-
nel ingress to egress performance statistics. In all of these cases, the
operator provides this information to the framework Broker.

To ensure only valid traffic is allowed to navigate a particular tunnel,
a FEC to label binding (or selective optical channel traffic injection pro-
cess) is needed. The detail of this process is not considered further at
this stage. However, we assume traffic that wishes to traverse a given
tunnel is supplied with a ticket, which is used for the authentication
and the mapping process.

2.5.4 Inter-Domain Tunnelling

To date, many tunnelling concepts have been proposed. These include
proposals for the formation and maintenance of cross-domain tunnels
as well as complete end-to-end dedicated paths. However, given the
degree of trust involved, the risk of exposing sensitive knowledge and
the complexity of managing and funding such tunnels, we regard such
schemes as far from commercial adoption. The mechanics of forming

38

cross-domain tunnels using devices such as Path Computation Ele-
ments with control plane signalling have received a reasonable amount
of attention. Even so we limit ourselves to the possibility of adjacent AS-
domain neighbours occasionally and selectively agreeing to allow tun-
nelled traffic to extend across a shared AS border. In this case several
options are possible although we confine ourselves to just two:

• Traffic exiting a tunnel at one AS border router with an appropri-
ate label, retains the label and uses it directly when it enters an
adjacent tunnel in the neighbouring AS domain. Between the AS
border routers the traffic uses classic IP forwarding.

• Unlike the first one, when traffic reaches the AS border router of
the tunnel portion in the first domain, its label is simply swapped,
and it is forwarded on to the AS border router of the second oper-
ator, thus allowing a contiguous LSP to exist across adjacent AS
domains. How such an LSP is setup is beyond the scope of our
work but possible schemes are discussed in [55].

2.6 Internet Topology Generator

Internet topology can be defined as the connectivity graph of a network,
i.e., the arrangement of a network’s hosts, and the connection of the
Autonomous Systems or routers [15, 56]. Having a clear understand-
ing of the internet topology is a basic requirement for many network
researches [57].

Considering the importance of having a realistic internet topology
for internet research, there have been a reasonable amount of research
works on this topic and most of them immerse on the AS-level connec-
tion. According to [56], the main reasons for this are:

• AS-level is the highest granularity of the internet and the informa-
tion of the AS-level connection does not harm the privacy of the
operators.

• The information for the other levels are comparatively harder to
obtain.

• AS-level topology is engineered by technical or economic constraints.

To benefit the network research, researchers have developed a num-
ber of internet topology generator tools.

39

2.6.1 Importance of Internet Topology Generator

In early 2000s, the difficulty of modelling a precise topology was con-
sidered as a crucial reason behind the lack of enough knowledge about
Internet simulation since the physical and engineering properties of a
network depends on the internet topology [58, 59]. The knowledge of
the evolution of the internet topology is a must in order to have an un-
derstanding towards the internet architecture and how it interacts with
social, economic and technical forces [60]. Moreover, the evaluation of
network applications is dependent on how precisely the topology is gen-
erated [61]. It also plays important roles in network planning, optimal
routing technique and detection of network failures [62].

In short, a precise topology generator renders the chances of design-
ing more methodical protocols, creating accurate models for simulation,
and estimating more topological parameters which help to create a real
internet-like network.

However, this is not a part of our research, rather we have selected
one generator among the existing ones.

2.6.2 Internet Topology Generating Models

A topology is the resultant of the cautious process of network design, ap-
plying the design guidelines [63–65]. Some topology models are briefly
discussed in this section.

Early Models

The simplest model was the Pure Random model where a set of nodes
is distributed in a plane, and an edge is added between each pair of the
nodes with a probability p, where the value of p is fixed [56]. Paul Erdős
and Alfred Rényi developed the theory of the random graph [66–68]. The
first popular model was the Waxman mode [69], where the probability
(p) to add edges between nodes is a function of the distance between the
nodes. Based on these, Transit-Stub [70] method was developed with
an aim to generate a large sparsely-connected internet-like topology.
In this method, each node of an initially generated random graph is
treated as a transit domain. Each of the transit domains then grow
into another connected random graph which represents the backbone
of the transit domain. Then a number of random graphs are generated
representing the Stub domains attached to the Transit node. Finally,
a pair of nodes, one from transit domains and another from the stub

40

domains or one node from two different stub domains are connected.
The GT-ITM (Georgia Tech Internetwork Topology Models) tool is used to
generate Transit-Stub networks. [71] proves that Waxman and Transit-
Stub model lack the Power law as observed in the real network.

Pure Power Law Models

Since the Faloutsos brothers [72, 73] discovered the power laws, it has
been under the limelight of the research on the internet topology. The
work is later summarised in [74], discussing the topology at AS-level.If
x and y are the measures of interest, then the power law would be:

y ∝ xa (2.3)

where a is a constant.
The PLOD (Power Law Out-Degree) [75] and PLRG (Power Law Ran-

dom Graph) [76] are two pure power law models.

Dynamic Growth Models

As mentioned in Section 2.1, internet is growing rapidly. The dynamic
growth models generate the internet topology by simulating the internet
growth [56]. The model developed by Barabási and Albert [77] mentions
two main features of the internet topology:

• Incremental growth: with the continuous introduction of new nodes,
the network keeps growing.

• Preferential attachment: while attaching a new node, preference
is given to the nodes which are already well connected. It uses
power-law link distribution [78]

Topology generator tools are designed for the different topology models.

2.6.3 Existing Topology Generator Tools

The AS-level Internet topology has been modelled for years from the in-
formation retrieved from BGP and traceroute data. Later this is proved
not to be completely precise as these data sometimes do not have ade-
quate information to form the peering links [60]. One of the main rea-
sons behind this inaccuracy is the lack of the availability and visibility
of the information at all levels of the internet [79].

41

Due to the high importance of a realistic internet topology, there has
been a considerable amount of work to design topology generator tools.
Hence, there are a number of internet topology generators available till
date; e.g., BRITE [80], Inet [81, 82], GT-ITM [70], IGen [63], PFP [83] etc.
[58, 84] claim that some of the topology generators like Tier, BRITE, GT-
ITM and Inet do not always satisfy the power law distribution or large-
scale hierarchy and evolution mechanism.

There are two main perspectives to generate topologies; named as
equilibrium (top-down) and non-equilibrium (bottom-up). The equilib-
rium approach generates a group of graphs which replicates some spe-
cific properties and then derives other ones using standard methods.
And the non-equilibrium method is about copying the real dynamics of
the network and depending on its accuracy, an algorithm generates a
network topology of a specified size keeping similarities with the obser-
vations. Examples of the non-equilibrium approach are BA Barabási-
Albert), HOT (Heuristically Optimal Topology) and PFP (Positive Feed-
back Preference) [58].

2.6.4 Choice of Internet Topology Generator

The use of inaccurate connections of the ASes in network simulation can
result into unrealistic routes or network paths [85, 86]. After doing some
careful research, initially we narrowed down our choice in between IGen
and PFP. Finally, PFP (Positive Feedback Preference) has been chosen to
generate regional AS-level Internet topologies which are then fed into
the bespoke tool we have developed.

We know that IGen [61] generates router-level end-to-end topology
using heuristics and geographic constraints, where the routers are grouped
into Point of Presence (POP) based on their geographical proximity and
links are generated based on the network heuristics. Despite of its goal
of generating a realistic topology, it does not answer the question of how
the divergent ISP topologies should be interconnected. As our research
concerns with the inter-AS and intra-AS tunnels, we are interested in
the AS-level information only.

As mentioned in Section 2.6, generating AS-level topology is easier
and less prone to errors. It is noteworthy that the AS-level internet
topology not only undergoes a constant growth of links, but it is also
impacted by the changes of the policy routing and hot potato routing at
the IP-level [87]. We have chosen to use PFP as it takes care of this fact
while generating synthetic AS-level internet topologies.

42

Moreover, The PFP model has been validated with the AS-level graph
derived from traceroute data [83]. This data is claimed to generate more
real-internet like graph compared to the measurement data obtained
from BGP table [88].

2.6.5 PFP (Positive Feedback Preference)

PFP is a phenomenological model for AS-level Internet topology, which
was developed by Raul Mondragon and Shi Zhou in 2004. It can pre-
cisely reproduce a number of topological characteristics, e.g., degree
distribution, rich club connectivity, maximum degree, shortest path
length, short cycles, disassociative mixing and betweenness centrality
[83].

PFP [78] uses two mechanisms for topology generation [84]:

• Interactive Growth: The PFP tool starts from a small random
AS-graph and keeps growing where at each step, new nodes are
attached to old nodes and old nodes also peer with other old nodes,

– with probability p ∈ [0, 1], a new node is attached to one old
node (we call it a host), and then the host develops new (inter-
nal) links to two other old nodes or peer nodes.

– with probability 1−p, a new node is attached to two hosts, one
of which is linked to a peer node.

Numerical simulation shows that when parameter p = 0.4, the PFP
model can reproduce the best result.

• Positive Feedback Preference: It is important to note that the
above mentioned mechanism of interactive growth, host nodes and
peer nodes are not chosen uniformly and randomly, rather the
nodes already having connections will be prioritised. The prob-
ability for a new node of choosing a node i with node degree k is:

Π =
k1+δ ln k
i∑
j k

1+δ ln k
j

(2.4)

Where δ ≥ 0.

According to the developers of the PFP, numerical simulation shows
PFP performs better when parameter δ = 0 : 0.021 i.e., δ = 0.048.

43

In the PFP mechanism, preference is given to the more connected
nodes. Thus Positive Feedback Preference means that with ac-
quiring new links, the node will also get the advantage of getting
prioritised while more new links are grown – this is a non-linear
feedback loop. In 2009, Shi Zhou and other researchers have cal-
culated the probability of a node gaining a new link, which is a
function of the node degree as 0.48 [58]. The more links a node
has, the more is its chance to obtain further links. The developers
of PFP have explained the consequence as, “the rich not only get
richer, but they get proportionately richer” [58, 84].

PFP-generated AS-level topology is used as an input of the research
purpose.

2.7 Dijkstra’s Algorithm

2.7.1 Definition

Dijkstra’s algorithm [89, 90] was formulated by computer scientist Eds-
ger W. Dijkstra in 1956, which was published in 1959 [91]. This is an
algorithm for finding the shortest path from a starting node to a target
node in a weighted graph. More precisely, it finds the least cost path
from a selected node to all the other nodes, resulting into a shortest-
path tree. It can also be stopped at a certain point to find least cost
path from a single node to another specific node. Link state protocols
are built around this algorithm. In short, it can be stated that the algo-
rithm constructs (a) tree of minimum total length between the n nodes,
where the tree is a graph with one and only one path between every two
nodes.

In order to construct the tree, three types of branches can be ex-
plained as follows:

• Branches, which are definitely assigned to the tree under con-
struction (they will be in a sub tree);

• Branches, from which the next branch to be added to set I, will be
selected;

• Branches, which are still rejected or not considered.

In addition, the nodes can be divided into two sets as follows:

• Nodes, which are connected by the branches of set I;

44

• Remaining nodes (one and only one branch of set II will lead to
each of these nodes).

Initially, the node that is the “source node”, is the only member of
set A. Set II is empty and the branches ending at the source node are
placed in set II. Then two steps are followed repeatedly to construct the
tree:

• Step 1: The least cost branch(es) from set II is/are erased from Set
II and placed in Set I. This results into transfer of one node from
Set B to Set A.

• Step 2: Find the branches from the recently transferred node (from
Set B to Set A) to the nodes which are still there in Set B. If a
corresponding branch is found in Set II which is shorter than the
branch under construction, then the shorter branch will replace
the longer one in Set II.

After completion of step 2, the process needs to be repeated until
there is no branch left in set II and no node left in set B.

2.7.2 Adapting the Algorithm for Routers

While implementing the algorithm to routers, the routers can be divided
into three sets:

• Set I (The Tree Database): In this set, the links are added to the
shortest path tree by adding them here. After finishing the algo-
rithm, the shortest path tree will be obtained here.

• Set II (The Candidate Database): Here, the links are copied from
Set III, i.e., the link state database to this in a prescribed order,
when they become candidates for adding to the tree.

• Set III (The Link State Database): All the remaining links are in-
cluded in this set.

The routers can be placed in two sets as the nodes (as described in
Section 2.7.1):

• Set A includes the routers, which are connected by the links in the
tree database Set I (capitalise).

• Set B includes the rest of the routers.

45

At the end of the algorithm, set B will be vacant.
Router Links can be represented as triples (Router ID, Neighbour ID,

Cost). A version of Dijkstra’s algorithm adapted for routers [90] can be
summarised as follows:

• A router, which is taken as the source node, is added to the tree
database as the first router in that, having itself as the neighbour
ID as well, resulting into a “0” cost.

• The triples from the link state database, which represents links to
the root router’s neighbours, i.e., to the routers that have a direct
link from the source router, are added to the Candidate database.

• There is cost associated with the links from the source router to
the other routers residing in the Candidate database. At this stage,
these costs are calculated. Among all the links, the link that has
the least cost associated is removed from the candidate list and
placed in the tree database. In some cases, more than one link
might have equally low cost from the root and any of those can be
chosen.

• Now, the Neighbour ID of the link that is just added to the Tree
database is examined. With the exception of any triples whose
Neighbour ID is already in the Tree database, triples in the link
state database describing that router’s neighbours are added to
the Candidate database.

• If there are still elements in the Candidate database, the process
needs to be repeated. The algorithm is continued until there are
no more triples in the Candidate database.

Dijkstra’s algorithm terminates when there is one Neighbour ID en-
try in the Tree database to describe every router. At this point, the
shortest path tree is complete.

2.7.3 Example of Dijkstra’s Algorithm

An example is worked out in this section to explain how Dijkstra’s al-
gorithm is implemented. Figure 2.6 represents a network with seven
routers, having links among them associated with different link costs.
However, not necessarily the incoming and outgoing costs from the
same router will be same; e.g., the link from router 2 (R2) to router
3 (R3) has a cost of 2, whereas the link from R3 to R2 has a cost of 5.

46

Figure 2.6: Example topology comprising seven routers with dif-
ferent costs

From Figure 2.6, Table 2.2 can be formed having three columns rep-
resenting the three values of a triple: Router ID, Neighbour ID and Cost.

Table 2.2: List of routers, their neighbours and the cost to them

Router ID Neighbour ID Cost

R1 R2 4
R1 R4 2
R1 R5 4
R2 R1 4
R2 R3 2
R2 R5 3
R2 R6 1
R3 R2 5
R3 R6 1
R4 R1 2
R4 R5 10
R4 R7 2
R5 R1 4
R5 R2 2
R5 R4 2
R6 R2 1
R6 R3 1
R7 R4 5

Then, Table 2.3 shows how to get the shortest path from R1 to the
other routers step by step by implementing Dijkstra’s algorithm. The

47

highlighted elements of the first column indicates the routers which
are removed from the candidate list and added to the tree list. The
comments explain the tasks at every step.

Table 2.3: Implementing Dijkstra’s Algorithm

Candidate
Total cost
to root

Tree Comments

0 R1, R1, 0 • Router R1 adds itself to the
tree as root.

R1, R2, 4
R1, R4, 2
R1, R5, 4

4
2
4

R1, R1, 0
• The links to all the neighbour

routers of R1 is added to the
candidate list.

R1, R2, 4
R1, R5, 4
R4, R1, 2

R4, R5, 10
R4, R7, 2

4
4
2+2 = 4
2+10 = 12
2 +2 = 4

R1, R1, 0
R1, R4, 2

• There are two triples having the
total lowest cost of 4. When
more than one have the same
lowest cost, any of them can be
chosen. The triple having the
total lowest cost (R1, R4, 2) is
added to the tree after removing
it from the candidate database.

• All the neighbours of R4 are
added to the candidate list now.

48

Continuation of Table 2.3: Implementing Dijkstra’s Algorithm.

Candidate
Total cost
to root

Tree Comments

R1, R5, 4
R4, R5, 10

R4, R7, 2
R2, R1, 4

R2, R3, 2
R2, R5, 3

R2, R6, 1

4
12
4
4+4 = 8
4+2 = 6
4+3 = 7
4+1 = 5

R1, R1, 0
R1, R4, 2
R1, R2, 4

• The triple having the total
lowest cost of 4, (R1, R4, 2) is
added to the tree after removing
it from the candidate database.

• R4, R1, 2 is removed from the
candidate list, since it is
showing a route to R1, which is
the source route.

• All the neighbours of R2 are
added to the candidate list now.

R4, R7, 2
R2, R3, 2
R2, R6, 1
R5, R1, 4
R5, R2, 2
R5, R4, 4

4
6
5
4+4 = 8
4+2 = 6
4+2 = 6

R1, R1, 0
R1, R4, 2
R1, R2, 4
R1, R5, 4

• R1, R5, 4 is the triple with the
total lowest cost, which is
taken to the tree from the
candidate database.

• R4, R5, 10 and R2, R5, 3 are
removed from candidate
database, since already a route
to R5 with less total cost has
been added to the tree, which
is R1, R5, 4.

• R2, R1, 4 is removed since it is
representing a path to the
source router, R1.

• All the neighbours of R5 are
added to the candidate
database.

49

Continuation of Table 2.3: Implementing Dijkstra’s Algorithm.

Candidate
Total cost
to root

Tree Comments

R2, R3, 2
R2, R6, 1
R7, R4, 5

6
5
2+5 = 7

R1, R1, 0
R1, R4, 2
R1, R2, 4
R1, R5, 4
R4, R7, 2
R2, R6, 1

• The lowest total cost is 4 now
and the triple having it is R4,
R7, 2. Hence, this is removed
from the candidate database
and added to the tree database.

• The triples R5, R1, 4 is remove
from the candidate database
since it represents a link to the
source router, R1.

• R5, R2, 2 and R5, R4, 2 are
removed from the candidate
database because routes to R2
and R4 are already there in the
tree database.

• All links to the neighbour
routers of R7 are added to the
candidate list.

50

Continuation of Table 2.3: Implementing Dijkstra’s Algorithm.

Candidate
Total cost
to root

Tree Comments

R2, R3, 2
R6, R2, 1
R6, R3, 1

6
1+1 = 2
1+1 = 2

R1, R1, 0
R1, R4, 2
R1, R2, 4
R1, R5, 4
R4, R7, 2
R2, R6, 1

• The triple having the lowest
total cost is R2, R6, 1. This is
added to the tree after removing
it from the candidate database.

• R7, R4, 5 is dropped since
there is already a triple in the
tree database with the least
cost to the router R4.

• All links to the neighbour
routers of R6 from it are added
to the candidate list.

R1, R1, 0
R1, R4, 2
R1, R2, 4
R1, R5, 4
R4, R7, 2
R2, R6, 1
R2, R3, 2

• Both of R6, R2, 1 and R6, R3, 1
have the same lowest total cost,
2. But already least cost path
to R2 and R3 are there in the
tree database. So, both of
these are simply dropped from
the candidate database.

• So, the only triple left is R2,
R3, 2. This is now added to the
database

• No more candidates are left in
the list. Therefore, this is the
end of executing the algorithm.
Also, the least cost path is
complete.

51

The final tree database entries of the least cost paths from Router 1
is presented in Table 2.4:

Table 2.4: Final tree for the least cost paths from Router 1

Router ID Neighbour ID Cost

R1 R1 0
R1 R4 2
R1 R2 4
R1 R5 4
R4 R7 2
R2 R6 1
R2 R3 2

From this database information, the tree can be drawn as shown
in Figure 2.7, which has router R1 as the source router. The paths to
all the other routers are shown along with their associated least cost
information.

Figure 2.7: Routing tree showing the least cost path from router
R1

The Dijkstra’s Algorithm works successfully for a single metric. We
have implemented the algorithm to develop our first simulation tool to
find the least cost path from a source AS to a destination AS. Chapter
4 explains the design and development of the tool.

Later another tool has been developed that can do the same, but
considers multiple constraints, which falls in the category of Multi-

52

Objective Optimisation Problem (MOOP). Section 2.8 gives a brief in-
troduction to this.

2.8 Multi-Objective Optimisation Problem (MOOP)

In most real-world contexts, multiple and conflicting objectives are in-
volved. For example, to make a production line, a number of competing
number of factors/criteria need to be considered:

• Maximising the production rate

• Maximising the machine utilisation

• Minimising the throughput time

• Minimising the overall production time

• Minimising the overall cost

This can be defined as a Multi-Objective Optimisation Problem MOOP.
Only if all of these objectives can be achieved concurrently, then the
problem can be converted into a single objective problem which is very
often difficult because of the conflicting nature of the objectives. Hence,
we need to find a “compromise” among the objectives. This is required
for the tool we are aiming to develop as well. Multi-objective optimisation
is a method that optimises two or more objectives that conflict being
subject to some constraints simultaneously [92].

Sections 2.8.1, 2.8.2, 2.8.3 and 2.8.4 present the basic concepts of
MOOP.

2.8.1 MOOP Problem

A MOOP usually includes a set of decision vectors, a set of objective
vectors and a number of constraints [1, 93].

Let us assume, a scenario where MOOP has:

• A set of decision vectors or solutions, x, which is composed of n
number of decision variables (x1, x2, x3,. . . ,xn), in n-dimensional
decision space,X.

i.e., x = (x1, x2, x3,, xn) ∈ X ⊆ Rn, where R is the set of real
numbers.

• A set of m objective functions, f(x) = (f1(x), f2(x), f3(x),, fm(x)).

53

• A set of objective vectors, y that represents m objective variables
(y1, y2, y3,, ym) In m-dimensional objective space Y .

i.e., y = (y1, y2, y3,, ym) ∈ Y ⊆ Rm.

• A set of k constraints h(x).

i.e., h = h(x) = (h1(x), h2(x), h3(x),, hk(x)),

And the aim of the MOOP is to maximise all the objectives.
Comparing two solutions in a Single Objective Optimisation Prob-

lem (SOOP) is not complicated. Considering the objective function,
whichever solution performs better than the other, is the “optimised”
solution, e.g., a solution x1 ∈ X is better than another solution x2 ∈ X if
y1 > y2 Where y1 = f(x1) and y2 = f(x2). Even if more than one solution
exists in the decision space, all of those will be mapped to the same
objective value.

Figure 2.8 illustrates the decision and objective spaces in MOOP.

Figure 2.8: Decision and objective spaces in MOOP [1]

This is not the case for comparing in MOOP as the number of ob-
jectives to take into account is more. For making such comparisons
among different solutions, the concept of Pareto Dominance is intro-
duced, which was originally proposed by an Italian economist, Vilfredo
Pareto in his economics studies. The next section gives a brief intro-
duction about Pareto Dominance. The idea of using pareto fitness for
solving a MOOP was introduced by Goldberg in 1989 [94, 95].

2.8.2 Pareto Dominance

This subsection explains the dominance for two decision vectors x1 and
x2 in a minimisation problem.

54

• x1 is better than the other solution x2, i.e., x1 dominates x2 or
(x1 > x2), if all the components of y1 = f(x1) dominates y2 = f(x2).
In other words, if all the components of y1 = f(x1) are smaller than
the corresponding ones of y2 = f(x2).

In short, x1 > x2 (x1 dominates x2) iff f(x1) < f(x2).

• Again, x1 weakly dominates x2 if at least one component of y1 is
smaller than y2 and not worse than the other components OR if
all the components of y1 and y2 are equal.

In short, x1 ≥ x2 (x1 weakly dominates x2) iff f(x1) ≤ f(x2).

• Solutions x1 And x2 are indifferent or incomparable if neither
of them dominates the other and if they are not equal to each
other. This will be true if one/more components of y1 is/are smaller
than the corresponding components of y2 and at the same time
one/more components of y2 is/are smaller than the correspond-
ing components of y1.

In short, x1 ∼ x2 (x1 is indifferent or incomparable to x2) iff
f(x1) � f(x2) ∧ f(x1) � f(x2)

Figure 2.9 represents an example of the Pareto Dominance.

Figure 2.9: Pareto dominance

Let us assume that, two objective functions for the MOOP problem
is f1 and f2 and both of these need to be maximised where objective
vectors are a, b, c, d, e, f, g, h and i in the objective space. The

55

feasible set Yf is represented by the circle and is divided into four zones
according to the value of the two objective functions of a.

From Figure 2.9, we can see that the values of the functions of b and
c in zone 1 are smaller than a. So the decision vector of a dominates
the decision vector of b and c in zone 1. In zone 2, for both of the
vectors d and e, one of the objective functions has better value than a
and the other has worse, which means they are indifferent. The same
observation is true for zone 4. Now, for the vectors f and g in zone
3, it is clearly visible that their values are greater than a. Hence, the
corresponding decision vectors of f and g dominates the decision vector
of a.

2.8.3 Pareto Optimality

Based on the previous explanation, the concept of Pareto optimality can
be discussed too. The solutions which are not dominated by any other
solution, are also known as the optimal solution. The optimality of the
solutions is due to the fact that no solution can be considered as bet-
ter than any other solution with respect to all the objective functions.
In the example explained from Figure 2.9, the solution f has the ul-
timate optimality since no other vector has better value for any of the
two objective functions involved and they also cannot have a better ob-
jective value without compromising the other. This is also known as
non-dominated solution.

We can say, a decision vector, x ∈ Xf is non-dominated in a set
S ⊆ Xf iff s ∈ S : s > x.

And if the set S is equal to Xf , then x is Pareto optimal.
The solutions are known as optimal solutions, which can be mapped

to different objective vectors [96, 97]. It is important to note that, a
MOOP gets converted to a SOOP if all the functions have the tendency to
have better or worse values at the same time [1]. But this is not the case
for most of the real cases where the number of optimal objective vectors
can be more than one due to the fact that the compromise between the
constraints can always be different. In such cases, rather than having a
single optimal solution (as shown in the previous example), we will look
for a set of trade-off or compromise solutions, which is typically known
as a non-dominated set.

Figure 2.10 shows the Pareto Optimality in a general MOOP.
The set of optimal solutions in the decision space X is in general

denoted as the Pareto set X∗ ⊆ X, and its image can be denoted in

56

Figure 2.10: Pareto optimality in a general Multi-objective Optimi-
sation Problem [2]

objective space as Pareto front Y ∗ = f(X∗) ⊆ Y .

2.8.4 Solving MOOP

For many multi-objective optimisation problems, the knowledge of the
Pareto set helps solving them. Two main steps are involved in this [1]:

• Searching: Searching finds the Pareto-optimal solutions;

• Decision Making: Decision-making is actually about the decision
to choose the solution from the Pareto-optimal set, that makes the
best compromise in regard to the functions or constraints.

A number of approaches are there for the two steps [1, 96]:

• Priori or Before search: In order to find a Pareto-optimal solution,
this method requires some preference information before of the
search process.

• Posterior or After search: Having multiple objectives defined,
the method searches (or approximates) the Pareto-optimal solu-
tions without any preference information. Then, a decision maker
chooses a suitable final solution.

• Interactive or During search: This method needs to search for
the solution with the preference information provided interactively.
During each of iteration, the decision maker receives some “trade-
offs” for the selection and the search is carried on based on the
preference information provided by the decision-maker.

57

• Combination of the above: A fourth approach can be made to-
wards finding the solution that will actually combine the above
strategies.

In order to solve MOOP, many conventional techniques have been
proposed [92], including the following:

• Weighted Sum Technique: In this technique, multiple objectives
are converted into single objective using linear combination of ob-
jectives.

• Constraint Based Technique: From the multiple given objectives,
each time this technique takes only one into account i.e., for ‘k’
number of given objectives it will consider one and treat the rest
as k-1 as constraints. The same is followed for all of the objectives
step-by-step and the final solution is obtained. Knowledge about
the constraints is a must for this technique.

• Evolutionary Based Techniques: These techniques are actually
based on the idea of Genetic Algorithms and perform well for solv-
ing MOOP.

We have used the evolutionary based technique for developing our be-
spoke tool. Section 2.9 gives a brief idea about the Evolutionary Algo-
rithms.

2.9 Evolutionary Algorithm (EA)

Being originally developed in the late 1950’s, EAs can be described as
a class of stochastic optimization method that simulates the process of
natural evolution [96]. Since 1970s, a number of evolutionary meth-
ods have been suggested, the main three are: Genetic Algorithm (GA),
Evolutionary Strategy (ES) and Evolutionary Programming (EP) [98].
All of these are based on biology-inspired mechanisms like mutation,
crossover, and natural selection to refine a set of candidate solutions
[1, 99]. Despite of their similarities in general, the algorithms are dif-
ferent from one another [100]. Genetic Algorithms were developed by
Holland [101], and thoroughly reviewed by Goldberg [94]. Evolution-
ary Strategies were developed by Rechenberg [102] and Schwefel [103];
and Evolutionary Programming was developed by L.J. Fogel and D.B.
Fogel [104].

58

2.9.1 Similarities and Differences

GA, ES and EP- all of these three operate on fixed length strings, which
contain real values in ESs and EPs and binary numbers in the canoni-
cal GAs [98, 105–107]. Based on a set of initial population and search
point, all the three algorithms incorporate a mutation operator, which
is the mainspring for ESs and EPs. However, GAs and ESs also use a
recombination operator, which is the primary operator for the GA [108].
They also use a selection operator which applies evolutionary pressure,
either “instinctive” (in ESs and EPs, the operator determines which in-
dividuals will be excluded from the new population) or “preservative” (in
the GA the operator selects individuals for breeding).

In GAs and EP selection is probabilistic. In contrast, ESs use a de-
terministic selection. ESs and meta-EP allow self-adaptation or self-
learning mechanism [108], where parameters controlling mutation are
allowed to evolve along with object variables. Finally, it is worth noting
that the implementer is free to modify these algorithms. For example,
the GA can be run using an integer alphabet.

2.9.2 Flowchart for EA

Figure 2.11 gives a preview of steps involved in a EA.

Figure 2.11: Evolutionary Algorithm flowchart

At the beginning of the evolutionary algorithm, in the “Initialisa-
tion” stage, the population can be generated by either a random or
pre-defined method. At the “Evaluation” stage, evaluation of the candi-

59

date solutions of the population is done using a fitness function. This
scores their merit and removes weaker solutions. Then comes the “Mat-
ing Selection” where a selection of the candidates with superior fitness
is placed in the mating pool. This phase is stochastic, i.e., the fitter
candidates have more possibility to become parents by being placed in
the mating pool. The least fit ones will have been eliminated. After this,
in “Reproduction”, the candidate solutions, which are selected from the
mating pool, produce offspring using crossover and mutation operators
and this offspring form a new population. This population’s quality is
comparatively better since it is produced from the fitter candidates. At
the “Environment Selection” phase, the new population is assessed in
order to determine which candidates will have the opportunity to mate
and produce offspring for the next generation.

The algorithm completes when the terminal condition is satisfied or
a solution with enough quality is found. Otherwise, the evaluation-
selection-reproduction process keeps repeating. Two main mechanisms,
Exploration and Exploitation are beneficial for EAs. Exploration can be
defined as the capability of creating population diversity by exploring
new solutions in the search space. On the other hand, Exploitation
decreases the population diversity by focusing on the fitter candidate
solutions [109].

2.9.3 Key Components of EA

The key components of an Evolutionary Algorithm (EA) are explained in
this section.

• Individual Representation: In the evolutionary algorithms, the
initial task is about relating the actual problem scenario with the
problem-solving space where evolution is supposed to take place.
This relation or link is typically obtained by designing an individual
representation. In an EA, an individual solution is the candidate
solution and it can also be referred as “chromosome”. A place-
holder in an individual is called a variable, a locus (plural: loci)
or gene and its value is addressed as a value or an allele. The
possible solutions in the original problem context are referred to
as phenotypes. Mappings of phenotypes onto individuals in the
EAs, are called genotypes. The method of designing a mapping
between phenotypes and genotypes is called representation. Indi-
vidual representation is problem specific and it can be encoded in
binary, float or integer.

60

• Evaluation Function or Fitness Function: The evaluation func-
tion or fitness function may differ based on the context of the
problem and this is used for measuring the quality of the chro-
mosomes. It is noteworthy that the idea of an objective function in
optimisation problems is different from that of a fitness function.
However, if the problem needs maximisation, then the objective
function and the evaluation function can be the same since fit-
ness is usually associated with maximisation. On the contrary, if
the context requires minimisation, it needs a fitness assignment
process for the transformation between the objective function and
the fitness function.

• Mating Selection: Mating selection, or parent selection, focuses
on selecting fitter individuals from the current generation and send
them to a structure called mating pool to be the parents for repro-
duction. The mating selection is typically probabilistic. In this
selection process, a fitter individual has a higher chance to be se-
lected than a less fit one. This helps ameliorating the quality of
the population [110, 111]. An individual with poor quality still
has a small chance of being selected to maintain diversity in the
population to allow exploration. Two basic selection mechanisms
are: Proportionate and Ordinal-based selection [94, 112–114]. The
proportionate one selects the fitter chromosomes. Examples of
some schemes are roulette wheel selection, stochastic remainder
and stochastic universal selection. In ordinal based selection, the
selection pressure depends on the rank of the population which is
not related to the individual fitness. Example schemes of ordinal-
based selection are tournament selection, selection, truncation
selection, and linear ranking selection. Commonly used mating
selection schemes are proportional selection (roulette wheel selec-
tion, tournament selection [115], and rank-based selection.

• Reproduction Operator: The selected parent chromosomes un-
dergo the reproduction to generate new individuals. Reproduction
consists of two operators: crossover and mutation (recombination).
The crossover operator produces offspring by exchanging gene in-
formation from two parents, which allows the best part of the se-
lected two parents to combine in order to generate offspring. The
selection of the best parts is usually done with a number of ran-
dom choices. Crossover is stochastic in regard to what parts of
the parents’ chromosomes are combined. The mutation operator

61

helps to maintain the population’s genetic diversity by amending
some gene values randomly. Similar to the crossover operator, the
mutation operator is stochastic. The frequency with which these
two operators are invoked is controlled by crossover and mutation
rates.

• Environmental Selection or Survivor Selection: Environmen-
tal selection or the survivor selection mechanism is used to select
individuals based on their quality (fitness) which is similar to mat-
ing selection. As the size of a population is generally a constant,
environmental selection is used to decide which individuals can
survive through to the next generation depending on their fitness.
Environmental selection is often deterministic. For instance, the
current population and its offspring are merged, and the top seg-
ment is selected according to their fitness.

2.9.4 Advantages

The main reasons for the popularity of Evolutionary Algorithms are as
follows [116]:

• The EAs do not need any derivative information.

• They are relatively simple to implement

• They have also been proved as robust and powerful well-functioning
methods to solve problems which involve:

– Multiple conflicting objectives;

– Unmanageably large and highly complex search spaces [94,
96].

• Moreover, the use of population in EAs (explained Sections 2.9.2
and 2.9.3) also has a number of advantages [117]:

– The EA procedure can function with a parallel processing power.

– Because of the populations, the Evolutionary Algorithm can
find multiple optimal solutions, which eventually facilitates
the solution of multi-modal and multi-objective optimisation
problems.

– Finally, since there will be a number of evolving populations
generated, hence any Evolutionary Algorithm will get the op-
portunity of normalising decision vectors (as well as objec-

62

tive and constraint functions) within those by using best min-
imum and maximum values in the population.

For our research purpose we have used the Genetic Algorithm.

2.9.5 Genetic Algorithm (GA)

The concept of Genetic Algorithm was originally developed by John Hol-
land and his students at the University of Michigan in the 1960 [93, 99]
which later became popular specially after his book Adaptation in Natu-
ral and Artificial Systems [101] was published in 1975 [99]. It was then
thoroughly reviewed in 1980s [118, 119] and extended in 1989 by his
student David Goldberg [94].

The GA has the same key components as described in the subsection
2.9.3. For multiple constrains, GA finds a solution based on a fitness
score which is eventually a combination of the fitness values associated
with the objectives.

The application of GA in computer network is very popular. [114,
120–129]

To make sure that we can get a number of possible set of solu-
tions, we have then implemented Multi-Objective Evolutionary Algo-
rithm (MOEA).The Multi Objective Evolutionary Algorithm applies the
EA technique and is widely accepted and used as a solution towards
MOOP problems. The next section discusses MOEA.

2.10 Multi-Objective Evolutionary Algorithm
(MOEA)

During the World Congress of Computational Intelligence (WCCI) in
Vancouver 2006, Multi-objective Optimization (MOOP) has been eval-
uated as one of the three fastest growing fields of research and applica-
tion among all computational intelligence topics [116]. Multi-objective
Evolutionary Algorithm (MOEA) is the most popular approach to solve
MOOP [130–132]. It employs evolutionary methodologies to solve prob-
lems involving multiple conflicting objectives. MOEAs have been ap-
plied in many real-life multi-objective problems in different areas, such
as economics and finance [133] and engineering [2, 134–141], sensor
networks[142]. Many works have proposed application of MOEA in net-
work [143–146].

63

The MOEAs aims at finding an approximate Pareto-optimal set in
a single simulation run. However, it is not simple to get all Pareto-
optimal solutions due to the fact that it is computationally expensive
and sometimes it is even infeasible. For example, if the curve of Pareto-
optimal front is continuous, the number of solutions is infinite. Hence,
it can be claimed that the more realistic target for MOEA will be to find
an approximate Pareto-optimal set that satisfies two sub-objectives:

• To minimise the distance from resulting solutions to the pareto-
optimal front.

• The solutions should be uniformly distributed assuring the maxi-
mum diversity of the pareto front.

Hence, the goal itself is multi-objective. In order to realise the above
objectives, some important issues need to be considered such as fitness
assignment, diversity preservation and elitism [96]:

• Fitness Assignment: Compared with SOOPs, where the objec-
tive function is sometimes identical to the fitness function, MOOPs
need a fitness assignment process after objective values have been
calculated for each individual. There are many strategies that can
be used for fitness assignment, such as aggregation-based (e.g.,
weighted sum), criterion-based (e.g., Vector Evaluated Genetic Al-
gorithm (VEGA) [147]) and Pareto-based or dominance-based (e.g.,
Strength Pareto Evolutionary Algorithm (SPEA).

• Diversity: The diversity preservation issue is to ensure that the re-
sulting solutions have a good distribution. This is usually achieved
by incorporating density information in the selection process. For
instance, an individual has less chance of being selected if it is a
short distance from its neighbours.

• Elitism: Elitism aims to avoid losing good solutions during the op-
timization procedure due to some random effects. There are two
common strategies to realize the elitism [148]: One is to merge
the current population and its offspring after reproduction into
a “temporary” population and then rank the individuals. The in-
dividuals in the top segment of the temporary population survive
and become the next generation. The other is to establish a special
population called the “archive” to hold the promising individuals.
The archive is separated from the optimisation engine and is up-
dated at each generation when reproduction completes.

64

2.10.1 Advantages

The main advantages of MOEA that make it more popular to solve MOOP
are:

• They are easy to implement.

• They can return more than one solutions.

• There is less chance of the algorithms becoming deadlocked in lo-
cal minima.

• The algorithms are flexible and robust.

• They do not require a prior knowledge of the problem (unlike the
conventional techniques).

Moreover, [149, 150] claim that MOEAs can probably obtain (or ap-
proximate) Pareto-optimal solutions in a single optimisation run instead
of obtaining one solution each run. In addition, MOEAs usually do not
require weight, scale or prioritised objectives [149]. Therefore, MOEAs
are one of the most powerful mechanisms to solve the multi-objective
problems (often with conflicting goals) and have been successful applied
to a wide range of practical problems [151].

2.10.2 Different Types of MOEA

Since the 1980s, there have been several approaches in the development
of MOEA [152]. In the initial strategies, a MOOP was converted into a
SOOP using an evolutionary methodology. These algorithms do not in-
corporate the concept of Pareto optimality. Later, in the mid-1980s,
some algorithms started introducing Pareto optimality into the evolu-
tionary algorithms. These algorithms include the Nondominated Sort-
ing Genetic Algorithm (NSGA) [153], the Niched-Pareto Genetic Algo-
rithm (NPGA) [154] and the Multi-Objective Genetic Algorithm (MOGA) [149,
155]. [95] gives a summary of different approaches in MOEA to solve
MOOPs.

When elitism became a de facto standard mechanism in the late
1990s, the new stage of evolution MOEAs began. The landmark al-
gorithm in the field is generally considered to be the Strength Pareto
Evolutionary Algorithm (SPEA), which introduces an external popula-
tion called the “elite” archive to retain suitable nondominated solutions.
This is an important feature as it guarantees that the final solutions are

65

nondominated with respect to all other solutions across the total evolu-
tionary process rather than the current population. After SPEA, many
algorithms incorporating additional archive mechanisms have been pro-
posed. The most representative of them are: Strength Pareto Evolu-
tionary Algorithm 2 (SPEA2) [148], Pareto Archived Evolution Strategy
(PAES) [156], and Nondominated Sorting Genetic Algorithm II (NSGA-)-
II [157–159].MOEAs, such as NSGA-II and SPEA2 [148], have proven to
be efficient for complex MOOPs with two or three objectives [160]. Most
elitist MOEAs make use of a combination of dominance and density to
make choice of the individuals that will be kept in the archive at every
generation [2].

The idea of using MOEAs for routing in the network is not new. Some
example works are, [161–168].

From different types of MOEAs, the Strength Pareto Evolutionary Al-
gorithm (SPEA) has been used for the tool proposed in this work. SPEA
was proposed by Zitzler and Thiele [169] based on a case study they con-
ducted [170]. Depending on some surveys and comparisons done, [2]
claims that SPEA has a positive approach towards solving MOOP prob-
lems and has been used in a number of applications too [171].

Chapter 6 explains the detailed implementation of SPEA.

2.11 Summary

This chapter gives an overall literature review, including the basic in-
ternet architecture and the discusses the motivations behind this re-
search. Despite of the tunnelling mechanism not being a part of out
research, it has been discussed in this chapter in order to give the idea
of its protocols as well their possible implementation within one or more
domains. After discussing the basic topics, the required tools and al-
gorithms are discussed with an explanation of the choices made for de-
veloping the baseline framework and the path computation algorithm
for tunnels.

66

Chapter 3

Overall Tunnelling
Framework

The basic architecture of the AS-Domain tunnelling framework is shown
in Figure 3.1. The tunnels shown are assumed to have been setup and
maintained by the specific network operators using whatever means
they wish. This could involve the use of PCE/RACF [4, 6] signalling;
however, this is not essential and is beyond the scope of this research.
The presence of the tunnels is advertised via the Directory Service Bro-
ker (DSB). The tunnels can be of any technology, though it is expected
that many will be MPLS or based on optical channels. These tunnels
can be both intra and inter AS in scope, in the latter case, this being
achieved through operator peering. Some tunnels may offer 1+1 protec-
tion; others may exist between peering operators through LSP stitching.
However, details of the construction mechanism are outside the scope
of this research.

Initially customers for this service are assumed to be Small and
Medium Enterprises including financial institutions that wish to trans-
port data quickly without having to incur the costs associated with a
leased end-to-end infrastructure. They will have awareness of the se-
quence of AS domains that their data is passing through and possible
alternatives, particularly if BGP reachability information is made avail-
able to them via the DSB Internet Map.

67

Figure 3.1: User-selectable AS-domain tunnelling framework

Their IT administration, which could be automated software that per-
forms path selection based on cost and other requirements, may wish
to choose a preferred path between their own site and a given destina-
tion, such as between Customer A and B in Figure 3.1. For example,
by interrogating the information in the DSB, customer A wishes to use
Tunnel T1 and T3 to hasten the delivery of data between the two sites,
possibly avoiding a congested domain. Having informed the DSB of this
decision, for a small fee Customer A is given tickets for each of the tun-
nels (i.e. T1 and T3) along with their ingress IP addresses. Tickets are
ephemeral so it is unlikely that users can abuse the system extensively.

Software at the end user’s terminal will be developed implementing
an algorithm which will perform path selection by comparing alterna-
tives given various constraints. For now, these are the delay associated
in each link and the amount of financial cost that the user needs to
pay for using tunnels. A customer’s desire to avoid a certain AS can
be a constraint too. In addition, the tunnels will be chosen to send the
traffic only if the benefit exceeds the normal path. To have a clearer
idea, let us assume that in Figure 3.1, the average delay experienced
for using tunnels T1, T2, T3 and T4 are x, x, x, and 2x (in millisec-
onds) and the amount of money the user needs to pay for using each of
them is 50 units, 25 units, 50 units and 20 units. Now, the option is to
pass through tunnels T1 and T3 or T2 and T4. By paying 70 units, the
customer can send its traffic via tunnels T2 and T4, where the total of

68

average delay experienced in the tunnels will be 3x and after making a
payment of total 75 units, the total of average delay experienced in the
tunnels will reduce to 2x. Now, if customer A provides the information
to the software that it should not exceed 80 units of cost but wants as
little delay as possible, then the software will choose T1 and T3 based
on a simple comparison. However, the decision of making a choice de-
pending on different constraints is typically not going to be as simple
as this example.

3.1 Network Operator Functions

It is already mentioned in Chapter 1 that tunnels traversing multiple
domains is hampered by the unwillingness of network operators to sup-
port inter-operator signalling coupled with the control of the associated
forwarding infrastructure. However, our system does not depend on any
information that the network operators will not share with the Directory
Service Broker (DSB) due to “trust” issue. We assume that the coopera-
tive operators will let the broker advertise the available tunnels centrally
with some information such as where the tunnels are, how much the
usage charge is and what performance they offer to the users. It does
not include any sensitive information such as what tunnelling mecha-
nism is being used by the operators to establish the tunnels or how they
are being operated in the ASes. AT&T and CAIDA already provide some
information concerning dynamic network performance [172–174].

For now, our system deals with the tunnels existing between Au-
tonomous System Border Routers (ASBRs) belonging to the same AS.
There is no need to know about the internal path of the tunnels. Fur-
thermore, tunnels straddling AS domains are considered optional as
they would require a peering relationship between operators. However,
mechanisms for stitching together LSPs across AS domains could tech-
nically be provided if sufficient trust existed between adjacent operators.

What is required, is for the operators to cooperate with the broker in
order to share information concerning the location of the tunnel(s) in
terms of entrance and exit points, their operating performance (such as
average delay, whether they are protected etc.) and the financial cost of
using them.

69

3.2 Broker Function

The concept of a service broker is proposed here in order to provide
a centralised resource for advertising the AS tunnels to the end-users
giving them the opportunity to choose, to some extent, their desired
path across the inter-network.

According to Gartner, brokerage means “any type of intermediation
that adds value to the consumer’s use of a service” and broker signifies
“a person, company or piece of technology that delivers an instance of
brokerage or, the specific application of a mechanism that performs the
intermediation among consumers and providers” [175]. The research
work in [176] states that there is no real-time demonstration of a bro-
kerage system that deals with the practical technological challenges.

In our research, we have proposed a Directory Service Broker (DSB)
assuming it has the map view of the ASes which helps to allow the bro-
ker to show the end users about which ASes are adjacent to each other
and, in case of the cooperative ASes, information concerning their tun-
nels can also be made available. The broker presents the location of
tunnels to the users superimposed on an AS view of the Internet (or a
portion of it) and the users will have the opportunity to choose whether
their traffic is directed through one or more tunnels in a particular se-
quence. This provides a form of loose source routing. Furthermore,
certain ASes may show information concerning their degree of conges-
tion. This allows the end users to selectively choose to use a tunnel to
detour traffic away from the congestion, or to provide preferential treat-
ment across the congested AS.

[177] proposes the idea of implementing a service broker in the field
of telecommunication to make an offer of the best service against a cus-
tomer’s request. In [178], a tunnel broker system that minimises the
job of the tunnel server by assigning the broker server that handles
the user-requests and returns the prime configuration to both users
and tunnel servers is discussed. However, this paper indicates that the
tunnel server cannot offer the best service and also the user cannot
switch its chosen path in case of failure.

In 2008, a scheme to configure AS paths was proposed as a solution
of providing inter-domain IP/ (G) MPLS tunnels [13]. However, the pro-
posed PC (Path Computation) mechanism does not handle the selection
of the AS-paths. Conversely, in our proposal the end-user employs a
path computation algorithm that aims to compute the most appropriate
loose source-routed path across the network given various constraints.

70

This algorithm could operate continuously to allow path alterations to
be made in response to changing circumstances.

However, according to [17], information passed by the Border Gate-
way Protocol (BGP) to the SB may not be enough to allow the end-user
to make meaningful path choices. In [179] and [180] enhancements to
BGP are proposed to advertise TE information and in [181] an overlay
architecture and BGP extensions have been proposed for this. Even so,
this is necessary for our research. At this initial stage we have decided
on “traceroute” as an alternate means of assessing the status of various
AS domains.

We naturally assume that operators that are willing to cooperate,
will also pass some information saying whether the tunnels or their
default forwarding environment are busy at a particular time and this
information can be made available in the proposed broker’s map view.
In short, the Directory Service Broker (DSB) provides an Internet Map
showing the tunnel locations, their usage charge and some statistics
regarding the performance they offer.

However, the broker does not tell the user how to get across the net-
work. It provides a view of the topology, with the cost. Even there can
be AS present in the network which is not cooperating with the broker.
Therefore, the broker does not necessarily have complete knowledge of
the network and it certainly does not know anything about what is going
on in the ASes. However, it does provide AS network topology informa-
tion along with a measure of how busy they are. Moreover, we have
assumed that the route between the ASBRs at the connection point be-
tween a pair of ASes is one-to-one. This is not always the case in the
real Internet; rather it can be one-to-many.

The DSB also provides a single brokerage point whereby the user
can request a sequence of tunnel permits (tickets) so that traffic can
use a tandem arrangement of multiple tunnels between a source and
a destination. The DSB is effectively the customer-facing entity where
operators advertise their tunnels and transactions can be made.

3.3 End-User Functions

The user will have to install the software in its terminal. The software
will obtain the visualization part of the Internet map from the DSB. It
also needs to acquire information as follows:

• Number of tunnels in the network.

71

• Location of the tunnels.

• The amount of money the end-user needs to pay to use each given
tunnel, if it wishes to do so.

The software will get some information from the user, e.g.,

• The source and destination ASes for the data to be sent.

• Expected service required by the user, where delay and other con-
straints will be taken into account.

• Amount of money the user is willing to pay

Knowing the preferences of the user, the software will be able to:

• Determine the least cost path for:

– tunnel-paths, i.e., when tunnels are employed.

– no-tunnel paths, i.e., when there is no tunnel.

However, the tunnels present in the network topology may not al-
ways be used if their use does not contribute to a least cost path

• Compare the constraints.

• Suggest the better route(s) for the traffic.

Finally, the decision is made depending on the two factors:

• End-to-end delay and

• Financial cost

The end user then can select the path it wants its data to traverse
through. Thus the overall framework we have designed, allows the user
to employ a form of Loose Source Routing (LSR).

3.4 Best Route Selection

The user software obtains an AS domain performance map from the
broker. It is not necessary to show the complete AS topology and ASBR
topology to the user, but it is up to the user whether it wants to have
knowledge about these. However, we assume that most users will be
interested in obtaining the expected service provided limited by the fi-
nancial cost it is willing to pay. In case the user wants to see the map,

72

it is not impossible for the software to do so. Moreover, there is no con-
cern regarding trust or privacy since no internal details associated with
this information are made available.

If the user is not interested in using tunnels, the expected least cost
path is calculated with the Dijkstra’s Algorithm without the use of tun-
nels and the traffic will be sent through this. The algorithm can also
calculate the least cost path using the tunnels present in the network. A
single constraint, delay, is considered as the cost in this case. It should
be borne in mind that there is no guarantee that packets will travel this
path (due to BGP policy information), though traceroute can attempt to
determine the standard path and the per-hop delay along the route.

Chapter 4 shows the implementation of Dijkstra’s Algorithm in the
tool we have developed.

However, a comparison of multiple constraints has been made through
the implementation of Genetic Algorithm (GA) and a Multi-Objective
Evolutionary Algorithm (MOEA). We do not claim any novelty for the
concept of this form of evolutionary algorithm, but the use of MOEA for
least cost path calculation within the context of this application, where
tunnels are implemented, is novel, along with the various constraints
considered. Chapters 5 and 6 describe these implementations in the
developed path computation tool, PCAT.

3.5 Ticketing Service

The information about the location and associated delay and financial
cost of the tunnels are required to reach and traverse the tunnels by
the data flow, if the user wishes so. One possible way to allow data to
flow appropriately is to use IP-in-IP packet tunnelling. In our example
(from Figure 3.1), this means the first IP packet destination would be the
ingress point of tunnel T1. An option field would hold the ticket. Tunnel
policing requires access functionality at Layer-3 to validate the ticket
and, if necessary, count the number of packets transferred associated
with a particular ticket number. If valid, this header is removed and the
next IP header takes the packet through the tunnel and all the way to
the ingress of tunnel T3. This header is also interrogated and removed
allowing the packets to move along tunnel T3 and from there be delivered
to the destination (Customer B) using traditional IP means.

Hence, somewhere in the header of the packet, some kind of authen-
tication is required to make sure that the user has already paid to use

73

the specific tunnel. Now, in IPv4, the header is typically 20 bytes and it
can be extended but not all operators will allow it to do so. In IPv6, the
main (base) header is always of the same size, but additional headers
can be added after that, which are called extension headers. Therefore,
in our system, we can keep the required information of authentication
in an extension header. According to the way IPv6 works, the presence
of an extension header is acceptable even if a router does not know its
purpose. If a router that finds the extension header knows its purpose,
it will realise that the packet contains tunnel authentication to be pro-
cessed. Therefore, the part of the internet that does not understand the
extension header just ignores it and the part that understands it uses
it. Moreover, in IPv4, we can either use spare bits in the header or an
options field can be added.

Technically, IPv4 is obsolete, but almost half of the Internet still uses
it. The way the Internet works at present, it supports both of IPv4 and
IPv6. Sooner or later it will support IPv6 only. Our framework will work
with IPv6 since it requires no changes to the IPv6 structure.

3.6 Summary

To summarise with, Chapter 3 explains how the proposed tunnelling
framework looks like. It also discusses the main parts of the framework,
i.e., network operation, Directory Service Broker (DSB), path computa-
tion tool at the end user, including how they function. Then the chapter
ends with how the ticketing service works to ensure the authenticated
end user’s access to the tunnels.

Chapter 4 explains how we have designed our tool for the tunnelling
framework.

74

Chapter 4

Design and
Implementation of the
Baseline Route Selection
Tool

4.1 Design and Implementation

A framework is built to investigate the benefits of using different per-
centages of tunnels present in a part of the Internet for sending data
from one AS to another.

The framework takes an AS topology as input and produces an Au-
tonomous System Border Router (ASBR) topology assuming that there
is a peering of border routers (formed by one from each of the con-
necting ASes) at the point where the two AS domains are connected to
each other. We are aware that the route between the adjacent border
routers of two connecting ASes does not necessarily have to be one-to-
one, rather there can be one-to-several connections. At present, our
tool does not consider this case, but later on the tool could incorporate
this feature, if desired.

Moreover, in a single AS, the border routers are all inter-connected,
but the connection will not necessarily be direct; rather more than one
internal hops may exist between a pair of border routers. Our system
does not require this knowledge as well as the fact that operators will not
share this information. Therefore, the view of the topology the broker

75

has, is not necessarily a complete one. We can call it a “sanitised” or
an “artificial” view of the internet map. It just shows how the various
ASes are inter connected at the AS level. Depending on this AS view,
the ASBR topology is produced.

The software at the user’s machine knows the AS topology and the
ASBR topology and calculates the least cost path. The framework devel-
oped initially, uses Dijkstra’s Algorithm to calculate the least cost routes
with tunnels and without tunnels, for traffic to be sent. The routes are
given as output of the tool showing the sequence of the ASBRs for the
traffic from the source AS to the destination AS.

Sections 4.1.1 and 4.1.2 explain how the framework creates the AS
and ASBR topology.

4.1.1 AS Topology

Internet topology maps are important for characterising the internet
infrastructure, understanding and analysing its properties, behaviour
and evaluation. Construction of these maps is possible for different
layers, e.g., fibre, IP address, router, Point-of-Presence, Internet Ser-
vice Provider (ISP) and Autonomous Systems (AS) [174]. However, the
AS-level topology is crucial for design and evaluation of future internet
protocols [182].

As stated before in Section 2.1, the Internet consists of ASes where
inter-domain routing information is exchanged via BGP. Many stud-
ies [183–185] have highlighted the importance of AS topology and many
research works have been done to construct it [173, 185, 186]. Sec-
tion 2.6 provides with a literature review for this.

For this research, we view the entire Internet as an AS-topology
graph taking each AS as a node and each BGP connection between
a pair of ASes as a link. Although research is still going on to find a
precise way of constructing the AS topology, it is possible to get the in-
formation. The data published by CAIDA is an example where they have
used three data sources: traceroute, BGP and IRR data to compare the
AS topology graphs [174].

At this stage, we consider the AS topology graph for part of the In-
ternet from which we can find infer the connections among the ASes
based on their adjacency, as shown in Figure 4.1.

From Figure 4.1 we can generate Table 4.1

76

Figure 4.1: Graph of AS topology for a part of the Internet

Table 4.1: AS-Level topology from Figure 4.1

Source AS Neighbour AS(es)

AS1 AS2, AS4
AS2 AS1, AS3, AS5, AS6
AS3 AS2, AS7
AS4 AS1, AS5, AS8
AS5 AS2, AS4, AS8, AS9
AS6 AS2, AS7, AS9
AS7 AS3, AS6
AS8 AS4, AS5, AS9
AS9 AS5, AS6, AS8

We have used the PFP network topology generator in order to gen-
erate a small regional AS-level internet topology that is later fed into
the framework tool as an input file. The reasons behind the choice are
briefly explained in Section 2.6.4.

PFP takes a small AS-level topology and then generates an expected
number of nodes with a specific node degree distribution, which are
pre-defined in the program. As explained in Section 2.6.5, for certain
probability ratios, PFP generates new artificial nodes having connec-
tions with existing old/ host node and new links in between the already
existing old nodes. The newly created nodes are named as “Artificial
Nodes” and the old ones are classified as “Nodes”.

A small topology of 7 ASes with their connections, as shown in Ta-
ble 4.2 is given to the PFP tool.

The first column represents a source AS and the next one is another
AS connected to it.

The PFP will then generate a topology with a certain number of nodes

77

Table 4.2: A small topology of 7 ASes

Source AS Adjacent AS

Node-1 Node-2
Node-2 Node-3
Node-1 Node-4
Node-1 Node-3
Node-1 Node-5
Node-5 Node-6
Node-6 Node-1
Node-6 Node-7
Node-5 Node-3

it is asked for, having connection to the old nodes as well. E.g., Artificial-
Node-3 Node-5 means a new node 3 is created having a link to old node
5. Again, Artificial-Node-3 Artificial-Node-1 indicates that the new node
3 has a link to another new node 1.

A sample of the output for 30 ASes topology is included in the ap-
pendix A. The developed framework takes the AS-level topology as an
input and creates a linked-list data structure of that storing all the AS
domain nodes there. The next job is to separate the source nodes and
the destination nodes i.e., the ASes which are connected via links to the
source AS and storing them in linked lists, where it keeps reading the
nodes until reaching the end of the file.

However, we understand that the connections can be unidirectional
or bidirectional and for our research the connection is assumed to be
bidirectional, i.e., if there is a connection between ASes 1 and 7, traffic
can be sent both from AS1 to AS7 and from AS7 to AS1.

So, the framework creates a data structure to store all the nodes
there.

An image of the output source and destination ASes, using a PFP-
generated topology as input is included in Appendix A.

4.1.2 ASBR Topology

The AS topology developed from the PFP is fed into the framework de-
veloped for this research, which then produces another topology at the
level of ASBRs (Autonomous Systems Border Routers), assuming there
is a peering of border routers (formed by one from each of the con-
necting ASes) at the point where the two AS domains are connected to
each other. Moreover, within a single AS, the border routers are inter-

78

connected into a full mesh, but the connections need not necessarily
be direct; rather more than one internal hop may exist between a pair
of border routers. Our system does not require this knowledge, nor do
operators need to share this information.

Table 4.3 can be formed from Table 4.1, assuming that the ASBRs
are identified with a number as:
“SourceAS DestinationAS”

Table 4.3: ASBR Topology for Table 4.1

Source ASBR Destination ASBR(s)

1 2 2 1, 1 4
1 4 4 1, 1 2
2 1 1 2, 2 3, 2 5, 2 6
2 3 3 2, 2 1, 2 5, 2 6
2 5 5 2, 2 1, 2 3, 2 6
2 6 6 2, 2 1, 2 3, 2 5
3 2 2 3, 3 7
3 7 7 3, 3 2
4 1 4 1, 4 5, 4 8
4 5 5 4, 4 1, 4 8
4 8 8 4, 4 1, 4 5
5 2 2 5, 5 4, 5 8, 5 9
5 4 4 5, 5 2, 5 8, 5 9
5 8 8 5, 5 2, 5 4, 5 9
5 9 9 5, 5 2, 5 4, 5 8
6 2 2 6, 6 7, 6 9
6 7 7 6, 6 2, 6 9
6 9 9 6, 6 2, 6 7
7 3 3 7, 7 6
7 6 6 7, 7 3
8 4 4 8, 8 5, 8 9
8 5 5 8, 8 4, 8 9
8 9 9 8, 8 4, 8 5
9 5 5 9, 9 6, 9 8
9 6 6 9, 9 5, 9 8
9 8 8 9, 9 5, 9 6

Figure 4.2 shows the topology at the ASBR level.

79

Figure 4.2: Graph of ASBR topology obtained from Figure 4.1

Appendix A includes the output ASBR topology for the AS-level topol-
ogy of Appendix A.

4.1.3 Presence of Tunnels

The tool takes the expected number of tunnels as user input and gen-
erates the tunnels randomly in different ASes.

Figure 4.3: Example Intra-AS paths with and without tunnels

80

Figure 4.3 illustrates a simple example of alternate no-tunnel and
tunnel paths within an AS. Here, the source and destination ASes are
S and D and the traffic is assumed to traverse through another AS to
reach the destination, which has a tunnel T with ingress point A and
egress point B. The dotted lines represent normal intra-AS pathway
including routers inside the AS.

Generating tunnels

While developing the basic route selection tool, two different ideas have
been tested to implement it.

Firstly, the tool can generate the exact number of tunnels randomly
every time it is asked to. The steps will be as follows:

1. Ask the number of tunnel(s).

2. Generate tunnel(s) allocating them in some randomly picked AS(es).

3. Ask for a number greater than the last one.

4. Delete the previous tunnel(s).

5. Generate this number of tunnels again in random AS(es).

Secondly, the tool takes the number of tunnels from the user and
adds them to the existing ones obtained from the previous run. The
following steps make this clearer:

1. Ask the number of tunnel(s).

2. Generate tunnel(s) allocating them in some randomly picked AS(es).

3. Keep the existing tunnel(s) present.

4. Ask for a number greater than the last one.

5. The difference of the numbers will be the new tunnel(s) required
to be generated

6. Generate tunnels in AS(es) which do not already have tunnels in
them.

Upon doing some test runs, it was decided to use the second idea for
generating tunnels.

After the tool takes the number of tunnels, it generates the exact
number of intra-AS tunnels. The program randomly creates a number

81

either 0 or 1, representing the probability of having tunnels where 1
indicates that there will be a tunnel and 0 means there is no tunnel.
(As shown in Figure 4.4)

Figure 4.4: Randomly generated tunnels in a small topology

Here, two tunnels are randomly generated and placed in AS6 and
AS5.

Figure 4.5 gives a visual representation of the tunnelled topology.

Figure 4.5: A small topology with tunnels in two ASes

The blue lines represent two intra-domain tunnels.

4.1.4 Least Cost Path

We have used Dijkstra’s Algorithm to calculate the least cost routes for
traffic to be sent from any source AS to any destination AS. The paths

82

include the ASBRs that the traffic needs to traverse to reach the desti-
nation.

Assigning cost

The adjacency matrix for the Dijkstra’s Algorithm is built by the program
assigning a set of costs to the normal no-tunnel paths and the tunnels.
For now, the cost of the routes is considered using the metric of “delay”
in milliseconds. A data packet typically needs to go through 4 to 6 hops
within a given AS while traversing across a number of ASes to reach to
the destination [187]. Hence, an intra-AS tunnel having the ingress and
egress points in the same AS can reduce the delay that is experienced
relative to the normal no-tunnel intra-AS links. This is particularly true
if the normal pathways are congested and some form of priority is given
to the tunnels, be that through the use of separate optical channels or
queueing priority along shared links.

Here, the associated cost along each of the links is the (mean) de-
lay in milliseconds. The four types of delay contributing to the total
end-to-end delay are: transmission delay (Tx), propagation delay, pro-
cessing delay and queueing delay. The propagation delay between the
ASBRs A and B will be same for the no-tunnel normal path and the
tunnel. [188] shows that the processing delay matters although both
of processing and transmission delay are proportionately small. Hence,
queueing delay is the one that typically contributes most to the delay
experienced. [188] also confirms that processing and queueing delays
are the ones that are usually considered in terms of measurements and
simulations.

The amount of delay experienced via tunnels versus no-tunnel intra-
AS paths and the corresponding cost ratio have been chosen carefully
after doing some research on Internet delay measurements [188–191].

Note that, in the sections discussion related to the initial route se-
lection tool we have developed, we use the term “cost” as a short form
of “cost metric”, which is actually the average end-to-end delay.

Calculating least cost path

Next, Our tool uses Dijkstra’s Algorithm to calculate the no-tunnel least
cost path depending on these allocated costs. After that, the tool gener-
ates a given percentage of tunnels in the produced AS topology. Taking
the expected number of tunnels as user input, the tool places differ-
ent percentages of tunnels in randomly chosen ASes and calculates the

83

least cost path again considering the tunnels in and the least cost path
included the tunnels if and only if the delay cost of the tunnels is less
than that of the no-tunnel paths. For now, we assume an AS which is
selected for hosting tunnels, has them arranged in a full mesh between
the ASBRs of the AS.

Both for no tunnels and certain percentages of tunnels being present
in the topology, the least cost path is calculated for sending traffic from
each of the ASes to every other ASes, i.e., for 30 ASes, a least cost path
will be calculated to send the data to each of the rest twenty-nine ASes.
Most importantly, the tool considers the tunnels only if their use makes
the cost cheaper than the normal no-tunnel paths.

Appendix A has the example output file with the least cost path
calculated from AS1 to all the other twenty-nine ASes of AS topology
showed in Appendix A.

4.1.5 Flowchart

Section 4.1 gives the idea about what the developed framework is doing.
For a clearer representation, a flow chart is attached here.

For a better understanding of the tool, the steps can be explained
briefly:

• A text file containing simple AS topologies (which can be designed
from a graph of the internet) is given as an input to the tool.

• From the data in the text file, the tool separates the source AS and
destination ASes and prints it out on the terminal.

• The tool creates a text file containing the AS topology clearly indi-
cating the source AS and the destination ASes from it.

• Then the sequence of ASBRs is worked out by the tool and it is
also printed out on the terminal showing the source ASBR and the
destination ASBRs (which have a direct link to the source ASBR)
from it.

• Similar to the AS topology, the tool creates a text file with the ASBR
topology.

• Next, the tool takes the expected number of tunnels as inputs, to
be present in the topology generated.

• It generates the exact number of tunnels randomly placed in dif-
ferent ASes and creates a text file containing this information.

84

Figure 4.6: Flowchart showing the steps to validate the baseline
framework

• Then the tool implements the Dijkstra’s algorithm on the source
and destination ASes to find the least cost path from each AS of the
topology to every other AS both for the having the tunnels present
and not.

• The least cost path is printed out on the terminal.

• A final text file is created containing the least cost paths.

However, although a small topology was generated by the framework
after being provided with an input text file, now we have chosen an

85

existing internet topology to generate a larger AS-level topology which is
then used as the input for our framework.

4.1.6 Pseudo Code

This section presents a pseudo code that gives an idea about how the
framework is programmed (in C).

Algorithm 1 Underlying Framework
INPUT: Graph, G(V,E)
Number of tunnels, NT
Delay cost for tunnel link, dt
Delay cost for no-tunnel (intra-AS) link, dnt
Delay cost for inter-AS link, das

OUTPUT: Least Cost Path, P ′

while G← TRUE do
GAS ← Generate tool-AS topology
GASBR ← Generate ASBR topology
T ← Tunnels to generate in random ASes
NAS ← Number of AS nodes
Generate random number, rnd, where rnd is either 0 or 1
for i← 1 to Np do

if rnd = 0 then
Generate tunnel

else
Do not generate tunnel

end if
end for
Np ← Number of possible S −D paths
Produce cost matrix
for i← 1 to Np do
dπ ← 0
if L is inter AS then
dπ ← dπ + das

else if L is intra-AS then
dπ ← dπ + dnt

end if
Use Dijkstra’s Algorithm and sort dπ

end for
P ′ ← P with minimum dπ

end while
return P ′

86

4.1.7 Data Structure

As explained in the previous sub-sections, the code uses data struc-
tures to save ASes, ASBRs, tunnels and the cost assigned. Figure 4.7
is a representation of all the data structures with their properties and
associations that we have used in programming the framework.

87

Figure 4.7: Illustration of the data structures used for developing
the framework

88

4.2 Results and Evaluation

We have performed a number of simulations in order to assess the ben-
efits of using tunnels in a regional network topology.

To start with, the PFP generator is used to generate different topolo-
gies with same network properties and the probability of a node gaining
a new link, which is a function of the node degree, is 0.048 [58]. Sec-
tion 2.6.5 gives a brief idea about how PFP works and what character-
istics are to be considered while using it.

A small topology having 7 ASes is provided to the PFP tool, which
later gives a larger topology of 30 ASes as asked. We did that for two
different node degrees- 3 and 4 to investigate the benefit for both. Here,
the cost associated to each link is the average end-to-end delay.

Taking the PFP-generated AS-level topology as input, the developed
framework produces a topology at the ASBR level. Next Dijksta’s Algo-
rithm calculates the least cost path from every AS to all the remaining
ASes. Then the presence of 5%, 10%, 15%, 20%, 25% and 30% tunnels
are consequently added to the topology and least cost paths are again
calculated for every percentage.

Here, no inter-domain tunnels have been considered and the cost of
a link between the peering border routers of two adjacent ASes is set to
1 millisecond.

The benefit of the tunnels present is calculated as follows:

Benefit from AS A to AS B for x% tunnels

=
[
cost from A to B using no tunnels

− the cost from A to B when x% tunnels are present
]

milliseconds

(4.1)

The costs are automatically calculated using Dijkstra’s algorithm for
each least cost path and then the average and standard deviation of
these differences is calculated. It should be noted that in many cases
there would be no cost benefit of going via one or more tunnels when
they are remote from the original no-tunnel pathway. This tunnel-
placement process is repeated 10 times for a given overall AS topology
and the average and standard deviation of the benefits are calculated.
Then, the results are plotted in graphs to make a clearer representation
of the benefits.

89

Table 4.4 includes the parameters used for the tool.

Table 4.4: Parameters used in the baseline route selection tool

Parameter Value

Delay cost for tunnel 1
Delay cost for no-tunnel link 3 or 4
Delay cost for tunnel during peak time 1
Delay cost for tunnel during peak time 15
Delay for inter-domain link 1

4.2.1 Results for Different Topologies

The five PFP generated topologies that we have used for the experiment,
are included in the Appendix A. At first, for all the experiments, unless
otherwise stated, the ratio of the cost of a tunnel in an AS to that of a
normal no-tunnel path is set as 1:3 and the Dijkstra’s algorithm cal-
culates the least cost path considering that the cost of using a tunnel
is 1ms while that of a no-tunnels intra-AS path is 3ms. And then the
average and standard deviation are calculated after 10 runs for each
topology as mentioned above.

For the different percentages, the expected exact number of tunnels
in a 30 AS topology are shown in Table 4.5.

Table 4.5: Number of tunnels in the AS topology consisting of 30
ASes

Percentage Calculated Number
in 30 ASes

Number of
Tunnels Generated

5% 1.5 1 or 2
10% 3 3
15% 4.5 4 or 5
20% 6 6
25% 7.5 7 or 8
30% 9.5 9 or 10

Table 4.6 summarises the results for the different topologies having
no tunnels as well as different percentages of tunnels implemented in
them.

90

Table 4.6: Average and standard deviation of the benefits of using
tunnels

Topol-
ogy1

Topol-
ogy2

Topol-
ogy3

Topol-
ogy4

Topol-
ogy5

Tunnel
Percent-

age
Avg/Std Avg/Std Avg/Std Avg/Std Avg/Std

(ms) (ms) (ms) (ms) (ms)

5% 0.32506/
0.49298

0.10698/
0.42596

0.30943/
0.60180

0.19172/
0.46187

0.05333/
0.28789

10% 0.43035/
0.64778

0.43813/
0.73694

0.46006/
0.79010

0.38161/
0.74438

0.21839/
0.57428

15% 0.82242/
0.89388

0.59418/
0.89978

0.65701/
0.95350

0.49885/
0.83423

0.55840/
0.78606

20% 0.98318/
1.04425

0.84782/
1.05771

0.81839/
1.04909

0.77471/
1.04058

0.70391/
0.92151

25% 1.21760/
1.12095

0.94515/
1.13862

0.87218/
1.09265

0.95035/
1.14451

0.77793/
0.97733

30% 1.27256/
1.13427

1.10450/
1.23033

0.99816/
1.17400

1.07172/
1.19032

0.91494/
1.02871

As expected, as the proportion of tunnels increase so does the aver-
age benefit. When the percentage of tunnels is small, the average ben-
efit is marginal. However, from the standard deviation, we can see that
some users, located close to the tunnels can still obtain a considerable
benefit.

These results are plotted in graphs, where X-axis shows the differ-
ent percentages of tunnels present in the network topology and Y-axis
represents the benefits.

91

Figure 4.8: Average and standard deviation of cost benefit for
Topology 1 (Ratio of tunnel to no-tunnel cost = 1:3)

As shown in the Graph 4.8, even for only 5% tunnels present in the
topology, there is at least some benefit, although it is not that high. For
one tunnel randomly placed in any one AS amongst the thirty ASes of
topology 1, there is an average benefit of almost 0.33 milliseconds which
increases to 0.8 milliseconds for 7 tunnels present in random ASes. For
every increment in the number of tunnels, the average benefits keep
increasing and finally, for 9 tunnels, the average benefit is almost 1.3
milliseconds.

For topology 2, Figure 4.9 shows that the average benefit for 5% tun-
nel present is approximately 0.11 milliseconds which is less than half
of the average benefit for same percentage of tunnels present in topol-
ogy 1, same number of ASes and with same network properties. This
is due to the fact that not necessarily the tunnel will make same ben-
efit for all the source- to-destination routes for sending a data over the
network. However, as observed for topology 1, the average benefits keep
increasing as the number of tunnels increases.

92

Figure 4.9: Average and standard deviation of cost benefit for
Topology 2 (Ratio of tunnel to no-Tunnel cost = 1:3)

For topology 3, the average benefit keeps increasing with the number
of tunnels present. The graph becomes slope as shown in Figure 4.10.
This behaviour is because of the fact that although there is at least
one new tunnel added to the topology, not necessarily it will be used by
the end user. So, for a specific occurrence of sending a traffic over the
network, use of tunnels will not always make noticeable benefits.

93

Figure 4.10: Average and standard deviation of cost benefit for
Topology 3 (Ratio of tunnel to no-Tunnel cost = 1:3)

In Figure 4.11, the line showing the average benefit reaches at the
point of 1.07 milliseconds starting from 0.19 milliseconds ascertaining
that there is benefit of the tunnels being present in the network topology
4.

Figure 4.11: Average and standard deviation of cost benefit for
Topology 4 (Ratio of tunnel to no-Tunnel cost = 1:3)

For topology 5, Figure 4.12, for the first two increase of 5% tun-
nels, the blue line showing average benefit increases by large dimen-

94

sion. Then the increment becomes a little slower for the next two sets of
increment and again it shows rise in the performance for 30% tunnels.

Figure 4.12: Average and standard deviation of cost benefit for
Topology 5 (Ratio of tunnel to no-Tunnel cost = 1:3)

Finally, it is clear from the graphs that the benefit increases, as there
is an increase in the percentage of tunnels present in the Internet. As
seen, the average improvement is relatively small. This is not surprising,
as many paths would incur a costly diversion to reach tunnel(s), partic-
ularly when they are few in number. However, the increasing standard
deviation shows that between a smaller numbers of source-destination
pairs, the cost benefit can be substantial.

4.2.2 Results for Different Cost Ratio

We have observed how the benefit of using tunnels changes with the
change in the cost ratio of tunnels and no-tunnel links in a particular
topology. We have used Topology 4 for this.

For this, different cost ratios are considered for 10 runs. While
choosing the cost ratios, at first, we have been conservative and con-
sidered the average delay cost for no-tunnel paths as 3x milliseconds
and 4x where the average delay for a tunnel is x millisecond. Then we
have considered a situation representing traffic congestion where the
average no-tunnel link’s cost is 15x. At certain times, the Internet can
be busy, impacting on the end-to-end delay. Usually, queueing delay
makes a greater contribution in such cases [188].

95

Figure 4.13 presents a graph plotting the average benefit for different
percentages of tunnels for Topology 4.

0

2

4

6

8

10

12

5 10 15 20 25 30

Av
er

ag
e

of
 B

en
ef

its
 (

m
s)

Percentage of tunnels (%)
Tunnel: No-Tunnel = 1:3 Tunnel: No-Tunnel = 1:4
Tunnel: No-Tunnel = 1:15

Figure 4.13: Average of cost benefit for different cost ratio

It is clear from the graph that for all cost ratios, the benefit increases
as there is an increase in the percentage of tunnels present in the In-
ternet. With a ratio of 1:3, the average delay for sending data in the
topology 4.97ms which is reduced by a minimum of 0.19ms when 5%
of ASes have tunnels in them. The average benefit gradually reaches
almost 1.08ms for 30% tunnels. For a tunnel/ no-tunnel ratio set to
1:4, the average end-to-end delay without the use of tunnels is 5.97ms.
With 30% tunnels, this end-to-end delay goes down by 2.03ms.

It can be seen that the average improvement is relatively small when
the tunnel’s average delay cost is one-third or one-quarter of the normal
no-tunnel average delay. This is not surprising, as many paths would
incur a costly diversion to reach tunnel(s), particularly when they are
few in number. Even so, a decrease of almost 2ms compared with almost
4ms to 6ms could still be of attraction to at least some end-users for
specific application services.

Conversely, for the “busy” period, the average benefit associated with
greater cost ratios are noticeably high. When we consider the cost as-
sociated with a no-tunnel link in a congested AS as 15ms, the average
end-to-end delay for the same topology is calculated to 16.97ms. As
expected, exploiting tunnels within this AS lowers the delay to a great
extent resulting in more average benefit. For 10% tunnels the average
benefit is more than 5ms and for 30% it reaches almost 9.6ms.

96

The standard deviation of the benefit is plotted in Figure 4.14.

Figure 4.14: Standard deviation of cost benefit for different cost
ratio

The increasing standard deviation shows that between a smaller
numbers of source-destination pairs, the cost benefit can be substan-
tial. Indeed, it is worth noting that during peak hours or when specific
high-demand events occur, the intra-AS queueing delay can be tens of
milliseconds if not more. If tunnels bypass such “hot spots” the delay
cost benefit could be orders of magnitude providing end-users consid-
erable benefit in terms of delay.

4.2.3 Results for Different Node Degree

The PFP generator is used again to generate an AS-topology from the
same initial 7-node seed graph that has been used to generate the
topologies used above. However, this time the graph evolution is altered
by setting the average node degree to 4.

As with the previous simulations, we have considered the use of tun-
nels under normal traffic conditions and during a period of localised
congestion where the ratio of the cost for tunnel to that of no-tunnel
path is 1:4 and 1:15 within the specified ASes.

Then, for both cases the average of the delay cost benefit for the
presence of 5%, 10%, 15%, 20%, 25% and 30% tunnels were calculated.

It can be seen from the graph that the greater inter-AS connectivity
(since the node degree is greater) has a marginal improvement of the
no-tunnel paths and thus the benefit of the tunnels is slightly reduced.

97

Figure 4.15: Average and standard deviation of cost benefit for
different node degree

Now, from Figure 4.15, we can observe that for the AS level topol-
ogy, the average end-to-end delay without any tunnel is 5.97ms which
decreases when tunnels are available to end users. If the tunnel has
an average delay cost of 1/4th of the normal intra-AS link path then it
gives an average end-to-end delay benefit of 0.32ms, which increasing
number of tunnels and for 30% tunnels reaches 1.62ms.

For the busy period conditions, we make the assumption that the
tunnel will have an average delay of 1/15th of the average normal intra-
AS link delay. For the no-tunnel topology, the average end-to-end delay
is 14.94ms. Clearly the graph plotted in Figure 4.16 shows that the
availability of different percentages of tunnels adds benefit by improv-
ing the average delay cost. For 15% of tunnels the average reduction
in delay is 4.73ms and for 30% it is almost double, 8.95ms and it is
approximately 6 times more than the benefit we observed for the ratio
of tunnel/ no tunnel cost of 1:4.

98

0
1
2
3
4
5
6
7
8

5 10 15 20 25 30Av
er

ag
e/

 S
ta

nd
ar

d
D

ev
ia

tio
n

of

Be
ne

fit
 (m

s)

Percentage of tunnels (%)
Average Standard Deviation

Figure 4.16: Average of cost benefit for different node degree and
cost ratio

Hence, it is clear from the graphs that during peak times, even the
presence of a small percentage of tunnels can provide noticeable benefit
to many users by decreasing the delay cost.

4.2.4 Considering “Hotspot” Area

In Section 1.1, we have mentioned that the lack of traffic differentia-
tion can lead to load imbalances and “best effort” equal treatment of all
traffic irrespective of its importance to the user. Keeping this situation
in mind, we conduct a series of simulations for a situation where all
the source ASes want to send their data traffic to a particular destina-
tion AS over the Internet. This approximates the situation where the
destination AS hosts a popular server farm or datacentre.

In this case, the framework is changed in such a way that upon cal-
culating the expected number of tunnels for a specified tunnel-percentage,
it generates the tunnels in ASes adjacent to the destination AS first. If
the number of expected tunnels is more than the number of adjacent
ASes, then the rest of the tunnels are generated to the ASes which are
one hop away and so on. Thus the tunnels are organised into approxi-
mately concentric rings around the destination AS.

Noting the benefits of tunnel-usage are more pronounced and mean-
ingful for “peak time” situations we have again run 10 simulations for
the same topology with 30 ASes, used in Section 4.2.3 (with a node de-
gree of 4) where the average delay cost for tunnel is 1ms and that of

99

normal path is 15ms. Taking AS2 as the destination AS, and assuming
each of the remaining 29 ASes act as the source domains, Figure 4.17
presents the graph of average and standard deviation of the benefit for
using tunnels around a “hotspot” destination.

Figure 4.17: Average and standard deviation of cost benefit for
tunnel-no tunnel = 1:15)

The baseline average end-to-end delay for sending data to AS2 from
all the other domains is calculated to be 9.5ms. It is clearly observed
that both of the average and standard deviation of the delay cost benefit
of employing a given percentage of tunnels is relatively high compared
the ones we have observed in Figures 4.13,4.14, 4.15, and 4.16, even for
only 5% of tunnels near a hotspot destination in the network topology.
Hence in case of known “hot spots” in terms of desirability and possible
congestion, access to low delay tunnels become particularly attractive.

4.3 Summary

Using the developed framework we are able to examine the delay benefits
that intra-AS tunnels might bring to the Internet. It shows that there
is a benefit for even 5% tunnels in the network for some users, though
this is dependent on how close the tunnel alternatives are to the default
traditional pathway.

To show the variation in benefit between source-destination tuples
we provide the standard deviation. However as one standard deviation
only encompasses about 68% of a normally distributed population, it is

100

worth noting that for some uses the cost benefit would be appreciable.
When the standard path experiences delays brought about by “hot-spot”
congestion then tunnel alternatives become much more attractive.

The results observed have been published in [192, 193].

101

Chapter 5

Path Computation
Algorithm for Tunnels
using GA (PCAT–I)

A path computation tool has been developed (using Python) that is able
to take more than one constraint in account and to calculate the best
suitable path for an end user to send its data to the desired destination.
The problem is Multi-Objective, where the two objectives are:

1. To minimise the average end-to-end delay.

2. To minimise the financial cost.

The tool uses an Evolutionary Algorithm (EA) to find the suitable
path(s). The idea of implementing EAs to find shortest path is not novel,
but their use in finding benefits of tunnels in the network is novel.

The tool is named as Path Computation Algorithm for Tunnels (PCAT).
For this research purpose, two different versions of PCAT are developed:

• PCAT–I: The first version of the tool is developed using a Genetic
Algorithm (GA). It converts the Multi-Objective Optimisation Prob-
lem (MOOP) into a Single Objective Optimisation Problem (SOOP).

• PCAT–II: The second and final version is developed using a Multi-
Objective Evolutionary Algorithm (MOEA), Strength Pareto Evolu-
tionary Algorithm (SPEA).

In the rest of the thesis, the tool is referred as Path Computation
Algorithm for Tunnels (PCAT).

102

This chapter discusses the PCAT–I.
The idea of adapting the features of GA to design routing algorithms

is not new. One of the earliest algorithms, Genetic Adaptive Routing
Algorithm (GARA) was introduced in the late 1990s by Munetemo [194–
198]. To-date, the application of GA for shortest path routing has been
proved to be a point of interest for the research community [114, 120–
128].

5.1 Design and Implementation

The initial design of of the PCAT is same for both the versions and the
main difference is how the path computation is done using two different
algorithms.

5.1.1 AS Topology

A small python program is written to get an AS topology in the expected
format of a csv file which is then fed into the main PCAT. At first, the
code takes an AS-level topology generated using PFP [83]. Table 5.1
shows a sample PFP-generated topology.

Table 5.1: PFP-generated AS-level topology of 7 ASes

Source AS Destination AS

Node-1 Node-2
Node-2 Node-3
Node-2 Node-5
Node-1 Node-4
Node-5 Node-3
Node-1 Node-5
Node-2 Node-6
Node-6 Node-3
Node-5 Node-4
Node-4 Node-7

Taking this as an input, the code generates an output file showing
bi-directed connections between each AS. The output file for Table 5.1
is shown in Table 5.2. Here, in each row, the first node is a source AS
and the second node is a destination AS.

103

Table 5.2: Source and destination ASes from Table 5.1

Source;Destination

1;2
2;1
1;4
4;1
1;5
5;1
2;3
3;2
2;5
5;2
2;6
6;2
3;5
5;3
3;6
6;3
4;5
5;4
4;7
7;4

The final AS topology is built from the connections of the ASes, which
is then ready to provide to the main PCAT. Table 5.3 shows the final AS
topology obtained from the PFP-generated topology in Table 5.1. In each
row, the first node is a source AS and the rest of the nodes are the ones
directly connected to the source AS.

Table 5.3: Input format AS-topology for the PCAT

1;2;4;5
2;1;3;5;6
3;2;5;6
4;1;5;7

5;1;2;3;4
6;2;3
7;4

Figure 5.1 illustrates the topology with the AS-level connections.

104

Figure 5.1: AS topology of 7 ASes

5.1.2 Generating Tunnels

The tool takes the expected percentage of tunnels to be present in the
network topology from the user. It then generates the exact number of
tunnels in randomly selected ASes. If more tunnels are expected, the
tool keeps adding new tunnels to the existing ones obtained from the
previous run. The steps involved in the process are:

1. Ask the percentage of tunnel(s).

2. Calculate the exact number of tunnel(s) to generate from the pro-
vided percentage.

3. Generate tunnel(s) allocating them in randomly picked AS(es).

4. Keep the existing tunnel(s) present.

5. Ask for a percentage greater than the last one.

6. The difference of the previous percentage from the new one will be
the new tunnel(s) percentage required to be generated.

7. Generate new tunnels in AS(es) which do not already have tunnels
in them.

105

5.1.3 Calculating the Best Suitable Path

Each tunnel and no-tunnel link is associated with a delay and a finan-
cial cost. Section 4.1.4 has the explanation of the choice made for the
ratio of the average delay experienced using tunnel path and no-tunnel
path. It is assumed that the network operators will be willing to imple-
ment tunnels upon being benefited financially. End users will pay for
each tunnel they select to use along the path from the source the AS to
the destination AS. There is also a small notional cost for each tunnel,
which has been made the same for all existing tunnels for a specific
topology. The PCAT–I finds one best path, which is alternatively called
as the “elite chromosome” of GA.

All the paths are found at the ASBR-level. It is assumed that there
is a one-to-one peering connection between the ASBRs of two adjacent
ASes. Also the routers within a single AS are assumed to have a full
mesh connection. Section 4.1.2 provides a brief description of this. In
the PCAT–I, the two metrics are converted into one, weighing both of
the assigned metrics. The elite path represents a path having the least
possible end-to-end delay with least possible financial cost to be paid
by the end user.

Section 5.1.4 explains how the GA is implemented for path compu-
tation.

5.1.4 Implementation of GA

This section briefly discusses how the main components of an EA are de-
signed and implemented in the developed path computation tool, PCAT–
I.

Initial Paths (Population Initialisation)

Each of the solution or population is encoded as a chromosome. A
chromosome just contains a set of values which represents one specific
solution to a particular problem. The chromosome encodes what a so-
lution will be. It can be a certain combination of colours or a certain
sequence of links. So, the encoding describes a specific solution. It is
not necessary for the chromosomes to be of the same length.

While generating the initial population for GA, two issues are con-
sidered [94, 114, 199]:

Firstly, the size of the initial population: Initially, it was thought
that a large population is required to obtain a better solution. It was

106

later proved that a larger number of population is expensive in terms of
memory and time [200–202], whilst being of limited benefit. The works
presented in [114, 196, 203] have used the number of nodes present in
the topology as the size of initial population. [127] used the number of
neighbour nodes as the population size.

The developed PCAT–I was tested and evaluated with different sizes
of population and then the number of AS nodes in the topology was
selected as the initial population size.

Secondly, the procedure of initialising the population: This can be
done heuristically or randomly. Heuristic initialisation of the population
can make the GA perform faster, but this incorporates a high chance of
compromising the solution space which reduces the population diver-
sity making the algorithm unlikely to find the to optimal solution in the
end [199]. The loss of diversity is a noteworthy issue when implement-
ing the standard GA in shortest path problems [127].

In this work, the initial population is generated randomly. However,
care is taken so that the same solution is not revisited several times.
Moreover, during “environmental selection”, new random chromosomes
are injected in every iteration which assures the diversity in the popu-
lation.

The possible paths between a source AS and a destination AS initial
paths are the initial population or “chromosomes” for the GA. A possible
path from source S to destination D is obtained using the following
steps:

• Start from a link adjacent to S.

• Form a link to a randomly chosen node adjacent to S.

• With equal probability, choose the next node adjacent to the cur-
rent one.

• If the node is not being revisited, then form a link to it. The links
in between need to be adjacent to each other to make the con-
nections valid. These links are the “genes” for mapping the initial
chromosomes. Each valid link connects the ASBRs of a pair of ad-
jacent AS nodes. If an invalid link is encountered while mapping
the chromosome, the path is not valid and the algorithm comes
up with another one.

If a link between ASBR nodes N1 and N2 is LN1,N2
, then it can be

107

defined using Equation 5.1.

LN1,N2
=

1 if N1 and N2 are adjacent to each other

0 otherwise
(5.1)

• There should not be any loop i.e., duplicated nodes in the path. If
there are any, the algorithm will compact the duplicate ones and
the nodes in between them into one. Figure 5.2 shows an example
of this.

Figure 5.2: Example of compacting duplicate nodes

• For each tunnel link present in a valid path, the probability of
choosing it to use it is a design parameter and is set to 50%.

• End when a link adjacent to D is found.

Equation 5.2 explains whether the path P is going to be considered
or not.

PS,D =

1 if the path from S to D is valid

0 otherwise
(5.2)

Figure 5.3 represents the genetic encoding of a path from S to D.
Note that, in the rest of the thesis, Ni represents ASBR nodes, not AS
nodes.

This encoding considering the feasible paths only easily portrays the
path length as well as successfully reducing the search space [126, 204,
205].

108

Figure 5.3: Example encoding of an initial population

Calculate Fitness (Evaluation)

The problem given to PCAT–I is to find a path between a source to a
destination having a minimum end-to-end delay and a minimum total
cost. Hence, this is a minimisation problem.

The algorithm has a fitness assignment process for the transforma-
tion between the objective function and the fitness function. The cal-
culation of the fitness score is done considering the average end-to-end
delay and financial cost for each path. The two objective functions are:
delay fitness and cost fitness. Since the final fitness score is a single
value, so this is calculated by applying some weight to delay fitness
and cost fitness. The component terms are decided in such a way that
higher values are either both better or both worse (not a mix). For this
minimisation problem, the smaller the value is, the fitter the path is.

Delay Fitness: In a network graph G with nodes V and edges or
links E, the delay metric along a path from a source AS S to a desti-
nation AS D, is calculated by adding up each of the average end-to-end
delay associated with each tunnel and no-tunnel links. This can be
mathematically represented using Equation 5.3.

dπ =
∑

(i,j)∈E

dij (5.3)

where dij represents the delay metric for a link (i, j) used in the path.
The algorithm finds the maximum possible delay, dmax, to be expe-

rienced for the particular pair of source and destination ASes. Then
the delay fitness, f1 for any path from the S to D is calculated using

109

Equation 5.4.

f1 =
dπ

1 + dmax
(5.4)

In the denominator, 1 is added to dmax so that the value of f1 is never
equal to or greater than 1.

Cost Fitness: The calculation of cost fitness is based on the total
financial cost the end user will need to bear for choosing a path for its
data packets to traverse through from a source AS S to a destination
AS D. The cost of using one intra-AS tunnel in the network graph is ct.
Equation 5.5 represents the financial cost of a path.

cπ =
∑

(i,j)∈E

cij (5.5)

Finally, the cost fitness for a path from S to D, f2 is calculated using
Equation 5.6.

f2 =
cπ

ct + cπ
(5.6)

The addition of ct to cπ in the denominator confirms that the value
of f2 is always less than 1.

Final Fitness Score: The final fitness score is then calculated giving
a particular weight to delay fitness and cost fitness. Each path is then
evaluated based on the final fitness score. This way the problem is
converted to a SOOP for the GA. The weighting is controlled by an alpha
term (α). Equation 5.7 calculates the final fitness score.

F = α× f1 + (1− α)× f2 (5.7)

Rank Paths (Mating Selection)

Besides the basic selection schemes (as discussed in Section 2.9.3),
some improved selection schemes have been proposed as well. E.g.,
[111] proposes a method combined of roulette wheel and elitist mecha-
nisms. In this work, the selection process is rank-based and uses the
idea of elitism so that the fittest path from each iteration is never lost
in the process of evolution. The paths are ranked based on their overall

110

fitness score. For a minimisation problem, the smaller value of fitness
score a path has, the fitter it is. A certain percentage (80%) of the paths
are then selected as fitter paths which are suitable for mating. This
way ensures that while selecting the fitter paths, not necessarily all the
less fit paths are discarded. Rather some of them can still be selected
for mating which may result into fitter paths after going through the
process of reproduction. The fittest path here is the “elite”.

Crossover (Reproduction)

Crossover is the first step for the fitter paths to go through the reproduc-
tion procedure. In the traditional crossover, only the information of the
gene located at the crossover point is exchanged between two selected
chromosomes [124]. Unlike this, in path crossover, some part of the
genes (nodes taking part in forming the paths) are exchanged between
the paths. The crossover can be single point or double-point. In a single
point crossover, there is only one point of exchange in of information in
the paths [206]. In double point cross over, each path has two points
from where it exchanges the information with another path. This PCAT-I
has been developed using single point crossover, which combines parts
of two parent paths and creates two new children paths. The proba-
bility of a path going through a crossover is set for the algorithm. The
crossover probability suggested in the research works varies from 0.5 to
1.0 [115, 124, 207, 208]. In most of the works proposing the use of GA
for shortest path problem in the network, the crossover probability is
high; e.g., [121] uses 0.99, [122] uses 1 and [123] uses 0.7. After doing
some research and number of simulations, the probability for PCAT–I is
set as 0.6.

The following steps explain the crossover mechanism:

• Select a pair of parent paths P1 and P2 randomly.

• Generate random number, rnd

• If the crossover probability, rnd ≤ ρc, then do crossover.

• Read the ASBR nodes (N) in P1 one by one and look for the similar
node in P2.

• If found, denote that node of P1 as g1 and the one in P2 as g2.

• Replace all nodes between g1 and destination node D in P1 by those
between g2 of the parent path P2 and destination D in P2.

111

• If any node is revisited, the algorithm will compact the duplicate
ones and the nodes in between them into one.

• This forms the children path after crossover, C1.

• The path P1 remains unchanged and represents C1 in two possible
cases, if:

– there is a loop in the newly formed path.

– there is no common node.

• Read the ASBR nodes (N) in P2 one by one and look for the similar
node in P1.

• If found, denote that node of P2 as h2 and the one in P1 as h1.

• Replace all nodes between h2 and destination nodeD in P2 by those
between h1 and D in P1.

• If any node is revisited, the algorithm will compact the duplicate
ones and the nodes in between them into one.

• This forms the crossed over path, C2.

• If there is no common node, the path P2 remains unchanged and
represents C2, if:

– there is a loop in the newly formed path.

– there is no common node.

• Randomly select the next pair.

• If the pair has been selected before, generate a new pair and follow
from the step of generating crossover probability.

Figure 5.4 represents the overall procedure of the crossover on two
randomly selected paths P1 and P2 for a specific crossover probability.

112

(a)

(b)

(c)

Figure 5.4: The overall procedure of crossover: (a) Parent paths;
(b) Paths after crossover with loop; (c) Children paths after
crossover.

113

Mutation (Reproduction)

The children paths after crossover, C then undergo mutation which
helps to maintain the diversity in the paths by making some amend-
ments. Like the crossover over probability, probability of mutation or
mutation probability is also pre-specified. Although in biology, the rate
of mutation can be as low as 0.001 [115, 124, 207, 208], this is not
proven to be the best to produce the best result for the shortest path
calculation. [122] and [123] have used 0.05, whereas in [121] the mu-
tation probability is set as 0.1. For the developed PCAT–I, it has been
set as 5%. The mutation is performed as follows:

• Select a path, C1.

• Generate a random number, rnd.

• If rnd ≤ ρm, then do mutation on the selected path.

• Generate a random mutation position n1, except the position for S
and D.

• If the node at position n1 is x1, generate a valid path from x1 and
D.

• Replace the previous part of C1 with the newly generated one.

• If any node is revisited, the algorithm will compact the duplicate
ones and the nodes in between them into one.

• This will form the mutated path, M1

• If there is no other valid path than the existing one, then keep C1

unchanged.

• Select the next path from C.

• Follow the steps for all the paths in C.

Figure 5.5 gives an overall idea of mutation on a specific path.

Inject Random Paths (Environmental Selection)

To assure the diversity of the solutions and the possibility of less fit
paths to be a part of the next generation, a number of newly calculated
possible paths for the same pair of source and destination are injected.
These paths are obtained following the same steps as for initialisation.
n number of paths to be generated at this step so that the final number

114

Figure 5.5: Mutation operation

of output paths is same as the size of initial population. These paths
are described as “secondary paths” in this thesis.

Finally, a set of paths is sent to the next generation. The elite path,
resultant mutated paths and the secondary paths are merged to create
the next population.

Terminating Condition

The algorithm is iterated a number of times (i.e., generations) to get the
final output and it needs a terminating condition to stop the iterations.
In this work, it is set as the maximum number of iterations. The algo-
rithm has been run with setting different number of iterations as the
terminating condition. In every trial, the number was set as the mul-
tiples of 10 and it was tested for network topologies of different sizes.
It was observed that for small topologies, having 7 and 10 ASes, only
5 and 10 iterations can generate the best solution. For topologies hav-
ing uptp 50 ASes, a maximum of 30 iterations generate a good solution
and the further iterations could not find a better solution. Hence, the
number of iterations, that works as the terminating condition, is set
as 30. Once the number of iterations reaches the maximum, the algo-
rithm stops and the elite path produced for the last iteration is the final
solution path produced using the algorithm.

115

5.1.5 Flowchart

Flowchart of PCAT–I

Figure 5.6 represents a high level flowchart of the GA-based Path Com-
putation Tool.

Figure 5.6: Flowchart of PCAT–I

116

For a better understanding of the tool, the steps can be explained
briefly:

• A text file containing an AS topology (which can be generated using
PFP topology generator tool [83]) is given as an input to the tool.

• From the data in the text file, the tool finds the connecting AS(es)
from each AS.

• The tool creates a csv file containing the AS topology clearly indi-
cating the source AS and the destination ASes from it.

• Then the sequence of ASBRs is worked out by the tool and it is
also printed out on the terminal showing the source ASBR and the
destination ASBRs (which have a direct link to the source ASBR)
from it.

• Similar to the AS topology, the tool creates a csv file with the ASBR
topology.

• Next, the tool takes the expected percentage of tunnels (0%-99%)
as input, to be present in the topology.

• It generates the exact number of tunnels randomly placed in dif-
ferent ASes and creates a text file containing this information.

• Then the tool implements Genetic Algorithm to find the best suit-
able path.

• It repeats the process of taking user input for generating more
tunnels until the user does not want any more of the tunnels. New
tunnels are added to the existing ones.

• The best path(s) for the expected percentage of tunnel(s) is(are)
then presented to the user.

Flowchart of GA implementation

The implementation of the GA itself can be represented with a flowchart
presented in Figure 5.7.

For a better understanding of this part, the steps can be explained
briefly:

• A number of possible paths are generated for sending data from
source AS S to Destination AS D. This is the set of initial popula-
tion.

117

Figure 5.7: Flowchart showing the steps in GA implemented for
path computation

• The total end-to-end delay and financial cost are obtained for each
path by adding up the assigned delay and cost to the tunnel and
no-tunnel links used in the path. From these, the delay fitness
and cost fitness are calculated using Equations 5.4 and 5.6.

• The algorithm then uses another equation developed for finding
the final fitness score of each path.

• Then the paths are ranked and sorted according to the ascending
order of the fitness score since the smaller fitness score represents
fitter path.

118

• The path with the smalleast fitness score is the fittest path, which
is known as the “elite” chromosome.

• Next, the PCAT–I selects a number of top-ranked paths from the
initial ones which are fit for going through the mating pool to pro-
duce new paths from themselves.

• For a certain crossover probability, the selected paths undergo the
process of crossover where a pair of paths exchange information
at a single point.

• For a certain mutation probability, each the selected paths un-
dergo the process of mutation.

• New paths are generated from the source to destination, which
represent a set of secondary population.

• The elite path, mutated paths and the newly generated paths are
combined together to form a new set of paths. This is the initial
population for the next iteration.

• If the total number of paths in the new population is not the same
as the initial population size, then the algorithm starts over.

To maintain the population size, the size of secondary population
is defined in such a way that after combining them with the elite
and mutated population, the total number of paths is same as that
in the initial population.

• The elite path is the best suitable path from the current iteration.

• The final set of a previous iteration is the population for the next
one; i.e., there is no need to generate possible paths anymore.

• The algorithm stops when it reaches the maximum number of it-
erations.

• The elite path of the final iteration is the output of the PCAT–I
which represents the best suitable path from S to D.

5.1.6 Pseudo Code

This section presents a pseudo code of the PCAT–I, programmed imple-
menting GA (in Python).

119

Algorithm 2 PCAT–I
INPUT: Graph, G(V,E) ; Source, S; Destination, D;
Iteration limit, imax; Tunnel Percentage, β
Delay for tunnel link, dt; Cost for tunnel link, ct
Delay for no-tunnel (intra-AS) link, dnt
Cost for no-tunnel (intra-AS) link, cnt
Delay for Inter-AS link, das; Cost for Inter-AS link, cas
Crossover probability, ρc; Mutation Probability, ρm
OUTPUT: Least Cost Path, P ′

while itr ≤ imax do
T ← Tunnels to generate in random ASes
NT ← β∗N

100 Number of tunnelled ASes
if β > 0 then

Generate tunnels in Nt ASes
else

Do not generate tunnels
end if
P ← Randomly generated Initial paths //Algorithm 3
N ← Size of P
F ← Fitness Score //Algorithm 4
Sort P in ascending order of F
P ′ ← P with minimum F
Nmp ← Mating pool
Nmp ← 80%∗N

100 , Size of mating pool
C ← Paths after Crossover(P,Nmp, ρc) //Algorithm 5
M ← Paths after Mutation (C,Nmp, ρm) //Algorithm 6
Ps ← Randomly generated secondary paths // using Algorithm 3
NPs ← (20%∗N

100 − 1), Size of Secondary population
P ← P ′ ∪M ∪ Ps, Final set of Population for next iteration
itr ← (itr + 1)

end while
return P ′

120

Algorithm 3 Initialisation of Paths
INPUT: G(V,E), S,D, T, dnt, das, cnt, cas
OUTPUT: P and Maximum delay, dmax
Pall ← All Possible S −D paths
Np ← Number of possible S −D paths
L← Links in Np
P ← Initial population paths
N ← Initial population size
for i← 1 to Np do
dπ ← 0
if L is inter AS then
dπ ← dπ + das

else if L is intra-AS then
dπ ← dπ + dnt

end if
sort dπ
dmax ← largest dπ

end for
return dmax, P

Algorithm 4 Evaluation
INPUT: P, T, dt, dnt, das, ct, cnt, cas
OUTPUT: f1, f2, F

for i← 1 to Np do
dπ ← 0
cπ ← 0
if Li,j is in tunnelled AS then

Generate random number rnd in range (1, 2)
if rnd← 1 then
dπ ← dπ + dt
cπ ← cπ + ct

else
dπ ← dπ + dnt
cπ ← cπ + cnt

end if
else
dπ ← dπ + das
cπ ← cπ + cas

end if
f1 ← dπ

1+dmax
f2 ← cπ

ct+cπ
F ← α× f1 + (1− α)× f2

end for
return f1, f2, F

121

Algorithm 5 Crossover
INPUT: P,Nmp, ρc
OUTPUT: Children Paths after crossover, C

while i← Nmp
2 do

l← length(Nmp)
Generate 2 random numbers, rnd1 & rnd2 within the range (1− l)
P1← P at rnd1

P2← P at rnd2

Generate random number, rnd
if rnd ≤ ρc then

Read node in P1, gi
Read nodes in P2

if gi in P1 == gi in P2 then
site of cross in P1← g1

site of cross in P2← g2

C1 ← first node to g1 in P1+ next to g2 to last node in P2

else
C1 ← P1

end if
Read node in P2, hi
Read nodes in P1

if hi in P2 == hi in P1 then
site of cross in P2 ← h2

site of cross in P1 ← h1

C2 ← first node to h2 in P2 + next to h1 to last node in P1

else
C2 ← P2

end if
else
C1 ← P1

C2 ← P2

end if
end while
return C

122

Algorithm 6 Mutation
INPUT: C,Nmp, ρm, D
OUTPUT: Children paths after mutation, M

for i← 0 to length(Nmp) do
Select a path, Ci
Generate random numbers, rnd
if rnd ≤ ρm then
l← number of nodes in (Ci)
Generate random number, r within the range (1 to l)
gi ← node at r
Find a feasible path, m from the gi to D
//Algorithm 3, where S ← node at gi
Mi ← first node to the node before gi in Ci + m

else
Mi ← Ci

end if
end for
return M

123

5.2 Validation

The PCAT–I has been tested and validated step-by-step to make sure
that it works as specified.

5.2.1 Possible Paths and Initial Population

In order to make sure that all the possible paths are obtained, a small
topology of 7 ASes, as presented in Table 5.3, is used as an input to
produce all possible paths from each node to the other nodes. A table
showing all the possible paths from AS1 to every other ASes is included
in Appendix B.

Table 5.4 represents all possible paths from AS2 to AS7.

Table 5.4: All possible Paths from AS2 to AS7

Path Index Possible Paths

Path1 2 1>1 2>1 5>5 1>5 4>4 5>4 7>7 4
Path2 2 1>1 2>1 4>4 1>4 7>7 4
Path3 2 3>3 2>3 5>5 3>5 1>1 5>1 4>4 1>4 7>7 4
Path4 2 3>3 2>3 5>5 3>5 4>4 5>4 7>7 4
Path5 2 5>5 2>5 1>1 5>1 4>4 1>4 7>7 4
Path6 2 5>5 2>5 4>4 5>4 7>7 4
Path7 2 6>6 2>6 3>3 6>3 5>5 3>5 1>1 5>1 4>4 1>4 7>7 4
Path8 2 6>6 2>6 3>3 6>3 5>5 3>5 4>4 5>4 7>7 4

A 30-AS topology is then used as an input topology and a pair of
source and destination ASes are selected for validating the tool with a
larger topology. All possible paths are calculated between AS12 and
AS16 and the PCAT–I outputs 751 possible paths. The topology is in-
cluded in Appendix B.

Considering Tunnels
The tool is also tested to see if it can find all paths for having tunnels

implemented in the topology. It is provided with a list of ASes having
tunnels implemented in them.

Three tunnels are considered in AS1, AS4 and AS5 and the tool is
asked to find all the possible paths with using 0 to 3 tunnels.

Table 5.5 presents all the possibilities of using either or all the 3
tunnels, for the path, Path1:

2_1>1_2>1_5>5_1>5_4>4_5>4_7>7_4

Note that first column is the Path1.

124

Table 5.5: Possible paths using tunnels for Path1

Possibility No. of Tunnels Used Tunnels Used

p1 3 1;5;4
p2 2 1;5
p3 2 1;4
p4 2 4;5
p5 1 1
p6 1 5
p7 1 4
p8 0 0

Hence, for a much larger topology, there can be thousands of pos-
sible paths for a pair of Source-Destination ASes. The possible paths
mean the different combinations of whether a tunnel is being used or
not along a given AS path. In order to make sure that the PCAT–I does
not take long to calculate the fitter paths, the maximum number of gen-
erated possible paths is limited to 5000. The environmental selection
at each iteration makes sure that no potential paths is lost. From this
5000, an initial population set is selected, for which the size is pre-
defined as the number of nodes in the topology used. The works in
[114, 196, 203] support the decision made.

5.2.2 Calculation of Fitness Value

The two fitness functions, delay fitness and cost fitness are normalised
so that it is greater than 0 and smaller than 1. For cost metrics used
while running the simulations for validation purpose are as follows:

• Average delay for no-tunnel link = 4

• Average delay for tunnel link = 1

• Financial cost for no-tunnel link = 1

• Financial cost for tunnel link = 5

While finding all the possible paths, the PCAT–I finds and stores the
largest possible delay after sorting them. The total average end-to-end
delay and financial cost for each path are calculated. Then using Equa-
tions 5.4 and 5.6 the delay fitness, f1 and cost fitness, f2 are calculated.
Finally, using these values, Equation 5.7 calculates the overall fitness
score, F of the path for any user-specific value of α.

125

For the S − D pair 2 − 7, the largest possible delay is 26. An out-
put file is generated with the fitness values of the paths from Table 5.4
considering no tunnel present in the topology and using α = 0.5. Table
5.6 includes the output data. The values are matched with the ones
calculated by hand.

Table 5.6: Fitness scores for the paths shown in Table 5.4

ASBRpath delay cost f1 f2 F

Path1 16 7 0.5926 0.5833 0.588
Path2 11 5 0.4074 0.5 0.4537
Path3 21 9 0.7778 0.6429 0.7103
Path4 16 7 0.5926 0.5833 0.588
Path5 16 7 0.5926 0.5833 0.588
Path6 11 5 0.4074 0.5 0.4537
Path7 26 11 0.9623 0.6875 0.8252
Path8 21 9 0.7778 0.6429 0.7103

The Table 5.7 has the values of delay fitness and cost fitness for Table
5.5.

Table 5.7: Fitness values for the paths shown in Table 5.5

Paths Delay Cost f1 f2

p1 7 19 0.25925926 0.79166667
p2 10 15 0.37037037 0.75
p3 10 15 0.37037037 0.75
p4 10 15 0.37037037 0.75
p5 13 11 0.48148148 0.6875
p6 13 11 0.48148148 0.6875
p7 13 11 0.48148148 0.6875
p8 16 7 0.592592593 0.875

It is important to notice that, more than one path can have the same
fitness values, resulting into the same final fitness score.

5.2.3 Selection

The paths are then sorted according to the ascending order of the fitness
score and the top one is stored as the “elite” chromosome. If more than
one paths in the top of the sorted list has the same value, the algorithm
can pick any of the paths. From the Table 5.6, it can be seen that two
paths have the same value for fitness score. In the experiment, the
PCAT–I selects and stores 2_1>1_2>1_4>4_1>4_7>7_4 as the “elite” path.

126

5.2.4 Reproduction

All the paths are then assigned with unique parent ID starting from 0
to (Number of initial paths -1). The top 80% paths, including the elite
one are selected for reproduction. This confirms that the best solution
from every iteration takes part in the reproduction.

Crossover

Any pair of paths is picked for crossover and the crossover is performed
if the pair has 60% crossover probability. To do so, a random number,
rnd is generated ranging between 1 to 10. If rnd ≤ 6,then crossover is
done.

Figure 5.8 shows the output paths on the console for the two selected
paths:

2_5>5_2>5_1>1_5>1_4>4_1>4_7>7_4 and
2_5>5_2>5_4>4_5>4_7>7_4.
The rnd generated for this pair is 5.

Figure 5.8: Two output Paths after crossover

Mutation

These paths are then sent for mutation. The probability of the path
undergoing mutation process is 2%. Similar to the crossover method, a
random number, rnd is generated ranging between 1 to 100. If rnd ≤ 2,
then mutation is done.

Figure 5.9 shows the information generated on the python console
when rnd generated by the algorithm is 1 and hence the mutation op-
eration is done on the path:

2_6>6_2>6_3>3_6>3_5>5_3>5_4>4_5>4_7>7_4

127

Figure 5.9: Console output for a path after mutation

5.2.5 Final Set of Paths

Some randomly generated paths between the S − D pair are injected.
This step ascertains the claimed statement that in the developed PCAT–
I, the population diversity is not compromised. These are referred as
the secondary population in this thesis and the secondary population
size is set as:

20% of the initial population - 1.
This population size confirms that the total number of paths at the

end of an iteration is same as that of the initial population.
The elite path, mutated paths and the secondary paths are then

merged together to form the final set of population. The elite path is the
output least cost path for the S − D pair and the final set of becomes
the population for the next iteration.

Finally, this section confirms the performance evaluation of the GA-
based PCAT–I. Section 5.3 explains the results for different experimental
setups.

5.3 Results and Evaluation

A number of simulations are run in order to find the least cost path
using GA for sending data over in a regional network topology.

To start with, five different topologies with same network properties
are generated using PFP and the probability of a node gaining a new
link, which is a function of the node degree, is 0.048 [58]. Section 2.6.5
gives a detailed explanation about how PFP works and what character-
istics are to be considered while using it. In each case, the same topol-
ogy having 7 ASes is provided to the PFP tool, which generates a larger
synthetic topology of 30 ASes as required. Taking the PFP-generated
AS-level topology as input, the developed PCAT–I uses GA for calculat-

128

ing the least cost path from a given AS to a desired destination AS for
no tunnels and different percentages of intra-domain tunnels present
in the network.

This is done when there is no tunnel in any of the ASes and also for
10%, 20%, 30%, 40% and 50% of tunnels present in the topology. For
the different percentages, the expected exact number of tunnels in a 30
ASes are shown in Table 5.8:

Table 5.8: Number of tunnels in the a 30-AS topology

Percentage Calculated Number
in 30 ASes

Number of
Tunnels Generated

10% 3 3
20% 6 6
30% 9 9
40% 12 12
50% 15 15

For the experiments, unless otherwise stated, the ratio of the average
end-to-end delay of an intra-domain tunnel to that of a tunnel is 1:4 and
the ratio of financial cost for using a tunnel link to that of a no-tunnel
link is set as 5:1.

Table 5.9 includes the parameters used for the PCAT–I.

Table 5.9: Parameters used in the PCAT–I

Parameter Value

Delay cost for tunnel 1
Delay cost for no-tunnel link 4
Delay cost for tunnel during peak time 1
Delay cost for tunnel during peak time 20
Delay for inter-domain link 1
Financial cost for tunnel 5
Financial cost for no-tunnel link 1
Financial for inter-domain link 1

The parameters used for implementing GA are shown in Table 5.10.

129

Table 5.10: Parameters used in GA

Parameter Value

Initial population size, N 30
Reproduction percentage 80
Size of mating pool, Nmp 80%∗N

100 = 24
Number of elite population, P ′ 1
Cross-over rate, ρc 0.6
Mutation rate, ρm 0.02
Size of secondary population, Nps (20%∗N

100 − 1) = 5
Maximum number of iterations, imax 30

5.3.1 Results for Different Topologies

Five topologies with the same network properties are used for the ex-
periment. These are included in Appendix B. The total number of nodes
for all the topologies is 30 and the average node degree is 3.6. Then the
PCAT–I has been used to calculate the least cost path from source AS 12
to the destination AS 16 in the topology. As specified, this is done when
there are no tunnels as well as when different percentages of tunnels
are present in the network topologies.

For the experiments, unless mentioned otherwise, the fitness score
is calculated in such a way that both the constraints of delay and finan-
cial cost associated with the paths are given equal weight. Hence, the
value of α in Equation 5.7 is set as 0.5. In short, the Equation becomes:

F = (0.5× f1) + (0.5× f2) (5.8)

where f1 = delay fitness of the path and f2 = cost fitness of the path.
For the same S −D pair, the PCAT–I is run 10 times. In every run,

the number of iterations for the GA is set as 30. Then the average and
standard deviation are calculated after 10 runs.

Table 5.11 summarises the results for the five topologies.
These results are plotted in graphs, where X-axis shows the differ-

ent percentages of tunnels present in the network topology and Y-axis
represents the value of the fitness score, F . On the Y-axis, the values
on the left hand side are for the average of the fitness score and those
on the right side represent the Standard deviation of the fitness scores.

130

Table 5.11: Average and standard deviation of the fitness score for
different topologies

Tunnel
Percentage

Topology1
Avg/Std

Topology2
Avg/Std

Topology3
Avg/Std

Topology4
Avg/Std

Topology5
Avg/Std

0% 0.528770/
0.005711

0.534154/
0.004093

0.506592/
0.004422

0.439583/
0.012182

0.517170/
0.012439

10% 0.518975/
0.017973

0.512323/
0.026444

0.485196/
0.012845

0.415351/
0.027349

0.481129/
0.015703

20% 0.464915/
0.023556

0.497117/
0.035897

0.461979/
0.013655

0.389119/
0.032900

0.467794/
0.017378

30% 0.441189/
0.031529

0.477342/
0.039035

0.447749/
0.017786

0.366165/
0.041827

0.459370/
0.018698

40% 0.415282/
0.034279

0.437504/
0.043127

0.430917/
0.022715

0.317137/
0.050503

0.443506/
0.027945

50% 0.386493/
0.036679

0.370445/
0.088695

0.388637/
0.031322

0.286419/
0.053501

0.371834/
0.045327

Figure 5.10: Average and standard deviation of the fitness score
for topology 1

As shown in Figure 5.10, even for 10% tunnels present in the topol-
ogy, the decrease in the fitness value represents the existence of a fitter
path although the difference is not very high. This is because of the
fact that the tunnels are generated randomly, which may not be suit-
able for inclusion in the path from source AS12 to destination AS16.
Upon adding another 10% tunnels to the existing ones, the value of the
fitness score experiences a further decrease of 0.05398. For 9 tunnels
in the topology, the average fitness value is 0.087581 smaller than that
for no tunnels present in the network. For every increment in the num-
ber of tunnels, the average of the fitness score keeps increasing and

131

finally, for 15 tunnels, the average fitness score is only 0.386493.
The standard deviation increases with more tunnels as for the S−D,

the tunnels provide a better path. The chances of this depend on their
proximity to S and D.

Figure 5.11: Average and standard deviation of the fitness score
for topology 2

For topology 2, Figure 5.11 shows that the average fitness score
keeps decreasing representing an improvement in the fitness, with the
increase in the number of tunnels present. For 10% tunnels present in
the topology, the fitness value is approximately 0.51. Then the graph
line shows slow decrease in average delay fitness for 20% and 30% tun-
nels. This behaviour is because of the fact that although new tunnel(s)
is/ are being added to the topology, they will not necessarily be used
by the end user. It is noteworthy that the fitness value of the least cost
path for 50% tunnels is much smaller which means the tunnels provide
much benefit in terms of average end-to-end delay.

Figure 5.12 shows that for topology 3, there is fitter path for the
continuous increase in the number of tunnels present. The slope in the
graph shows that the fitness score experiences slow decrease in this
topology, i.e., the random tunnels are not always chosen. One reason
is that the tunnel may not always be in the ASes which are traversed
through by the data. So, for a specific occurrence of sending a traffic
over the network, the use of tunnels will not always yield noticeable
benefits.

132

Figure 5.12: Average and standard deviation of the fitness score
for topology 3

Figure 5.13: Average and standard deviation of the fitness score
for topology 4

In Figure 5.13, the red line showing the average fitness becomes
approximately 0.29 starting from 0.44. This confirms that the PCAT–
I finds fitter paths at the end of the iterations for more tunnels being
introduced in the network topology 4. Even for only 3 tunnels in the
topology, the improvement is noteworthy, which says that the end user
can experience significantly less average end-to-end delay by choosing
to use one or more tunnel(s).

133

For topology 5, Figure 5.14, for the first case of 10% tunnels, the
average fitness score decreases by a notable degree. Then it becomes
a little slower for the next three sets of increments showing slower im-
provement in the fitness of the least cost paths. Again adding 10% more
tunnels to the existing 40% tunnels shows that there is a much fitter
path in terms of end-to-end delay while paying financial cost for tunnel
usage.

Figure 5.14: Average and standard deviation of the fitness score
for topology 5

Finally, it can be observed from the graphs that the presence of tun-
nels introduces fitter paths for a source-destination pair while the path
chosen does not cost a lot of money for the end user. However, relatively
small improvements are not surprising, as some existing tunnels are
avoided deliberately to keep the financial cost associated with the total
path low.

5.3.2 Results for Different Node Degree

Using the same initial topology of 7 ASes that is used for the topologies
used above, another 30-AS topology is generated. Keeping other prop-
erties as they were, only the average node degree has been changed,
which is 2 now. The topology is included in Appendix B.

The ratio of delay for tunnel links and no-tunnel links is 4:1 and that
of the financial cost for tunnel and no-tunnel links are 5:1. With the
same set of experiment as before, the PCAT–I is run 10 times and then

134

the average and standard deviation of the fitness score are plotted in
the graph of Figure 5.15.

Figure 5.15: Average and standard deviation of the fitness score
for topology of average node degree 2

From Figure 5.15 it is observed that for such low node degree, there
is very less chance of finding noteworthy improvement in the least cost
path. For 3 tunnels present in the 30-AS topology, the average fitness
value is same as the one for no tunnels present. The standard deviation
is also 0, which implies that in a less connected graph, with a small
number of tunnels introduced, there is no variation in the least cost
paths since there are very few possible paths in a less connected graph.
However, the presence of 50% tunnels shows some decrease, though
this is marginal.

Table 5.12 make it the easier to compare the benefits of tunnels in
internet topologies of different node degrees. The observations from
topology 1 is used here to compare the data with.

135

Table 5.12: Average and standard Deviation of the fitness score for
two different topologies of different average node degree

Tunnel
Percentage

Avg Node Degree = 2
Avg/Std

Avg Node Degree = 3.6
Avg/Std

0% 0.655303/
0

0.528770/
0.005711

10% 0.655303/
0

0.518975/
0.017973

20% 0.653693/
0.005098

0.464915/
0.023557

30% 0.652083/
0.006788

0.441186/
0.031529

40% 0.647254/
0.008485

0.415282/
0.034279

50% 0.644034/
0.007776

0.386493/
0.036679

It is clear that the tunnels add more benefits for more connected
graphs, and for a less connected graph, the number of possible route
to send data over the network is generally less.

5.3.3 Results for Different Weights of the Constraints

This section explains the impact of tunnels on the least cost paths in
the network topology observed varying the weights of the objective func-
tions, delay fitness and cost fitness. For this experimental setup, the
S−D pair AS12-AS16 is used to send data in a 30-AS topology, Topology
1 (APPENDIX B). This is done by changing the value of α in Equation
5.7 . For each value, the PCAT–I is run for 10 times and the average and
standard deviation of the final 10 least cost paths are calculated.

Table 5.13 includes the data of this experiment.

136

Table 5.13: Average and standard deviation of the fitness score for
different values of α

Tunnel
Percentage

α = 0
Avg/Std

α = 0.25
Avg/Std

α = 0.50
Avg/Std

α = 0.75
Avg/Std

α = 1
Avg/Std

0% 0.71528
0.01464

0.63993
0.01236

0.52877
0.00571

0.45423
0.01210

0.39231
0.02433

10% 0.71528
0.01464

0.61837
0.02825

0.51898
0.01797

0.43945
0.01284

0.31154
0.02979

20% 0.711806
0.014640

0.584890
0.040465

0.464915
0.023557

0.405779
0.023546

0.286538
0.038939

30% 0.71181
0.01677

0.57738
0.04352

0.44119
0.03153

0.38610
0.02561

0.25962
0.05148

40% 0.71181
0.05917

0.53684
0.05671

0.41528
0.03428

0.36873
0.03508

0.225
0.060168

50% 0.71181
0.06399

0.49651
0.07843

0.38649
0.03667

0.32151
0.03991

0.14808
0.05948

For path calculation based solely on the fitness cost, the delay fit-
ness, f1 is given 0% and cost fitness, f2 100% weight, making the fitness
equation as follows:

F = (0× f1) + (1− 0)× f2 = f2 (5.9)

The results using Equation 5.9 are plotted in Figure 5.16. It is ob-
served that when only financial cost is considered to find the fitness
score, the change in the average value is almost none. This is due to
the fact that even after tunnels being introduced, the paths using the
tunnels will have higher financial cost which increases the cost fitness
causing an increase in the final fitness score. Hence, the algorithm
efficiently avoids such paths and chooses the one with least financial
cost involved, i.e., the least cost path contains least tunnels possible.
The slight change in the red line showing the average fitness indicates
use of tunnel for 20% tunnels. This is done only because it does not
contribute to an overall increase in the end-to-end path’s financial cost.
Further flatness of the line supports the statement. The change in the
standard deviation confirms little variance in the S −D paths.

137

Figure 5.16: Average and standard deviation of the fitness score
for α = 0

α = 0.25 gives 25% weight to the delay fitness and 75% weight to
the cost fitness. Equation 5.10 shows the brief calculation method of
fitness score, F .

F = (0.25× f1) + (0.75× f2) (5.10)

Figure 5.17 plots the average and standard deviation of the fitness
scores of the least cost paths calculated under this scenario. The av-
erage fitness decreases approximately by 0.02 for 3 tunnels present in
the 30-AS topology. Implementation of another 3 tunnels adds further
improvement in the fitness of the least cost path. For 40% and 50%
tunnels, the line indicates a noticeable drop in the average value.

The results plotted in Figure 5.10 already shows the change in the
average and standard deviation of the least cost path’s fitness value for
the 10 runs of each tunnel percentage in the topology used here.

For a ratio of the weight of delay fitness to the weight of cost fitness
3:1, Equation 5.11 represents how the fitness score of the best possible
path is calculated.

F = (0.75× f1) + (0.25× f2) (5.11)

From the graph 5.18, it can be said that there is a consistent de-
crease in the average fitness value for each implementation of 10% tun-

138

Figure 5.17: Average and standard deviation of the fitness score
for α = 0.25

nels in the topology. For 9 tunnels present in the network, the value
falls to almost 0.4 from 0.45. This is because the use of more tun-
nels contributes to the reduction of average end-to-end delay. Since the
financial cost has only 25% weight, the PCAT–I finds paths with the
tunnels giving more priority to the requirement of delay reduction.

Figure 5.18: Average and standard deviation of the fitness score
for α = 0.75

139

Finally, Figure 5.19 plots the values which are calculated considering
the delay fitness only. The fitness equation is now:

F = (1× f1) + (0× f2) = f1 (5.12)

Figure 5.19: Average and standard deviation of the fitness score
for α = 1

The average fitness score becomes approximately 0.3 for only 10% of
tunnels whereas the fitness score of the least cost path is approximately
0.4 for no tunnel present in the topology. For every increase in the num-
ber of tunnels, the decrease in value is noticeable. For 50% tunnels, the
reduction is more than 2.5 times, which indicates that the PCAT–I finds
a 2.5 times fitter path for 50% tunnels present in the network when the
financial cost for the tunnel usage is ignored. This graph also shows
the continuing increase in the standard deviation. This behaviour is
due to the fact that if the financial cost is not taken into account, there
are more possible paths for sending data from AS12 to AS16.

Finally, the results described in this section confirm the benefit of
tunnel usage in the topology.

5.3.4 Results Considering Peak Time

The experiments in the above sections have been performed using a very
conservative estimate of the average delay introduced to each no-tunnel
link. The Internet can become very busy during certain times of the

140

day. This time is usually referred as the peak time, when traffic experi-
ences queuing delay which contributes a lot to the overall degradation
of QoE for the end user [188]. In such cases, the tunnels are expected
to add more benefit. To prove this, the least cost paths from source
AS12 to destination AS16 in the 30-AS topology (Topology 1) is calcu-
lated keeping the ratio of financial cost for tunnel and no-tunnel links
same as the previous experiments, which is 5:1 and altering the ratio
of the average delay for tunnel and no-tunnel links to 1:20 from 1:4. As
stated in Section 4.1.4, a data packet typically traverses through 4 to 6
hops within an AS while reaching its destination AS [187]. During peak
time, if no-tunnel link is used by the data packet, it will experience 4
to 6 times more delay than the usual time. Hence, the ratio of delay for
tunnel usage and no-tunnel link usage is set as 1:20.

This is done for no tunnels present in the network topology as well
as 10%, 20%, 30%, 40% and 50% tunnels implemented there. Similar
to the previous experiments, the average and standard deviation of the
overall fitness score for the best possible path selected by the PCAT–
I is calculated after running the simulation for 10 times. Table 5.14
includes the results.

Table 5.14: Average and standard deviation of the fitness score for
peak time

Tunnel
Percentage Avg Std Deviation

0% 0.518406 0.007746

10% 0.509974 0.011159

20% 0.478281 0.024441

30% 0.447430 0.028562

40% 0.413957 0.037868

50% 0.381755 0.038035

The results are plotted in Graph 5.20.
The average fitness value decreases from more approximately 0.52

to 0.48 for 6 tunnels (20%) present in the network topology. This is a
large decrease confirming that the additional tunnels introduce better
paths. For 30% tunnels, the best possible path’s fitness score reduces
by almost 40% from that for the 20% tunnels. With the increase in the
number of tunnels, the fitness value keeps decreasing indicating the
better least cost path. The blue line showing the standard deviation

141

Figure 5.20: Average and standard deviation of the fitness score
considering peak time

means that there are more choices of paths when using more tunnels.
It increases slowly from 40% to 50%. This behaviour is because of the
less variation in the 10 fitness values obtained from the 10 runs of the
simulation. However, it is mention-worthy that more than one path can
have the same fitness value.

5.4 Summary

In this chapter we confirm that with more tunnels being introduced to
a topology, there are fitter least cost paths for a specific pair of source
and destination ASes. According to the requirement of the end users,
the best path can be calculated by altering the equation of the fitness
evaluation for the paths by selecting a suitable alpha value as a com-
promise between the importance of delay relative to financial cost. The
tunnels add more benefit particularly during the peak hours. Instead
of random tunnel placements, other methods of can also be explored
using PCAT–I.

142

Chapter 6

Path Computation
Algorithm for Tunnels
using SPEA (PCAT–II)

The final contribution of this research is the SPEA-based PCA, named as
“Path Computation Algorithm for Tunnels–II” (PCAT–II) which efficiently
solves a MOOP. Researchers have already proposed the application of
SPEA to solve the shortest path routing problem in network topology
[209–212]. This supports the choice of algorithm for the PCAT–II. The
novelty in our work is the efficient implementation of SPEA to output
the paths which use any tunnel only if the usage adds any benefit to
the end users in terms of the end-to-end delay experienced along the
path and the amount of financial cost to be paid by them.

The next section describes the design and implementation of this
path computation tool.

6.1 Design and Implementation

The primary steps of developing the PCAT–II are the same as those of the
GA-based PCAT–I. As explained in Sections 5.1.1 and 5.1.2), this also
takes an AS topology and generates certain percentage of tunnels in
that. The main difference is that after the successful implementation
of SPEA, this PCAT–II outputs one or more paths without converting
the problem into a SOOP. In other words, a range of suitable paths are
identified between a given source-destination pair based on the trade-off

143

between the optimisation parameters being considered. These solutions
might minimise the end-to-end delay whilst minimising the financial
cost to be paid by the user, or indicating the delay benefit, if a certain
amount of financial expenditure is permitted.

Section 6.1.1 explains how the SPEA is implemented in this research
work for path computation.

6.1.1 Implementation of SPEA

The implementation of the SPEA can be explained step by step as fol-
lows:

• Step 1:

– Create initial population, P , based on random generation of
chromosomes.

– Create external archive or empty list, referred to as the exter-
nal population P ′. This population is used to hold the non-
dominated solutions found as the algorithm evolves.

• Step 2:

– Combine P with P ′ to create super population, PP .

– Purge P ′ (empty list).

• Step 3: For each chromosome, calculate:

1. Delay fitness, f1 and

2. Cost fitness, f2.

• Step 4: Perform dominance ranking.

• Step 5:

– Copy all non-dominated solutions in PP to P ′.

– Prune bottom ranked x chromosomes in PP (kill).

– If the maximum number of iterations has been reached, then
go to Step 9 or continue to step 6.

• Step 6:

– Apply genetic operators on Pruned PP . Pruned PP acts as the
mating pool.

144

– Enter the children chromosomes as the new P .

• Step 7: Add x% random chromosomes to new P . This ensures
“genetic diversity” is maintained.

• Step 8:

– Increment the iteration count.

– Go to step 1.

• Step 9:

– Print the final chromosomes (paths) in P ′.

– Terminate the algorithm.

Here, the steps are explained explained further.

Initialise Paths

A number of possible paths between a source AS and a destination AS
form the initial population for the algorithm. This process is same as
the one for GA, as explained in Section 5.1.4.

During the same step, a list is created to store the non-dominated
paths, which is empty at the beginning.

Evaluate Paths

As described previously, the two objective functions are: delay fitness,
f1 and cost fitness, f2. The calculation of f1 and f2 are done using 5.4
and 5.6, as explained in Section 5.1.4. Smaller values of f1 and f2 mean
higher delay fitness and higher cost fitness.

Unlike the GA, here the paths are evaluated based on dominance
score, δ. To do so, for each path, Pi, the f1 and f2 values are compared
with the f1 and f2 values of other paths, Pj in the list of the super
population, PP . Pi dominates Pj if one of the fitness values is better
and the other is definitely NOT worse, i.e., if at least one of f1 and f2

associated with Pi is smaller than f1 and f2 of other Pj AND at the same
time the another of f1 and f2 associated with Pi is definitely not bigger
than f1 and f2 then Pi gets a dominance count, ∆ of 1. The equation
6.1 represents this process.

∆Pi =

1 if f1(Pi) < f1(Pj) AND f2(Pi) ≤ f2(Pj))

1 if f1(Pi) ≤ f1(Pj) AND f2(Pi) < f2(Pj))

0 otherwise

(6.1)

145

Every time the value of ∆ is 1, the dominance count of Pi gets incre-
mented. Hence,

∆(Pi) = Pnj (6.2)

where Pnj is the total number Pj dominated by Pi.
Then dominance score of Pi, δ is calculated using Equation 6.3.

δ =
∆

1 + PPn
(6.3)

Get Non-dominated Paths

The next step is to find the non-dominated paths. There are two cases
when a path can be non-dominated.

• Dominating condition: If at least one of the fitness values is better
and the other is definitely NOT worse.

• Indifferent condition:

– If at least one of the fitness values is better and the other is
worse.

– If both fitness values are equal

Assuming that there is a flag value, γ for a path Pi to be non-dominated,
the non dominance is calculated as follows:

γPi =

1 if f1(Pi) < f1(Pj) AND f2(Pi) ≤ f2(Pj))

1 if f1(Pi) ≤ f1(Pj) AND f2(Pi) < f2(Pj))

1 if f1(Pi) < f1(Pj) AND f2(Pi) > f2(Pj))

1 if f1(Pi) > f1(Pj) AND f2(Pi) < f2(Pj))

1 if f1(Pi) == f1(Pj) AND f2(Pi) == f2(Pj))

0 otherwise

(6.4)

The non-dominated paths are then copied to the P ′.

Reproduction

The paths are ranked according to the descending dominance score.
The top 80% paths are selected for mating and the remaining 20% at

146

the bottom of the list are killed off. This ensures that the fitter paths
are chosen for further genetic operations and at the same time the non-
dominated paths definitely take part in the further reproduction steps.

The selected paths then potentially undergo crossover and mutation.
The processes are same as described in Section 5.1.4 for the PCAT–I.

Inject Random Paths

To ensure the diversity of solutions, a number of random possible paths
for the same pair of source and destination ASes are generated. These
paths are obtained following the same steps as for initialisation. These
paths are addressed as “secondary paths”.

Finally, a set of paths is sent it to the next generation. This includes
the external path, resultant potentially crossovered and mutated paths
and the secondary paths are merged to create the new set.

External Population

The non-dominated solutions in P ′ are never deleted. But in every it-
eration new non-dominated ones are copied to P ′. After doing so, it is
made sure that no duplicate paths exist and the dominated paths from
P ′ are removed. The final paths in P ′ are the Pareto optimal solutions
that take part in forming the Pareto front.

Terminating Condition

The terminating condition for this algorithm is the maximum number
of iterations for the SPEA. Once it reaches the maximum iteration, imax,
the final set of paths present in P ′ becomes the final output. The two
fitness values of these paths f1 and f2 make the desired Pareto front.

6.1.2 Flowchart

Figure 6.1 represents the high level flowchart of the SPEA-based Path
Computation Tool.

For a better understanding of the tool, the steps can be explained
briefly:

• A PFP-generated AS-level topology is provided as an input to the
PCAT–II.

• From the data in the text file, the tool finds every pair of source
and destination AS.

147

Figure 6.1: Flowchart of PCAT–II

• From the source-destination pairs, ASBR connections are gath-
ered.

• Next, the tool takes the expected percentage of tunnels (0%-99%)
as input, to be present in the topology.

148

• It generates the exact number of tunnels randomly placed in dif-
ferent ASes and creates a text file containing this information.

• Then the tool implements SPEA to find the best suitable path(s).

• It repeats the process of taking user input for generating more
tunnels until the user does not want any more of the tunnels. New
tunnels are added to the existing ones.

• The best path(s) for the expected percentage of tunnel(s) is(are)
then presented to the user.

The implementation of the SPEA itself can be represented with a
flowchart as presented in Figure 6.2.

149

Figure 6.2: Flowchart showing the steps of SPEA implemented for
path computation

6.1.3 Pseudo Code

This section presents a pseudo code of the PCAT–II programmed imple-
menting SPEA (in Python).

150

Algorithm 7 PCAT-II
INPUT: Graph, G(V,E) ; Source, S; Destination, D;
Iteration limit, imax; Tunnel Percentage, β
Delay for tunnel link, dt; Cost for tunnel link, ct
Delay for no-tunnel (intra-AS) link, dnt
Cost for no-tunnel (intra-AS) link, cnt
Delay for Inter-AS link, das; Cost for Inter-AS link, cas
Crossover probability, ρc; Mutation Probability, ρm
OUTPUT: Pareto Optimal Paths, P ′

while itr ≤ imax do
T ← Tunnels to generate in random ASes
NT ← β∗N

100 Number of tunnelled ASes
if β > 0 then

Generate tunnels in Nt ASes
else

Do not generate tunnels
end if
P ← Randomly generated Initial paths //Algorithm 3
N ← Size of P
P ′ ← External archive for Pareto optimal paths
N ′ ← Size of P ′
PP ← Super Population (P + P ′)
PPn ← Size of PP
f1, f2 ← Delay fitness, Cost Fitness //Algorithm 4
δ ← Dominance Score //Algorithm 8
Sort PP in descending order of δ
Find non-dominated solutions //Algorithm 9
Copy non-dominated solutions to P ′
if itr = 1 then
P ← P ′ ∪M ∪ Ps, Final set of Population for next iteration
itr ← (itr + 1)

else
Nmp ← Mating pool
Nmp ← 80%∗N

100 , Size of mating pool
C ← Paths after Crossover(P,Nmp, ρc) //Algorithm 5
M ← Paths after Mutation (C,Nmp, ρm) //Algorithm 6
Ps ← Secondary paths // Using Algorithm 3
NPs ← (20%∗N

100 − 1), Size of Secondary population
P ← P ′ ∪M ∪ Ps, b Final set of Population for next iteration
itr ← (itr + 1)

end if
end while
return P ′

151

Algorithm 8 Evaluate with Dominance
INPUT: PP, f1, f2

OUTPUT: δ
∆← 0, Dominance count of a path
while i < length(PP) do

Compare Pi with the rest in PP, Pj
for j ← 1 to length(Pj) do

if f1(Pi) < f1(Pj) AND f2(Pi) ≤ f2(Pj)) then
∆← ∆ + 1

else if f1(Pi) ≤ f1(Pj) AND f2(Pi) < f2(Pj)) then
∆← ∆ + 1

else
∆← ∆ + 0

end if
δ = ∆

1+PPn
end for

end while
return δ

Algorithm 9 Pareto Optimality
INPUT: PP, f1, f2

OUTPUT: P ′

γ ← 0, Flag for non-dominated path
while i < length(PP) do

Compare Pi with the rest in PP, Pj
for j ← 1 to length(Pj) do

if f1(Pi) < f1(Pj) AND f2(Pi) ≤ f2(Pj) then
γ ← 1

else if f1(Pi) ≤ f1(Pj) AND f2(Pi) < f2(Pj) then
γ ← 1

else if f1(Pi) < f1(Pj) AND f2(Pi) > f2(Pj) then
γ ← 1

else if f1(Pi) > f1(Pj) AND f2(Pi) < f2(Pj) then
γ ← 1

else if f1(Pi) == f1(Pj) AND f2(Pi) == f2(Pj) then
γ ← 1

else
γ ← 0

end if
For γ == 1, Pi is non-dominated
Send Pi to P ′

end for
end while
return P ′

152

6.2 Validation

The main genetic operations involved in the SPEA are not different from
the GA. Hence the PCAT–I designed with GA is further modified to im-
plement SPEA.

Since the main difference is in evaluation of the paths, this section
initially provides the validation of the process.

Fitness Evaluation

To start with, the tool is provided with the paths presented in Table 5.4,
with the fitness values shown in Table 5.6. Figure 6.3 shows the input
file.

Figure 6.3: Input paths for fitness validation using SPEA

Unlike the previous tool developed for the GA, this one outputs all
the paths with non-dominated fitness values, which are the set of least
cost paths. In Figure 6.3, it can be easily observed from the fitness
values that two paths are non-dominated. AS presented in Figure 6.4,
the output of the PCAT–II matches this expectation.

Figure 6.4: Output non-dominated paths for Figure 6.3

For a Larger Topology

To provide input data for a set of possible paths a 30-AS topology is used
for the further validation of this tool.

153

Table 6.1: Fitness values of 30 paths

Path f1 f2 Path f1 f2

P1 0.7692 0.8438 P16 0.6346 0.7917
P2 0.4615 0.8611 P17 0.8654 0.8529
P3 0.7692 0.8438 P18 0.7308 0.8077
P4 0.6538 0.8750 P19 0.6731 0.8333
P5 0.5962 0.7222 P20 0.4423 0.7500
P6 0.5385 0.7727 P21 0.6731 0.8333
P7 0.5577 0.8684 P22 0.6538 0.8750
P8 0.7115 0.8611 P23 0.7308 0.8077
P9 0.6731 0.8333 P24 0.6346 0.7917
P10 0.5192 0.8438 P25 0.4423 0.7500
P11 0.6346 0.7917 P26 0.6346 0.7917
P12 0.6154 0.8529 P27 0.7692 0.8438
P13 0.5769 0.8214 P28 0.4615 0.8611
P14 0.8846 0.7917 P29 0.7308 0.8077
P15 0.6346 0.7917 P30 0.7692 0.8438

Table 6.1 has the values of the two objective functions, f1 and f2 of
30 initial paths.

From the fitness values, using Equation 6.2, for each chromosome,
the PCAT–II finds how many other paths it dominates. Then the domi-
nance score is calculated using Equation 6.3. A flag value γ is assigned
to see whether the path is dominated by any other path. It is 1 as long
as the path is not dominated and is changed to 0 if another path dom-
inates it using the logic explained in Equation 6.4. Then the paths are
sorted according to the dominance score.

Table 6.2 shows the output data.
The data set matches with the values calculated manually using the

referred equations, confirming the process is operating satisfactorily.

154

Table 6.2: Paths sorted from Table 6.1

f1 f2 ∆ δ γ f1 f2 ∆ δ γ

0.4423 0.7500 27 0.8710 1 0.7308 0.8077 5 0.1613 0
0.4423 0.7500 27 0.8710 1 0.7308 0.8077 5 0.1613 0
0.5385 0.7727 23 0.7419 0 0.4615 0.8611 4 0.1290 0
0.5962 0.7222 21 0.6774 1 0.4615 0.8611 4 0.1290 0
0.6346 0.7917 15 0.4839 0 0.6154 0.8529 4 0.1290 0
0.6346 0.7917 15 0.4839 0 0.5577 0.8684 2 0.0645 0
0.6346 0.7917 15 0.4839 0 0.7692 0.8438 1 0.0323 0
0.6346 0.7917 15 0.4839 0 0.7692 0.8438 1 0.0323 0
0.6346 0.7917 15 0.4839 0 0.7692 0.8438 1 0.0323 0
0.5769 0.8214 12 0.3871 0 0.7692 0.8438 1 0.0323 0
0.5192 0.8438 10 0.3226 0 0.6538 0.8750 0 0 0
0.6731 0.8333 6 0.1935 0 0.8654 0.8529 0 0 0
0.6731 0.8333 6 0.1935 0 0.8846 0.7917 0 0 0
0.6731 0.8333 6 0.1935 0 0.7115 0.8611 0 0 0
0.7308 0.8077 5 0.1613 0 0.6538 0.8750 0 0 0

It is clearly seen from Table 6.2 that there are three paths with γ = 1,
which are paths are not dominated by any other path.

Figure 6.5 shows the output non-dominated paths from the tool.

Figure 6.5: Output non-dominated paths

As none of the non-dominated paths are duplicated, these are the
final Pareto optimal solutions. The objective functions i.e., the fitness
values of all the are paths are plotted in Figure 6.6.

The points marked with red colour confirm that no other points plot-
ted in the graph can be fitter than these two.

155

Figure 6.6: Graph showing Pareto optimal solutions

6.3 Results and Evaluation

This section includes the observation and comments on the results ob-
tained from the PCAT–II. For the experiments performed to obtain the
results described in this section, unless and otherwise specified, the
followings are considered:

• Initial population size, N is 30. The reason to choose this size is
explained in Section 5.1.4.

• Size of external population, P ′ is limited to 30.

• The ratio of the average end-to-end delay of an intra-domain tunnel
to that of a no-tunnel link is used as 1:4 and the ratio of financial
cost for using a tunnel along the path to that of a no-tunnel path
is set as 5:1, except for the peak time.

Table 6.3 includes the parameters used for the PCAT–II.
The parameters used for implementing SPEA are shown in Table 6.4.

156

Table 6.3: Parameters used in the PCAT–II

Parameter Value

Delay cost for tunnel 1
Delay cost for no-tunnel link 4
Delay cost for tunnel during peak time 1
Delay cost for tunnel during peak time 20
Delay for inter-domain link 1
Financial cost for tunnel 5
Financial cost for no-tunnel link 1
Financial for inter-domain link 1

Table 6.4: Parameters used in SPEA

Parameter Value

Initial population size, N 30
Reproduction percentage 80
Size of mating pool, Nmp 80%∗N

100 = 24
Maximum size of external population, N ′ 30
Cross-over rate, ρc 0.6
Mutation rate, ρm 0.02
Size of secondary population, Nps (20%∗N

100 − 1) = 5
Maximum number of iterations, imax 30

However, before fixing the crossover probability, ρc and mutation
probability, ρm, for further experiments, a large number of simulations
were run varying them. Section 6.3.1 discusses the results for two se-
lected scenarios.

6.3.1 Results for Different Crossover Probability (ρc) and
Mutation Probability (ρm)

A 30-AS topology, referred in the thesis as Topology 1, is used for the
experiments here. The maximum number of iterations, imax is set to
30. Then the PCAT–II is run for 20 times to find efficient paths from a
provided source(S)-destination pair (D), 12−16. The random seed is dif-
ferent in each run, leaving the choice to select tunnels to the algorithm.

Each run outputs one or more fit path(s). After every 5 runs, the
number of unique paths are noted. This is to see if there is an increase
in the number and if so, then how it behaves with the change of ρc and
ρm. Then, from these solutions, all the non-dominated solutions are
obtained and used for plotting the Pareto fronts.

This is done for 20% and 40% tunnels.

157

Figure 6.7 shows the number of unique output paths for 20% tun-
nels. The red line shows the results obtained using ρc = 0.6 and ρm =

0.02. In the first run, there is only one unique path. The number in-
creases to 7 after 5 runs and 10 after 10 runs. The next 5 runs add
another 3 paths. After 20 runs, the total number becomes almost dou-
ble.

Figure 6.7: Number of total solutions for 20% tunnels using differ-
ent ρc and ρm

For ρc = 0.8 and ρm = 0.05, the number of solutions after the first
run is 2, which increases to 11 after adding the solution from the next
4 runs. Only after another 10 runs, the number of paths become twice
as before. At the end of 20 runs, the total number of solutions is 31,
which is almost 19% more than the number obtained using ρc = 0.6 and
ρm = 0.02.

The number of output paths are again counted and plotted in Figure
6.8 for 40% tunnels. The blue line shows a consistent increase in the
total number of paths. After every 5 runs, the total number of solution
paths shown in the graph is higher than that for using the same number
of tunnels just altering the value of ρc and ρm.

Therefore, it is clear that the when the values of ρc and ρm are preset
as 0.6 and 0.02, the number of total solutions are more, indicating the
PCAT–II to be more efficient.

158

Figure 6.8: Number of total solutions for 40% tunnels using differ-
ent ρc and ρm

Pareto Fronts of the Solutions

Next, the Pareto dominance for all the paths are evaluated and only the
non-dominated ones are stored to form the Pareto front. This is done
after the 1st, 10th, 20th runs. Note that, the number of points can be
less than the number of the paths having the set of values presented by
it, since more than one paths can have the same fitness values. This is
due to the fact that each cost of each tunnel is same. Also, all intra-AS
no-tunnel link has the same cost metrics associated with them and the
case for the inter-AS links are not any different. Hence, based on the
number of links, the fitness values are calculated, which are not varied
depending on which links are being used. Figure 6.4 has an example
of two different paths with the same fitness values.

For 20% Tunnels
Figures 6.9 and 6.10 show Pareto fronts for 20% tunnels for the two

different set of crossover and mutation probabilities.
The observation from Figure 6.10a is important as there is only one

point in the Pareto Front, but it represents 2 different optimal solutions
with same fitness value.

For 40% Tunnels
Similarly, the Pareto fronts for 40% tunnels are shown in Figures

6.11 and 6.12.

159

(a)

(b)

(c)

Figure 6.9: Pareto fronts after: (a) 1 run; (b) 10 runs; (c) 20 runs
(for 20% tunnels when ρc = 0.6 and ρm = 0.02)

160

(a)

(b)

(c)

Figure 6.10: Pareto fronts after: (a) 1 run; (b) 10 runs; (c) 20 runs
(for 20% tunnels when ρc = 0.8 and ρm = 0.05)

161

(a)

(b)

(c)

Figure 6.11: Pareto fronts after: (a) 1 run; (b) 10 runs; (c) 20 runs
(For 40% tunnels when ρc = 0.6 and ρm = 0.02)

162

(a)

(b)

(c)

Figure 6.12: Pareto fronts after: (a) 1 run; (b) 10 runs; (c) 20 runs
(For 40% tunnels when ρc = 0.8 and ρm = 0.05)

163

The number of Pareto optimal solutions in different figures are in-
cluded in Table 6.5.

Table 6.5: Total number of Pareto optimal paths for different values
of crossover probability ρc and mutation probability ρm

20% 40%

ρc=0.6, ρm=0.02 ρc=0.8, ρm=0.05 ρc=0.6, ρm=0.02 ρc=0.8, ρm=0.05

Fig. #Sol. Fig. #Sol. Fig. #Sol. Fig. #Sol.

6.9a 2 6.10a 2 6.11a 2 6.12a 3
6.9b 2 6.10b 6 6.11b 4 6.12b 8
6.9c 4 6.10c 10 6.11c 9 6.12c 11

After observing the results from this section, the rest of the ex-
periments have been performed considering the crossover probability,
ρc = 0.8 and mutation probability, ρm = 0.05.

6.3.2 Results for Different Topologies

Five different topologies (referred as Topology 1 to 5, included in Ap-
pendix B) with the same network properties are considered for this ex-
periment. All the topologies have same number of nodes, which is 30
and the same average node degree, 3.6. These are the same topologies
as used for the results and discussion using PCAT–I in Chapter 5.

All the topologies are assumed to have 20% tunnels implemented.
A pair of nodes, S − D, AS12-AS16 is provided as the desired nodes to
send data over. The assumption made before the experiment was that
the SPEA would obtain the the PCAT–II output Pareto optimal paths
with different fitness values since the network connectivity is not same
for all the topologies and hence, the effectiveness of tunnels was not
expected to be the same every time.

Simulations are run for 10 times and the Pareto fronts showing the
Pareto optimal solutions are collected.

Figure 6.10a holds the Pareto front for Topology 1, representing 2
Pareto optimal solutions.

Figure 6.13 shows the Pareto front for the 2nd topology. 4 paths
are plotted in the front, each of which can be chosen by the end users
without having to make a compromise for any of average end-to-end
delay and financial cost.

164

Figure 6.13: Pareto front for 20% tunnels in Topology 2

The number of most suitable 12 − 16 paths existing in Topology 3 is
also 4. The Pareto front 6.14 has their fitness values. Three of the paths
have the same set of fitness values and only 1 of them has a different
set.

Figure 6.14: Pareto front for 20% tunnels in Topology 3

Both the Pareto fronts for the 4th and 5th toplogies have only one
point. Figure 6.15 has 2 possible “fit” paths and Figure 6.16 has 3.

In topology 4, ASes 12 and 16 are only 3 hops away. So, the tunnels
did not add much variation in the paths, hence the number of Pareto
optimal path is low.

165

Figure 6.15: Pareto front for 20% tunnels in Topology 4

Figure 6.16: Pareto front for 20% tunnels in Topology 5

It can be clearly observed that, for each topology, the PCAT–II outputs
a number of possible paths. None of the path(s) presented in the Pareto
fronts can be covered by any other existing path between the S−D pair,
12− 16.

6.3.3 Results for Different Percentages

Least cost Pareto optimal paths are generated for AS12-AS16 in Topology
1, considering different percentages of tunnels implemented.

Figure 6.17 shows the Pareto front for 10% tunnels.
Then keeping the existing 10% tunnels, more tunnels are added and

the PCAT–II is asked to output the least cost paths. The Pareto front
for 20%, 30% and 40% tunnels look alike, as the paths have the same
values for their delay and cost fitness. It is shown in Figure 6.18.

166

Figure 6.17: Pareto front for 10% tunnels in Topology 1

Figure 6.18: Pareto front for 20%, 30% and 40% tunnels in Topol-
ogy 1

The similarity in the Pareto front is due to the fact that, more tunnels
are added to the existing ones as the percentage increases.

The number of Pareto optimal paths that form the Pareto fronts, are
included in Table 6.6.

Table 6.6: Number of Pareto optimal paths for different tunnel per-
centages

Tunnel Percentage No of Paths

10 3
20 6
30 6
40 6

167

6.3.4 Results Considering Peak Time

As experimented with the GA-based PCAT, the peak time of the Internet
remaining busy is now considered for Topology 1 to observe how the
tunnels benefit in such cases. This is an important experiment, since
reducing queueing delay is one of the main aims the research aims for.
To do the experiment, the PCAT–II is run 10 times, with a ratio of the
average end-to-end delay of tunnel and no-tunnel link, 1:20.

Starting from no tunnels present in the topology, the PCAT-II finds
Pareto optimal paths for up to 40% tunnels being implemented in the
topology.

The intriguing observation from this is that the Pareto front for all
the different percentages look same since each has the same values of
objective functions plotted there.

The Pareto front is presented in Figure 6.19.

Figure 6.19: Pareto front for different tunnel percentages during
peak time

Although there are only 2 points, the number of Pareto optimal paths
for different percentages is not the same. This is again due to the way of
generating tunnels for the increasing percentages, where new tunnels
are added keeping the already-existing ones same as they are.

Table 6.7 includes the numbers.

168

Table 6.7: Number of Pareto optimal paths for different tunnel per-
centages

Tunnel Percentage No of Paths

10 5
20 6
30 7
40 9

This table confirms that during peak time, the presence of more tun-
nels in the topology adds more benefits to the users as more paths be-
come available to the users.

6.4 Summary

The results discussed in this chapter confirm that the PCAT–II efficiently
performs the fitter path calculation based on the user requirements. As
desired, the tool can output more than one least cost paths if there is
any, without converting the problem into a Single Optimisation.

The important observations here include the fact that as the number
of tunnels increase, the number of possible paths also increases. As the
requirement is set as minimum possible delay to be experienced while
paying the least, the PCAT–II only finds the path(s) confirming:

• Keeping the financial amount to be paid the same as it is, no other
path can offer less average end-to-end delay.

• There is no other possible path even with the same average end-
to-end delay for a lower financial cost.

169

Chapter 7

Discussion and
Conclusion

This thesis explores the question whether adding user-selectable tun-
nels to portions of the Internet would provide a notable benefit in terms
of performance and flexibility for at least some users. To this end we in-
troduce a new Autonomous System (AS)-Domain tunnelling framework.
The main motivation of developing this framework is to overcome the
limitations associated with the traditional next-hop forwarding mecha-
nism: strict routing and lack of traffic differentiation, leading to possible
traffic imbalance.

7.1 Overview

In this chapter, the research findings are discussed in context, refer-
ring back to the novel contributions claimed in Chapter 1. We provide
a review of the state-of-the-art in Chapter 2, showing that the end-user
has little opportunity to determine how their traffic is transferred across
the Internet to its destination. We also introduce various heuristic op-
timisation algorithms that can be used for path planning given various
constraints and goals. Then, in Chapter 4, we introduce a possible tun-
nelling framework, that is technology agnostic and protects the opera-
tors from having to divulge sensitive architectural details. The crucial
element is the introduction of a Broker that can advertise tunnels at an
Autonomous System level and enable end-users to be granted access to
them, for a price.

In Chapter 4, a simple least cost path computation tool is created

170

based on Dijkstra’s algorithm, that is combined with a topology gen-
erator and tunnel placement mechanism. This allows various basic
experiments to be examined, such as the impact of node degree and
tunnel density. This is refined in Chapter 5, where using a Genetic Al-
gorithm, a path computation tool, called Path Computation Algorithm
with Tunnels –I (PCAT–I), is created to determine suitable paths between
source-destination pairs, taking into account end-to-end delay and fi-
nancial cost. These two parameters effectively conflict with each other
in terms of optimisation. We use a weighting factor to set the balance
between them, converting this multi-objective problem into a single ob-
jective one. The downside of this approach is that the end-user does
not get a clear view of the spectrum of alternatives. Thus, in Chap-
ter 6, a multi-objective path selection tool, PCAT–II is developed, based
on SPEA, which evolves a Pareto front of alternative, viable solutions.
This can be used by users to see how the various performance objec-
tives inter-play with each other and allow a suitable compromise to be
selected.

7.2 Novel Contributions Revisited

7.2.1 Feasibility of the Tunnelling Framework

The proposed framework allows cooperation between end-users and net-
work operators via a simple brokerage mechanism. This mechanism
does not require the inter-operator signalling or any information which
network operators will not be willing to share due to privacy or trust
issue. We avoid inter-tunnels spanning ASes as this would typically
require cooperation between Service Providers. Instead, we focus on
intra-AS tunnels that are added in a relatively low concentration.

The Directory Service Broker (DSB) operates with the cooperation of
a number of network operators providing end-users selectable usage of
tunnels to send their data over. It doesn’t need to retrieve any router-
level Internet topology map rather it only requires an AS-level map view
provided by operators or obtained through traceroute or BGP messages.

7.2.2 Exploring Benefits of Tunnels: Are Internet Tun-
nels Worthwhile?

Initially, a tool has been designed and evaluated using a standard im-
plementation of Dijkstra’s algorithm. This tool reads an AS topology

171

and automatically generates an ASBR topology from which least cost
paths are obtained. Tunnels are incorporated, potentially providing
a benefit in terms of reduced end-to-end delay, which can be ascer-
tained under various conditions. We show that although the delay-cost
benefits would be marginal for many users, those users whose source-
destination path is in relatively close proximity to one or more tunnels
can experience a worthwhile gain. This is more apparent as the cost
differential increases.

We believe that end-user selectable access to tunnels provides a
worthwhile degree of choice whilst avoiding the issues of network se-
curity and would allow more flexible use of the Internet as demands on
its resources continue to grow and traffic of dissimilar types are sup-
ported.

7.2.3 Path Selection Tool for End User Software

The work introduces financial cost besides the average end-to-end delay
and modifies the path selection algorithm to incorporate multi-objective
goals. Two versions of path computation tool have been developed for
the end-user software, building upon the basic tool in Chapter 4, and
described in detail in Chapters 5 and 6, respectively: Path Computation
Algorithm with Tunnels, PCAT–I and PCAT–II.

PCAT–I

GA is implemented to develop the PCAT – I, which successfully calcu-
lates least cost path against the total average end-to-end delay and fi-
nancial cost for each possible route for sending data over. This is done
by finding the fittest path using an Equation developed to give certain
weight to each of the constraints, which is:

F = α× f1 + (1− α)× f2 (7.1)

where, f1 = delay fitness and
f2 = cost fitness. These are calculated using the equations:

f1 =
dπ

1 + dmax
(7.2)

where dπ = average end-to-end delay of the path and
dmax is the maximum possible average end-to-end delay for that path.

172

f2 =
cπ

ct + cπ
(7.3)

wherecπ = total financial cost of a path and
ct = cost of using one intra-AS tunnel in the specific network topology.

The equations developed in this research, for adapting the GA, are
also novel.

In addition, the results from the experiments using PCAT–I, as de-
scribed in Chapter 5, proves that the presence of tunnels helps reduce
the overall end-to-end delay.

PCAT–II

Since the GA finds one least cost path based on a combined value of the
two provided cost metrics, another version of the path computation tool
is developed using SPEA, which is efficient to find all the best suitable
paths based on the multiple constraints, instead of a combined one.
This is done using the same Equations for f1 and f2 and implementing
the theory of Pareto dominance. Unlike PCAT–I, PCAT–II shows all the
least cost paths even if they have the same cost associated with them.

7.3 Publications

• The results from Chapter 4 have been published in two papers:

– Are internet tunnels worth-while? 28th International Telecom-
munication Networks and Applications Conference (ITNAC),
pages 1–6. IEEE, 2018 [192].

– Tunnelling the internet. Journal of Telecommunications and
the Digital Economy, 7(1), 2019 [193].

.

• Some of the initial results were also presented as a poster:

– Tunnelling the Internet. ACM-W womENcourage 2019 [213]

• An earlier version of Chapter 5 was presented as a poster:

– Genetic Algorithm for Least Cost Routing in the Networking.
ACM-W womENcourage, 2020 [214].

173

7.4 Future Work

Although beyond the scope of this thesis, an interesting and useful en-
hancement to PCAT–II would be the ability to add additional constraints
such as “no-go” regions that the end-user would prefer to avoid. The ju-
dicious selection of tunnels provides an opportunity for an end-user to
detour their traffic around undesirable geographical regions whist being
sensitive to the impact on the end-to-end delay.

Since the target topologies of this research focus on relatively small
geographical areas, computational performance is reasonable. How-
ever, the cost of memory and time to do the path computation for a very
large topology would be high. The PCAT algorithms could be further im-
proved using parallel GA and SPEA variants, allowing the problem to be
decomposed into concurrent mini problems. However, care would need
to be taken to consider how global optimal solutions could be discovered
if only localised regional data was presented to each instantiation.

7.5 Concluding Remarks

In this thesis a new framework for loose source routing via selective
tunnels has been proposed. The framework provides a voluntary mech-
anism for end-users to have some control over the path their informa-
tion takes across the internet. The technologies required to perform
this task already exist. The principle new elements required, apart from
the willingness of the key actors to participate, are a brokerage entity,
an end-user path selection algorithm, and a tunnel authorisation and
policing mechanism. This work evaluates whether such a system adds
a significant benefit to the transport of preferred flows across portions
of the Internet.

We believe that end-user selectable access to tunnels provides a suit-
able degree of choice whilst avoiding the issues of trust and would allow
better management of the Internet as demands on its resources con-
tinue to grow.

The research confirms that end-users could derive meaningful ben-
efit if the selective use of tunnelling was offered across the Internet.
However, it remains an open question, beyond the scope of this research,
whether users would be willing to pay for such a service.

174

Bibliography

[1] Xin Chen. Energy Efficient Wired Networking. PhD thesis, Queen
Mary, University of London, 2015. Supervised by: Dr Chris
Phillips.

[2] Eckart Zitzler. Computer Engineering and Communication Net-
works Lab (TIK) Swiss Federal Institute of Technology (ETH)
Zurich Gloriastr. 35, CH–8092 Zürich, Switzerland zitzler@ tik.
ee. ethz. ch.

[3] Christian Esteve Rothenberg and Andreas Roos. A review of
policy-based resource and admission control functions in evolv-
ing access and next generation networks. Journal of Network and
Systems Management, 16(1):14–45, 2008.

[4] Jeffrey R Yost. The Origin and Early History of the Computer
Security Software Products Industry. IEEE Annals of the History
of Computing, 37(2):46–58, 2015.

[5] Telecommunication Standardization Sector International
Telecommunication Union. Resource and admission control
functions in next generation networks. ITU-T Draft/Prepublication
Y. 2111 (formerly Y. RACF).

[6] Mohit Chamania, Marek Drogon, and Admela Jukan. An Open-
Source Path Computation Element (PCE) Emulator: Design, Im-
plementation, and Performance. Journal of lightwave technology,
30(4):414–426, 2011.

[7] Sukrit Dasgupta, Jaudelice C De Oliveira, and Jean-Philippe
Vasseur. Path-Computation-Element-Based Architecture for In-
terdomain MPLS/GMPLS Traffic Engineering: Overview and Per-
formance. IEEE Network, 21(4):38–45, 2007.

[8] Border Gateway Protocol. . Last accessed: 2020-07-10.

175

[9] Wajdi Louati and Djamal Zeghlache. Network-Based Virtual Per-
sonal Overlay Networks Using Programmable Virtual Routers.
IEEE Communications Magazine, 43(8):86–94, 2005.

[10] Grzegorz Rzym, Krzysztof Wajda, and Krzysztof Rzym. Analysis
of pce-based path optimization in multi-domain sdn/mpls/bgp-
ls network. In 2016 18th International Conference on Transparent
Optical Networks (ICTON), pages 1–5. IEEE, 2016.

[11] Margaret Rouse. Path Computation Element
(PCE). http://searchsdn.techtarget.com/definition/

Path-Computation-Element-PCE, . Last accessed: 2020-07-10.

[12] Adrian Farrel. The Internet and Its Protocols. Morgan Kaufmann,
USA, 2004.

[13] Stefano Secci, Jean-Louis Rougier, and Achille Pattavina. On
the Selection of Optimal Diverse AS-Paths for Inter-Domain
IP/(G)MPLS Tunnel Provisioning. In 2008 4th International
Telecommunication Networking Workshop on QoS in Multiservice
IP Networks, pages 235–241. IEEE, 2008.

[14] Internet service providers charging for premium access hold us all
to ransom. https://www.theguardian.com/technology/2014/apr/

28/internet-service-providers-charging-premium-access, 2008.
Last accessed: 2020-07-10.

[15] David Alderson, John Doyle, Ramesh Govindan, and Walter Will-
inger. Toward an Optimization-Driven Framework for Design-
ing and Generating Realistic Internet Topologies. ACM SIGCOMM
Computer Communication Review, 33(1):41–46, 2003.

[16] Geoff Huston. Exploring Autonomous System Numbers. The In-
ternet Protocol Journal, 9(1), 2006.

[17] Y Rekhter, T Li, and S Hares. Border Gateway Protocol 4 (BGP-4).
rfc 4271 (draft standard). Updated by RFC 6286, 2006.

[18] Gary Scott Malkin and Martha E Steenstrup. Distance-vector
routing. In Routing in communications networks, pages 83–98.
1995.

[19] Stephen A Thomas. IPng and the TCP/IP Protocols: Implementing
the Next Generation Internet. John Wiley & Sons, Inc., 1996.

176

http://searchsdn.techtarget.com/definition/Path-Computation-Element-PCE
http://searchsdn.techtarget.com/definition/Path-Computation-Element-PCE
https://www.theguardian.com/technology/2014/apr/28/internet-service-providers-charging-premium-access
https://www.theguardian.com/technology/2014/apr/28/internet-service-providers-charging-premium-access

[20] Andrey Sapegin and Steve Uhlig. On the extent of correlation in
BGP updates in the Internet and what it tells us about locality of
BGP routing events. Computer Communications, 36(15-16):1592–
1605, 2013.

[21] Jake Brutlag. AS65000 BGP Routing Table Analysis Report. http:
//bgp.potaroo.net/as2.0/bgp-active.html. Last accessed: 2020-
07-10.

[22] Cisco Press. BGP Basics: Internal And External
BGP. https://www.networkcomputing.com/data-centers/

bgp-basics-internal-and-external-bgp/1830126875, July 2,
2017. Last accessed: 2020-07-10.

[23] Rony Kay. Pragmatic Network Latency Engineering Fundamental
Facts and Analysis. cPacket Networks, White Paper, pages 1–31,
2009.

[24] Ed Blair Margaret Rouse, Matthew Haughn. Latency.
http://whatis.techtarget.com/definition/latency, 2015. Last ac-
cessed: 2020-07-10.

[25] What are the different types of network de-
lay? https://www.educative.io/edpresso/

what-are-the-different-types-of-network-delay. Last ac-
cessed: 2021-01-01.

[26] Steve Souder. Velocity and the Bottom Line. http://radar.

oreilly.com/2009/07/velocity-making-your-site-fast.html,
July 1, 2009. Last accessed: 2020-07-10.

[27] Jake Brutlag. Speed Matters for Google Web Search. http:

//radar.oreilly.com/2009/07/velocity-making-your-site-fast.

html, June 22, 2009. Last accessed: 2020-07-10.

[28] Tim Wu. NETWORK NEUTRALITY, BROADBAND DISCRIMINA-
TION. J. on Telecomm. & High Tech. L., 2:141, 2003.

[29] Mathew Honan. Inside Net Neutrality: Is your ISP filtering
content? https://www.macworld.com/article/1132075/web-apps/

netneutrality1.html, February 12, 2008. Last accessed: 2020-
07-10.

[30] The Guardian. Net neutrality: Amazon among
top internet firms planning day of action. https:

177

http://bgp.potaroo.net/as2.0/bgp-active.html
http://bgp.potaroo.net/as2.0/bgp-active.html
https://www.networkcomputing.com/data-centers/bgp-basics-internal-and-external-bgp/1830126875
https://www.networkcomputing.com/data-centers/bgp-basics-internal-and-external-bgp/1830126875
http://whatis.techtarget.com/definition/latency
https://www.educative.io/edpresso/what-are-the-different-types-of-network-delay
https://www.educative.io/edpresso/what-are-the-different-types-of-network-delay
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
https://www.macworld.com/article/1132075/web-apps/netneutrality1.html
https://www.macworld.com/article/1132075/web-apps/netneutrality1.html
https://www.theguardian.com/technology/2017/jun/06/net-neutrality-amazon-etsy-kickstarter-protest
https://www.theguardian.com/technology/2017/jun/06/net-neutrality-amazon-etsy-kickstarter-protest

//www.theguardian.com/technology/2017/jun/06/

net-neutrality-amazon-etsy-kickstarter-protest, June 6,
2017. Last accessed: 2020-07-10.

[31] Hagai-Bar-El. Protecting network neutrality: both im-
portant and hard. https://www.hbarel.com/analysis/policy/

what-is-network-neutrality, August 19, 2017. Last accessed:
2020-07-10.

[32] The Guardian. Net neutrality enshrined in Dutch law.
https://www.theguardian.com/technology/2011/jun/23/

netherlands-enshrines-net-neutrality-law, June 23, 2011.
Last accessed: 2020-07-10.

[33] Canadian Radio-television and Telecommunications Commis-
sion. Telecom Decision CRTC 2011-44. https://crtc.gc.ca/eng/
archive/2011/2011-44.html, January 25, 2011. Last accessed:
2020-07-10.

[34] Wikipedia. Net Neutrality By Country. https://en.wikipedia.org/
wiki/Net_neutrality_by_country, . Last accessed: 2020-07-10.

[35] Joshua Wright Ajit Pai. The Internet isn’t bro-
ken. Obama doesn’t need to ’fix’ it. . https:

//www.chicagotribune.com/opinion/commentary/

ct-internet-regulations-fcc-ftc-obama-broadband-perspec-0219-20150218-story.

html, February 18, 2015. Last accessed: 2020-07-10.

[36] Federal Communications Commission et al. In the matter of pro-
tecting and promoting the open internet. Washington, DC Adopted
February, 26:2015, 2015.

[37] The New York Times. F.C.C. Invokes Inter-
net Freedom While Trying to Kill It . https:

//www.nytimes.com/2017/04/29/opinion/sunday/

fcc-invokes-internet-freedom-while-trying-to-kill-it.html,
April 29, 2017. Last accessed: 2020-07-10.

[38] Wikipedia. Net neutrality in the United States. https://en.

wikipedia.org/wiki/Net_neutrality_in_the_United_States, . Last
accessed: 2020-07-10.

[39] Patrick Le Callet, Sebastian Möller, Andrew Perkis, et al. Qualinet
White Paper on Definition of Quality of Experience. European net-

178

https://www.theguardian.com/technology/2017/jun/06/net-neutrality-amazon-etsy-kickstarter-protest
https://www.theguardian.com/technology/2017/jun/06/net-neutrality-amazon-etsy-kickstarter-protest
https://www.theguardian.com/technology/2017/jun/06/net-neutrality-amazon-etsy-kickstarter-protest
https://www.hbarel.com/analysis/policy/what-is-network-neutrality
https://www.hbarel.com/analysis/policy/what-is-network-neutrality
https://www.theguardian.com/technology/2011/jun/23/netherlands-enshrines-net-neutrality-law
https://www.theguardian.com/technology/2011/jun/23/netherlands-enshrines-net-neutrality-law
https://crtc.gc.ca/eng/archive/2011/2011-44.html
https://crtc.gc.ca/eng/archive/2011/2011-44.html
https://en.wikipedia.org/wiki/Net_neutrality_by_country
https://en.wikipedia.org/wiki/Net_neutrality_by_country
https://www.chicagotribune.com/opinion/commentary/ct-internet-regulations-fcc-ftc-obama-broadband-perspec-0219-20150218-story.html
https://www.chicagotribune.com/opinion/commentary/ct-internet-regulations-fcc-ftc-obama-broadband-perspec-0219-20150218-story.html
https://www.chicagotribune.com/opinion/commentary/ct-internet-regulations-fcc-ftc-obama-broadband-perspec-0219-20150218-story.html
https://www.chicagotribune.com/opinion/commentary/ct-internet-regulations-fcc-ftc-obama-broadband-perspec-0219-20150218-story.html
https://www.nytimes.com/2017/04/29/opinion/sunday/fcc-invokes-internet-freedom-while-trying-to-kill-it.html
https://www.nytimes.com/2017/04/29/opinion/sunday/fcc-invokes-internet-freedom-while-trying-to-kill-it.html
https://www.nytimes.com/2017/04/29/opinion/sunday/fcc-invokes-internet-freedom-while-trying-to-kill-it.html
https://en.wikipedia.org/wiki/Net_neutrality_in_the_United_States
https://en.wikipedia.org/wiki/Net_neutrality_in_the_United_States

work on quality of experience in multimedia systems and services
(COST Action IC 1003), 3(2012), 2012.

[40] Jon Postel et al. Internet protocol. 1981.

[41] Michael Montgomery and Gustavo De Veciana. Hierarchical
Source Routing Through Clouds. In Proceedings. IEEE INFO-
COM’98, the Conference on Computer Communications. Seven-
teenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Gateway to the 21st Century (Cat. No. 98,
volume 2, pages 685–692. IEEE, 1998.

[42] Mourad Soliman, Biswajit Nandy, Ioannis Lambadaris, and Peter
Ashwood-Smith. Exploring Source Routed Forwarding in SDN-
Based WANs. In 2014 IEEE International Conference on Commu-
nications (ICC), pages 3070–3075. IEEE, 2014.

[43] Yih-Chun Hu and David B Johnson. Implicit Source Routes
forOn-Demand Ad Hoc Network Routing. In Proceedings of the
2nd ACM international symposium on Mobile ad hoc networking &
computing, pages 1–10, 2001.

[44] S Previdi et al. Cisco Systems, Inc.,” Segment Routing with
IS-IS Routing Protocol, draft-previdi-filsfils-isis-segment-routing-
02”. Technical report, Internet-Draft, Mar. 20, 2013, A55, 2013.

[45] Jeffrey Shafer, Brent Stephens, Michael Foss, Scott Rixner, and
Alan L Cox. Axon: A Flexible Substrate for Source-routed Ether-
net. In Proceedings of the 6th ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems, pages 1–11,
2010.

[46] Chuanxiong Guo, Guohan Lu, Helen J Wang, Shuang Yang, Chao
Kong, Peng Sun, Wenfei Wu, and Yongguang Zhang. SecondNet: A
DataCenter Network Virtualization Architecture with Bandwidth
Guarantees. In Proceedings of the 6th International COnference,
pages 1–12, 2010.

[47] Brent Stephens. Designing Scalable Networks for Future Large
Datacenters. PhD thesis, 2012.

[48] Katerina Argyraki and David R Cheriton. Loose source routing
as a mechanism for traffic policies. In Proceedings of the ACM
SIGCOMM workshop on Future directions in network architecture,
pages 57–64, 2004.

179

[49] Luca Boccassi, Marwan M Fayed, and Mahesh K Marina. Binder:
A System to Aggregate Multiple Internet Gatewaysin Community
Networks. In Proceedings of the 2013 ACM MobiCom workshop on
Lowest cost denominator networking for universal access, pages
3–8, 2013.

[50] Layer 2 Tunneling Protocol (L2TP). http:

//www.thenetworkencyclopedia.com/entry/

layer-2-tunneling-protocol-l2tp/. Last accessed: 2020-07-10.

[51] Margaret Rouse. Layer Two Tunneling Protocol (L2TP).
http://searchenterprisewan.techtarget.com/definition/

Layer-Two-Tunneling-Protocol, . Last accessed: 2020-07-10.

[52] Express VPN. What is L2TP/IPsec? https://www.expressvpn.com/

what-is-vpn/protocols/l2tp. Last accessed: 2020-07-10.

[53] Kireeti Kompella, George Swallow, Carlos Pignataro, Nagen-
dra Kumar Nainar, Sam Aldrin, and Mach (Guoyi) Chen. Detecting
Multiprotocol Label Switched (MPLS) Data-Plane Failures. RFC,
8029:1–78, 2017.

[54] Michael Bushong Walter J. Goralski, Cathy Gadecki.
Label Switching and Label Switched Paths (LSPs).
https://www.dummies.com/programming/networking/juniper/

label-switching-and-label-switched-paths-lsps/. Last ac-
cessed: 2020-07-10.

[55] Jing Fu and Jennifer Rexford. Efficient ip-address lookup with a
shared forwarding table for multiple virtual routers. In Proceed-
ings of the 2008 ACM CoNEXT Conference, pages 1–12, 2008.

[56] Yihua He, Georgos Siganos, and Michalis Faloutsos. Internet
Topology, 2009.

[57] David Alderson, Lun Li, Walter Willinger, and John C Doyle. Un-
derstanding Internet Topology: Principles, Models, and Valida-
tion. IEEE/ACM Transactions on networking, 13(6):1205–1218,
2005.

[58] Richard G Clegg, Carla Di Cairano-Gilfedder, and Shi Zhou. A
critical look at power law modelling of the Internet. Computer
Communications, 33(3):259–268, 2010.

180

http://www.thenetworkencyclopedia.com/entry/layer-2-tunneling-protocol-l2tp/
http://www.thenetworkencyclopedia.com/entry/layer-2-tunneling-protocol-l2tp/
http://www.thenetworkencyclopedia.com/entry/layer-2-tunneling-protocol-l2tp/
http://searchenterprisewan.techtarget.com/definition/Layer-Two-Tunneling-Protocol
http://searchenterprisewan.techtarget.com/definition/Layer-Two-Tunneling-Protocol
https://www.expressvpn.com/what-is-vpn/protocols/l2tp
https://www.expressvpn.com/what-is-vpn/protocols/l2tp
https://www.dummies.com/programming/networking/juniper/label-switching-and-label-switched-paths-lsps/
https://www.dummies.com/programming/networking/juniper/label-switching-and-label-switched-paths-lsps/

[59] Sally Floyd and Vern Paxson. Difficulties in simulating the inter-
net. IEEE/ACm Transactions on Networking, 9(4):392–403, 2001.

[60] Ricardo V Oliveira, Beichuan Zhang, and Lixia Zhang. Observ-
ing the Evolution of Internet AS Topology. In Proceedings of the
2007 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 313–324, 2007.

[61] Bruno Quoitin. Topology Generation based on Network Design
Heuristics. In Proceedings of the 2005 ACM conference on Emerg-
ing network experiment and technology, pages 278–279, 2005.

[62] Hamed Haddadi, Steve Uhlig, Andrew Moore, Richard Mortier,
and Miguel Rio. Modeling Internet Topology Dynamics. ACM SIG-
COMM Computer Communication Review, 38(2):65–68, 2008.

[63] Bruno Quoitin, Virginie Van den Schrieck, Pierre François, and
Olivier Bonaventure. IGen: Generation of Router-level Internet
Topologies through Network Design Heuristics. In 2009 21st In-
ternational Teletraffic Congress, pages 1–8. IEEE, 2009.

[64] Naomi A Arnold, Raul J Mondragon, and Richard G Clegg. Chang-
ing the tune: mixtures of network models that vary in time. arXiv
preprint arXiv:1909.13253, 2019.

[65] Hamed Haddadi, Miguel Rio, Gianluca Iannaccone, Andrew
Moore, and Richard Mortier. Network Topologies: Inference, Mod-
eling, and Generation. IEEE Communications Surveys & Tutorials,
10(2):48–69, 2008.

[66] Micha Karoński and Andrzej Ruciński. The origins of the theory
of random graphs. In The Mathematics of Paul Erdös I, pages 311–
336. Springer, 1997.

[67] Paul Erdös and Alfréd Rényi. On random graphs I. Math. debre-
cen, 6:290–297, 1959.

[68] Paul Erdős and Alfréd Rényi. ON THE EVOLUTION OF RANDOM
GRAPHS. Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–60, 1960.

[69] Bernard M Waxman. Routing of Multipoint Connections. IEEE
journal on selected areas in communications, 6(9):1617–1622,
1988.

181

[70] Kenneth L Calvert, Matthew B Doar, and Ellen W Zegura. Mod-
eling Internet Topology. IEEE Communications magazine, 35(6):
160–163, 1997.

[71] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John By-
ers. BRITE: An Approach to Universal Topology Generation . In
MASCOTS 2001, Proceedings Ninth International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommuni-
cation Systems, pages 346–353. IEEE, 2001.

[72] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On
Power-Law Relationships of the Internet Topology. ACM SIGCOMM
computer communication review, 29(4):251–262, 1999.

[73] Tian Bu and Don Towsley. On distinguishing between internet
power law topology generators. In Proceedings. twenty-first annual
joint conference of the ieee computer and communications societies,
volume 2, pages 638–647. IEEE, 2002.

[74] Georgos Siganos, Michalis Faloutsos, Petros Faloutsos, and
Christos Faloutsos. Power laws and the as-level internet topology.
IEEE/ACM Transactions on networking, 11(4):514–524, 2003.

[75] Christopher R Palmer and J Greg Steffan. Generating Net-
work Topologies that Obey Power Laws. In Globecom’00-IEEE.
Global Telecommunications Conference. Conference Record (Cat.
No. 00CH37137), volume 1, pages 434–438. IEEE, 2000.

[76] William Aiello, Fan Chung, and L Lu A Random Graph Model. A
Random Graph Model for Massive Graphs. In Proc. STOC 2000,
2001.

[77] Albert-Laszlo Barabasi and Reka Albert. Emergence of Scaling in
Random Networks. Science, 2865439, 1999.

[78] Shi Zhou and Raúl J Mondragón. The rich-club phenomenon
in the internet topology. IEEE Communications Letters, 8(3):180–
182, 2004.

[79] Ricardo V Oliveira, Dan Pei, Walter Willinger, Beichuan Zhang,
and Lixia Zhang. In Search of the Elusive Ground Truth: the In-
ternet’s AS-Level Connectivity Structure. ACM SIGMETRICS Per-
formance Evaluation Review, 36(1):217–228, 2008.

182

[80] Alberto Medina, Ibrahim Matta, and John Byers. BRITE: A Flex-
ible Generator of Internet Topologies. 2000.

[81] Jared Winick and Sugih Jamin. Inet-3.0: Internet topology gen-
erator. Technical report, Technical Report CSE-TR-456-02, Uni-
versity of Michigan, 2002.

[82] Cheng Jin, Qian Chen, and Sugih Jamin. Inet: Internet Topology
Generator. 2000.

[83] Shi Zhou and Raúl J Mondragón. Accurately modeling the Inter-
net topology. Physical Review E, 70(6):066108, 2004.

[84] Shi Zhou. Characterising and modelling the Internet topology—
the rich-club phenomenon and the PFP model. BT Technology
Journal, 24(3):108–115, 2006.

[85] Wolfgang Mühlbauer, Anja Feldmann, Olaf Maennel, Matthew
Roughan, and Steve Uhlig. Building an AS-Topology Model that
Captures Route Diversity. ACM SIGCOMM Computer Communica-
tion Review, 36(4):195–206, 2006.

[86] Wolfgang Mühlbauer, Steve Uhlig, Bingjie Fu, Mickael Meulle, and
Olaf Maennel. In Search for An Appropriate Granularity to Model
Routing Policies. ACM SIGCOMM Computer Communication Re-
view, 37(4):145–156, 2007.

[87] Renata Teixeira, Aman Shaikh, Tim Griffin, and Jennifer Rexford.
Dynamics of Hot-Potato Routing in IP Networks. In Proceedings
of the joint international conference on Measurement and modeling
of computer systems, pages 307–319, 2004.

[88] Young Hyun, Andre Broido, et al. Traceroute and BGP AS Path
Incongruities. Technical report, Cooperative Association for Inter-
net Data Analysis (CAIDA), 2003.

[89] Philip L. Frana and Thomas J. Misa. An Interview with Edsger W.
Dijkstra. Commun. ACM, 53(8):41–47, August 2010. ISSN 0001-
0782. doi: 10.1145/1787234.1787249. URL https://doi.org/

10.1145/1787234.1787249.

[90] Jeff Doyle. CCIE Professional Development: Routing TCP/IP. Cisco
Press, 1998.

[91] Edsger W Dijkstra et al. A Note on Two Problems in Connexion
with Graphs. Numerische mathematik, 1(1):269–271, 1959.

183

https://doi.org/10.1145/1787234.1787249
https://doi.org/10.1145/1787234.1787249

[92] Vimal L Vachhani, Vipul K Dabhi, and Harshadkumar B Prajap-
ati. Survey of Multi-Objective Evolutionary Algorithms. In 2015
International Conference on Circuits, Power and Computing Tech-
nologies [ICCPCT-2015], pages 1–9. IEEE, 2015.

[93] Ruhul Sarker, Masoud Mohammadian, and Xin Yao. Evolutionary
Optimization, volume 48. Springer Science & Business Media,
2002.

[94] David E Goldenberg. Genetic Algorithms in Search, Optimization
and Machine Learning, 1989.

[95] Carlos A Coello. An Updated Survey of GA-Based Multiobjective
Optimization Techniques. ACM Computing Surveys (CSUR), 32(2):
109–143, 2000.

[96] M Laumann, E Zitzler, and S Bleuler. A Tutorial on Evolution-
ary Multiobjective Optimization, Metaheuristics for Multiobjective
Optimisation,[In:]. Lecture Notes in Economics and Mathematical
Systems, pages 3–37, 2004.

[97] Marcos LP Bueno and Gina MB Oliveira. Multiobjective evolution-
ary algorithms and a combined heuristic for route reconnection
applied to multicast flow routing. In 2010 10th IEEE International
Conference on Computer and Information Technology, pages 464–
471. IEEE, 2010.

[98] Thomas Bäck, Günter Rudolph, and Hans-Paul Schwefel. Evolu-
tionary Programming and Evolution Strategies: Similarities and
Differences. In In Proceedings of the Second Annual Conference on
Evolutionary Programming. Citeseer, 1993.

[99] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT press,
1998.

[100] Darrell Whitley. An overview of evolutionary algorithms: practical
issues and common pitfalls. Information and software technology,
43(14):817–831, 2001.

[101] John Henry Holland et al. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence. MIT press, 1992.

[102] Ingo Rechenberg. Evolution Strategy: Nature’s Way of Optimiza-
tion. In Optimization: Methods and applications, possibilities and
limitations, pages 106–126. Springer, 1989.

184

[103] Thomas Back, Ulrich Hammel, and H-P Schwefel. Evolutionary
Computation: Comments on the History and Current State. IEEE
transactions on Evolutionary Computation, 1(1):3–17, 1997.

[104] Lawrence J Fogel, Alvin J Owens, and Michael J Walsh. Artificial
Intelligence through Simulated Evolution. 1966.

[105] David B Fogel. A Comparison of Evolutionary Programming and
Genetic Algorithms on Selected Constrained Optimization Prob-
lems. Simulation, 64(6):397–404, 1995.

[106] John Galletly. Evolutionary algorithms in theory and practice.
Kybernetes, 1998.

[107] Thomas Back. Evolutionary Algorithms in Theory and Prac-
tice: Evolution Strategies, Evolutionary Programming, Genetic Al-
gorithms. Oxford university press, 1996.

[108] Frank Hoffmeister and Thomas Bäck. Genetic Algorithms and
Evolution Strategies: Similarities and Differences. In Interna-
tional Conference on Parallel Problem Solving from Nature, pages
455–469. Springer, 1990.

[109] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Exploration
and Exploitation in Evolutionary Algorithms: A Survey. ACM com-
puting surveys (CSUR), 45(3):1–33, 2013.

[110] Alexander Schrijver. Combinatorial Optimization: Polyhedra and
Efficiency (Algorithms and Combinatorics). Journal-Operational
Research Society, 55(9):1018–1018, 2004.

[111] Fanghan Liu, Xiaobing Tang, and Zhaohui Yang. An Encoding
Algorithm Based on the Shortest Path Problem. In 2018 14th In-
ternational Conference on Computational Intelligence and Security
(CIS), pages 35–39. IEEE, 2018.

[112] James Edward Baker. Adaptive Selection Methods for Genetic Al-
gorithms. In Proceedings of an International Conference on Genetic
Algorithms and their applications, pages 101–111. Hillsdale, New
Jersey, 1985.

[113] Runwei Cheng. Genetic Algorithms and Engineering Optimization.
Wiley-Interscience, 2000.

185

[114] Chang Wook Ahn and Rudrapatna S Ramakrishna. A Genetic
Algorithm for Shortest Path Routing Problem and the Sizing of
Populations. IEEE transactions on evolutionary computation, 6(6):
566–579, 2002.

[115] David E Goldberg and Kalyanmoy Deb. A Comparative Analysis
of Selection Schemes used in Genetic Algorithms. In Foundations
of genetic algorithms, volume 1, pages 69–93. Elsevier, 1991.

[116] Vassil Guliashki, Hristo Toshev, and Chavdar Korsemov. Survey
of Evolutionary Algorithms Used in Multiobjective Optimization
. Problems of engineering cybernetics and robotics, 60(1):42–54,
2009.

[117] Jürgen Branke, Jurgen Branke, Kalyanmoy Deb, Kaisa Miettinen,
and Roman Slowiński. Multiobjective Optimization: Interactive and
Evolutionary Approaches, volume 5252. Springer Science & Busi-
ness Media, 2008.

[118] David Edward Goldberg. Computer-Aided Gas Pipeline Operation
Using Genetic Algorithms and Rule Learning. PhD thesis, 1984.

[119] David E Goldberg. Computer-Aided Pipeline Operation Using Ge-
netic Algorithms and Rule Learning. PART I: Genetic Algorithms
in Pipeline Optimization. Engineering with Computers, 3(1):35–45,
1987.

[120] Salman Yussof and Ong Hang See. Finding Multi-Constrained
Path Using Genetic Algorithm. In 2007 IEEE International Con-
ference on Telecommunications and Malaysia International Confer-
ence on Communications, pages 713–718. IEEE, 2007.

[121] Bilal Gonen. Genetic Algorithm Finding the Shortest Path in Net-
works. Reno: University of Nevada, 2006.

[122] Salman Yussof, Rina Azlin Razali, and Ong Hang See. A parallel
Genetic Algorithm for Shortest Path Routing Problem. In 2009
International Conference on Future Computer and Communication,
pages 268–273. IEEE, 2009.

[123] Zongyan Xu, Haihua Li, and Ye Guan. A study on the short-
est path problem based on improved genetic algorithm. In 2012
Fourth International Conference on Computational and Information
Sciences, pages 325–328. IEEE, 2012.

186

[124] Ching-Sheng Chiu. A Genetic Algorithm for Multiobjective Path
Optimisation Problem. In 2010 Sixth International Conference on
Natural Computation, volume 5, pages 2217–2222. IEEE, 2010.

[125] Mitsuo Gen and Lin Lin. A weighted sum-based genetic algo-
rithms for bicriteria network design problem. In Proc of the 3th
International Conf on Info. and Mana. Sci, volume 22, pages 419–
125, 2004.

[126] Zhendong Liu, Yawei Kong, and Bin Su. An improved genetic al-
gorithm based on the shortest path problem. In 2016 IEEE inter-
national conference on information and automation (ICIA), pages
328–332. IEEE, 2016.

[127] Sakshi Arora. An Archive Enhanced Hybrid Genetic Algorithm for
Shortest Path Routing Problem. In Proceedings of the Sixth Inter-
national Conference on Computer and Communication Technology
2015, pages 147–151, 2015.

[128] Mitsuo Gen, Runwei Cheng, and Shumuel S Oren. Network de-
sign techniques using adapted genetic algorithms. Advances in
Engineering Software, 32(9):731–744, 2001.

[129] Arthur Warburton. Approximation of pareto optima in multiple-
objective, shortest-path problems. Operations research, 35(1):70–
79, 1987.

[130] Praveen Kumar Shukla and Surya Prakash Tripathi. A review
on the interpretability-accuracy trade-off in evolutionary multi-
objective fuzzy systems (emofs). Information, 3(3):256–277, 2012.

[131] Praveen Kumar Shukla and Surya Prakash Tripathi. A survey on
interpretability-accuracy (ia) trade-off in evolutionary fuzzy sys-
tems. In 2011 Fifth International Conference on Genetic and Evo-
lutionary Computing, pages 97–101. IEEE, 2011.

[132] A Kaur and PK Shukla. A Review on Evolutionary Multiobjective
Optimization for Routing Problem of Computer Networks. 2013.

[133] Antonin Ponsich, Antonio Lopez Jaimes, and Carlos A Coello
Coello. A Survey on Multiobjective Evolutionary Algorithms for
the Solution of the Portfolio Optimization Problem and Other Fi-
nance and Economics Applications. IEEE Transactions on Evolu-
tionary Computation, 17(3):321–344, 2012.

187

[134] Carlos A Coello Coello and Gary B Lamont. Applications of Multi-
Objective Evolutionary Algorithms, volume 1. World Scientific,
2004.

[135] Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary
Algorithms, volume 16. John Wiley & Sons, 2001.

[136] Anirban Mukhopadhyay, Ujjwal Maulik, Sanghamitra Bandy-
opadhyay, and Carlos Artemio Coello Coello. A Survey of Mul-
tiobjective EvolutionaryAlgorithms for Data Mining: Part I. IEEE
Transactions on Evolutionary Computation, 18(1):4–19, 2013.

[137] Anirban Mukhopadhyay, Ujjwal Maulik, Sanghamitra Bandy-
opadhyay, and Carlos A Coello Coello. Survey of Multiobjective
Evolutionary Algorithms for Data Mining: Part II. IEEE Transac-
tions on Evolutionary Computation, 18(1):20–35, 2013.

[138] Laetitia Jourdan, David Corne, Dragan Savic, and Godfrey Wal-
ters. Hybridising Rule Induction and Multi-Objective Evolution-
ary Search for Optimising Water Distribution Systems. In Fourth
International Conference on Hybrid Intelligent Systems (HIS’04),
pages 434–439. IEEE, 2004.

[139] Yezid Donoso, Carolina Alvarado, Alfredo Perez, and Ivan Herazo.
A Multi-Objective Solution Applying MOEA in Optical Networks.
In 2007 IEEE Symposium on Computational Intelligence in Multi-
Criteria Decision-Making, pages 360–367. IEEE, 2007.

[140] Wei Peng and Qingfu Zhang. Network Topology Planning Using
MOEA/D with Objective-Guided Operators. In Proceedings of the
12th International Conference on Parallel Problem Solving from Na-
ture - Volume Part II, PPSN’12, page 62–71, Berlin, Heidelberg,
2012. Springer-Verlag. ISBN 9783642329630.

[141] J Yazdi, S Mohammadiun, R Sadiq, SAA Salehi Neyshabouri, and
A Alavi Gharahbagh. Assessment of Different MOEAs for Re-
habilitation Evaluation of Urban Stormwater Drainage Systems–
Case study: Eastern Catchment of Tehran. Journal of Hydro-
environment Research, 21:76–85, 2018.

[142] D Lubin Balasubramanian and V Govindasamy. Study on Evolu-
tionary Approaches for Improving the Energy Efficiency of Wire-
less Sensor Networks Applications. EAI Endorsed Transactions on
Internet of Things, 5(20), 2020.

188

[143] Shuai Wang and Jing Liu. Constructing Robust Cooperative Net-
works using a Multi-Objective Evolutionary Algorithm. Scientific
reports, 7:41600, 2017.

[144] Adriana Menchaca-Mendez and Carlos A Coello Coello. MD-
MOEA : A New MOEA based on the Maximin Fitness Functio-
nand Euclidean Distances between Solutions. In 2014 IEEE
Congress on Evolutionary Computation (CEC), pages 2148–2155.
IEEE, 2014.

[145] Huanlai Xing, Zhaoyuan Wang, Tianrui Li, Hui Li, and Rong Qu.
An Improved MOEA/D Algorithm for Multi-Objective Multicast
Routing With Network Coding. Applied Soft Computing, 59:88–
103, 2017.

[146] Joshua Knowles, Martin Oates, and David Corne. Advanced
multi-objective evolutionary algorithms applied to two problems
in telecommunications. BT Technology Journal, 18(4):51–65,
2000.

[147] JD Schaffer. Multiple Objective Optimization with Vector Evalu-
ated Genetic Algorithms. Ph. D. Dissertation, Vanderbilt Univer-
sity, 1984.

[148] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Im-
proving the Strength Pareto Evolutionary Algorithm. TIK-report,
103, 2001.

[149] Abdullah Konak, David W Coit, and Alice E Smith. Multi-objective
optimization using genetic algorithms: A tutorial. Reliability En-
gineering & System Safety, 91(9):992–1007, 2006.

[150] Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthu-
rai Nagaratnam Suganthan, and Qingfu Zhang. Multiobjective
evolutionary algorithms: A survey of the state of the art. Swarm
and Evolutionary Computation, 1(1):32–49, 2011.

[151] Tina Yu and Lawrence Davis. An Introduction to Evolutionary
Computation in Practice. In Evolutionary Computation in Practice,
pages 1–8. Springer, 2008.

[152] CA Coello Coello. Evolutionary Multi-objective Optimization: A
Historical View of the Field. IEEE computational intelligence mag-
azine, 1(1):28–36, 2006.

189

[153] Nidamarthi Srinivas and Kalyanmoy Deb. Muiltiobjective Op-
timization Using Nondominated Sorting in Genetic Algorithms.
Evolutionary computation, 2(3):221–248, 1994.

[154] Jeffrey Horn, Nicholas Nafpliotis, and David E Goldberg. A Niched
Pareto Genetic Algorithm for Multiobjective Optimization. In Pro-
ceedings of the first IEEE conference on evolutionary computation.
IEEE world congress on computational intelligence, pages 82–87.
Ieee, 1994.

[155] Carlos M Fonseca, Peter J Fleming, et al. Genetic Algorithms for
Multiobjective Optimization: Formulation, Discussion and Gen-
eralization. In Icga, volume 93, pages 416–423. Citeseer, 1993.

[156] Joshua D Knowles and David W Corne. Approximating the Non-
dominated Front Using the Pareto Archived Evolution Strategy.
Evolutionary computation, 8(2):149–172, 2000.

[157] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Me-
yarivan. A Fast Elitist Non-Dominated sorting genetic algorithm
for multi-objective optimization: NSGA-II. In International con-
ference on parallel problem solving from nature, pages 849–858.
Springer, 2000.

[158] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-
objective optimization algorithm using reference-point-based
nondominated sorting approach, part i: solving problems with
box constraints. IEEE transactions on evolutionary computation,
18(4):577–601, 2013.

[159] Himanshu Jain and Kalyanmoy Deb. An evolutionary many-
objective optimization algorithm using reference-point based non-
dominated sorting approach, part ii: handling constraints and
extending to an adaptive approach. IEEE Transactions on evolu-
tionary computation, 18(4):602–622, 2013.

[160] Carlos A Coello Coello, Gary B Lamont, David A Van Veldhuizen,
et al. Evolutionary Algorithms for Solving Multi-Objective Problems,
volume 5. Springer, 2007.

[161] Jorge Crichigno and Benjamı́n Barán. Multiobjective multicast
routing algorithm for traffic engineering. In Proceedings. 13th
International Conference on Computer Communications and Net-
works (IEEE Cat. No. 04EX969), pages 301–306. IEEE, 2004.

190

[162] Divya Kumar, Divya Kashyap, KK Mishra, and AK Mishra. Rout-
ing path determination using qos metrics and priority based evo-
lutionary optimization. In 2011 IEEE International Conference on
High Performance Computing and Communications, pages 615–
621. IEEE, 2011.

[163] Pham Tran Anh Quang, Jean-Michel Sanner, Cedric Morin, and
Yassine Hadjadj-Aoul. Multi-objective multi-constrained qos rout-
ing in large-scale networks: A genetic algorithm approach. In
2018 International conference on smart communications in network
technologies (SaCoNeT), pages 55–60. IEEE, 2018.

[164] Baoxian Zhang, Jie Hao, and Hussein T Mouftah. Bidirectional
multi-constrained routing algorithms. IEEE Transactions on Com-
puters, 63(9):2174–2186, 2013.

[165] Miguel Rocha, Pedro Sousa, Paulo Cortez, and Miguel Rio. Qual-
ity of service constrained routing optimization using evolutionary
computation. Applied Soft Computing, 11(1):356–364, 2011.

[166] Carlos Lozano-Garzon, Miguel Camelo, Pere Vila, and Yezid
Donoso. A multi-objective routing algorithm for wireless mesh
network in a smart cities environment. Journal of Networks, 10
(1):60, 2015.

[167] DK Lobiyal, Sunita Prasad, et al. An elitist nondominated sorting
genetic algorithm for qos multicast routing in wireless networks.
Swarm and Evolutionary Computation, 33:85–92, 2017.

[168] Lin Lin and Mitsuo Gen. An effective evolutionary approach for
bicriteria shortest path routing problems. IEEJ Transactions on
Electronics, Information and Systems, 128(3):416–423, 2008.

[169] Eckart Zitzler and Lothar Thiele. Multiobjective Evolutionary Al-
gorithms: A Comparative Case Study and the Strength Pareto
Approach. IEEE transactions on Evolutionary Computation, 3(4):
257–271, 1999.

[170] Eckart Zitzler and Lothar Thiele. Multiobjective Optimization Us-
ing Evolutionary Algorithms—A Comparative Case Study. In Inter-
national conference on parallel problem solving from nature, pages
292–301. Springer, 1998.

191

[171] Michael Lahanas, Natasa Milickovic, Dimos Baltas, and Niko-
laos Zamboglou. Application of Multiobjective Evolutionary Al-
gorithms for Dose Optimization Problems in Brachytherapy. In
International Conference on Evolutionary Multi-Criterion Optimiza-
tion, pages 574–587. Springer, 2001.

[172] AT&T - Statistics & Facts. https://www.statista.com/topics/

1252/atundt/. Last accessed: 2020-07-10.

[173] CAIDA. Topology Research. http://www.caida.org/research/

topology/. Last accessed: 2020-07-10.

[174] Bradley Huffaker, Marina Fomenkov, et al. Internet Topology Data
Comparison. Technical report, Cooperative Association for Inter-
net Data Analysis (CAIDA), 2012.

[175] D Plummer, B Lheureux, M Cantara, and T Bova. Cloud Ser-
vices Brokerage is Dominated by Three Primary Roles. Gartner
Research Note G, 226509:23, 2011.

[176] Evangelos Markakis, Anargyros Sideris, George Alexiou, Athina
Bourdena, Evangelos Pallis, George Mastorakis, and Constandi-
nos X Mavromoustakis. A Virtual Network Functions Brokering
Mechanism. In 2016 International Conference on Telecommunica-
tions and Multimedia (TEMU), pages 1–5. IEEE, 2016.

[177] Imane Haddar, Brahim Raouyane, and Mostafa Bellafkih. To-
ward a Service Broker for Telecom Service Integration in IMS Net-
work. In 2016 International Conference on Electrical and Informa-
tion Technologies (ICEIT), pages 338–342. IEEE, 2016.

[178] Yang Shuai, Zhang Qianli, and Li Xing. A Tunnel Broker based
IPv6 Access System for a Small Scale Network with IPv4 Upstream.
In 2016 IEEE Information Technology, Networking, Electronic and
Automation Control Conference, pages 206–210. IEEE, 2016.

[179] David Griffin, Jason Spencer, Jonas Griem, Mohamed Boucadair,
Pierrick Morand, Michael Howarth, Ning Wang, George Pavlou,
Abolghasem Asgari, and Panos Georgatsos. Interdomain Routing
through QoS-Class Planes. IEEE Communications Magazine, 45
(2):88–95, 2007.

[180] Xavi Masip-Bruin, Marcelo Yannuzzi, Rene Serral-Gracia,
Jordi Domingo-Pascual, Jose Enriquez-Gabeiras, Maria Angeles

192

https://www.statista.com/topics/1252/atundt/
https://www.statista.com/topics/1252/atundt/
http://www.caida.org/research/topology/
http://www.caida.org/research/topology/

Callejo, Michel Diaz, Florin Racaru, Giovanni Stea, Enzo Min-
gozzi, et al. The EuQoS System: A Solution for QoS Routing in
Heterogeneous Networks. IEEE Communications Magazine, 45(2):
96–103, 2007.

[181] Marcelo Yannuzzi, Alexandre Fonte, Xavier Masip-Bruin, Ed-
mundo Monteiro, Sergi Sànchez-López, Marilia Curado, and Jordi
Domingo-Pascual. A Proposal for Inter-Domain QoS Routing
based on Distributed Overlay Entities and QBGP. In Quality of
Service in the Emerging Networking Panorama, pages 257–267.
Springer, 2004.

[182] Akmal Khan, Taekyoung Kwon, Hyun-chul Kim, and Yanghee
Choi. As-level Topology Collection through Looking Glass Servers.
In Proceedings of the 2013 conference on Internet measurement
conference, pages 235–242, 2013.

[183] Gonca Gürsun, Natali Ruchansky, Evimaria Terzi, and Mark
Crovella. Routing State Distance: A Path-based Metric for Net-
work Analysis. In Proceedings of the 2012 Internet Measurement
Conference, pages 239–252, 2012.

[184] Priya Mahadevan, Dmitri Krioukov, Marina Fomenkov, Xeno-
fontas Dimitropoulos, KC Claffy, and Amin Vahdat. The Internet
AS-level Topology: Three Data Sources and One Definitive Met-
ric. ACM SIGCOMM Computer Communication Review, 36(1):17–
26, 2006.

[185] Yihua He, Georgos Siganos, Michalis Faloutsos, and Srikanth Kr-
ishnamurthy. Lord of the Links: A Framework for Discovering
Missing Links in the Internet Topology. IEEE/ACM Transactions
On Networking, 17(2):391–404, 2008.

[186] Ricardo Oliveira, Dan Pei, Walter Willinger, Beichuan Zhang, and
Lixia Zhang. The (in) Completeness of the Observed Internet AS-
level Structure. IEEE/ACM Transactions on Networking, 18(1):
109–122, 2009.

[187] F Begtasevic and P Van Mieghem. Measurements of the Hopcount
in Internet. In PAM2001, A workshop on Passive and Active Mea-
surements, Amsterdam, the Netherlands, April 23-24, 2001, 2001.

[188] Ramaswamy Ramaswamy, Ning Weng, and Tilman Wolf. Charac-
terizing Network Processing Delay. In IEEE Global Telecommunica-

193

tions Conference, 2004. GLOBECOM’04., volume 3, pages 1629–
1634. IEEE, 2004.

[189] Amgad Zeitoun, Chen-Nee Chuah, Supratik Bhattacharyya, and
Christophe Diot. An AS-Level Study of Internet Path Delay Char-
acteristics. In IEEE Global Telecommunications Conference, 2004.
GLOBECOM’04., volume 3, pages 1480–1484. IEEE, 2004.

[190] Baek-Young Choi, Sue Moon, Zhi-Li Zhang, Konstantina Papa-
giannaki, and Christophe Diot. Analysis of Point-to-Point Packet
Delay in an Operational Network. Computer networks, 51(13):
3812–3827, 2007.

[191] Patrik Carlsson, Doru Constantinescu, Adrian Popescu, Markus
Fiedler, and Arne A Nilsson. Delay Performance in IP Routers. In
2nd International Working Conference (HET-NETs’ 04), 2004.

[192] Habiba Akter and Chris Phillips. Are internet tunnels worthwhile?
In 2018 28th International Telecommunication Networks and Appli-
cations Conference (ITNAC), pages 1–6. IEEE, 2018.

[193] Habia Akter and Chris Phillips. Tunnelling the internet. Journal
of Telecommunications and the Digital Economy, 7(1), 2019.

[194] Masaharu Munetomo. An Adaptive Network Routing Algorithm
Employing Path Genetic Operators. In Proc. 7th International Con-
ference on Genetic Algorithms, pages 643–649. Morgan Kaufmann,
1997.

[195] Masaharu Munetomo, Yoshiaki Takai, and Yoshiharu Sato. An
Intelligent Network Routing Algorithm by a Genetic Algorithm. In
ICONIP (1), pages 547–550, 1997.

[196] Masaharu Munetomo, Yoshiaki Takai, and Yoshiharu Sato. A Mi-
gration Scheme for the Genetic Adaptive Routing Algorithm. In
SMC’98 Conference Proceedings. 1998 IEEE International Confer-
ence on Systems, Man, and Cybernetics (Cat. No. 98CH36218), vol-
ume 3, pages 2774–2779. IEEE, 1998.

[197] Masaharu Munetomo. Designing Genetic Algorithms for Adapting
Routing Algorithms in the Internet. In Proceedings of GECCO,
volume 99, 1999.

194

[198] M. Munetomo, N. Yamaguchi, K. Akama, and Y. Sato. Empirical
investigations on the genetic adaptive routing algorithm in the in-
ternet. In Proceedings of the 2001 Congress on Evolutionary Com-
putation (IEEE Cat. No.01TH8546), volume 2, pages 1236–1243
vol. 2, 2001. doi: 10.1109/CEC.2001.934332.

[199] Xavier Hue. Genetic Algorithms for Optimization: Background
and Applications. Edinburgh Parallel Computing Centre, 10, 1997.

[200] George Harik, Erick Cantú-Paz, David E Goldberg, and Brad L
Miller. The Gambler’s Ruin Problem, Genetic Algorithms, and the
Sizing of Populations. Evolutionary Computation, 7(3):231–253,
1999.

[201] William G Macready and David H Wolpert. Bandit Problems and
the Exploration/ Exploitation Tradeoff. IEEE Transactions on evo-
lutionary computation, 2(1):2–22, 1998.

[202] David E Goldberg, Kalyanmoy Deb, James H Clark, et al. Ge-
netic Algorithms, Noise, and the Sizing of Populations. COMPLEX
SYSTEMS-CHAMPAIGN-, 6:333–333, 1992.

[203] Jun Inagaki, Miki Haseyama, and Hideo Kitajima. A Genetic Al-
gorithm for Determining Multiple Routes and Its Applications. In
1999 IEEE International Symposium on Circuits and Systems (IS-
CAS), volume 6, pages 137–140. IEEE, 1999.

[204] Seth Pettie and Vijaya Ramachandran. Computing shortest paths
with comparisons and additions. In Proceedings of the thirteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 267–
276, 2002.

[205] Seth Pettie and Vijaya Ramachandran. Computing undirected
shortest paths with comparisons and additions. Technical report,
Tech Report TR01-12, Univ. of Texas at Austin, 2001.

[206] Peter Mooney and Adam Winstanley. An Evolutionary Algorithm
for Multicriteria path Optimization Problems. International Jour-
nal of Geographical Information Science, 20(4):401–423, 2006.

[207] SB Pattnaik, S Mohan, and VM Tom. Urban bus transit route
network design using genetic algorithm. Journal of transportation
engineering, 124(4):368–375, 1998.

195

[208] Vlasis K Koumousis and Panos G Georgiou. Genetic algorithms
in discrete optimization of steel truss roofs. Journal of Computing
in Civil Engineering, 8(3):309–325, 1994.

[209] Chinmoy Ghorai, Swapan Shakhari, and Indrajit Banerjee. A
spea-based multimetric routing protocol for intelligent trans-
portation systems. IEEE Transactions on Intelligent Transportation
Systems, 2020.

[210] Germán A Montoya, Horacio Riveros Ardila, Sebastián Rivera
Dı́az, and Yezid Donoso. Multi-objective evolutive algorithm for
efficient coverage problem of wsn using a spea approach. In
Proceedings of the 2011 international conference on applied, nu-
merical and computational mathematics, and Proceedings of the
2011 international conference on Computers, digital communica-
tions and computing, pages 27–32. World Scientific and Engineer-
ing Academy and Society (WSEAS), 2011.

[211] Theni Koduvilarpatti. Strength Pareto Evolutionary Algorithm
based Multi-objective Optimization for Shortest Path Routing
Problem in Computer Networks. Journal of Computer Science, 7
(1):17–26, 2011.

[212] Uri Yael Rozenworcel and Benjamı́n Barán. Routing in periodic
dynamic networks using a multi-objective evolutionary algorithm.
2004.

[213] Habiba Akter. Tunnelling the Internet. https://womencourage.

acm.org/2019/wp-content/uploads/2019/07/womENcourage_2019_

paper_105.pdf, 2019.

[214] Habiba Akter. Genetic algorithm for least cost routing in the net-
work.

196

https://womencourage.acm.org/2019/wp-content/uploads/2019/07/womENcourage_2019_paper_105.pdf
https://womencourage.acm.org/2019/wp-content/uploads/2019/07/womENcourage_2019_paper_105.pdf
https://womencourage.acm.org/2019/wp-content/uploads/2019/07/womENcourage_2019_paper_105.pdf

Appendices

197

Appendix A

Initial Tool

PFP Generated AS Topology of 30 ASes

Node-1 Node-2
Node-2 Node-3
Node-1 Node-4
Node-1 Node-3
Node-1 Node-5
Node-5 Node-6
Node-6 Node-1
Node-6 Node-7
Node-5 Node-3
Artificial-Node-0 Node-5
Artificial-Node-0 Node-1
Artificial-Node-0 Node-4
Artificial-Node-1 Node-1
Artificial-Node-1 Node-6
Artificial-Node-1 Node-5
Artificial-Node-2 Node-1
Artificial-Node-2 Artificial-Node-1
Artificial-Node-2 Node-5
Artificial-Node-3 Node-5
Artificial-Node-3 Node-1
Artificial-Node-3 Node-6
Artificial-Node-4 Node-1
Artificial-Node-4 Node-6
Artificial-Node-4 Artificial-Node-0
Artificial-Node-5 Artificial-Node-4

198

Artificial-Node-5 Artificial-Node-2
Artificial-Node-5 Node-1
Artificial-Node-6 Artificial-Node-2
Artificial-Node-6 Artificial-Node-0
Artificial-Node-6 Node-6
Artificial-Node-7 Artificial-Node-0
Artificial-Node-7 Node-6
Artificial-Node-7 Node-5
Artificial-Node-8 Node-5
Artificial-Node-8 Node-1
Artificial-Node-8 Artificial-Node-6
Artificial-Node-9 Artificial-Node-7
Artificial-Node-9 Node-5
Artificial-Node-9 Node-1
Artificial-Node-10 Node-6
Artificial-Node-10 Artificial-Node-8
Artificial-Node-10 Node-2
Artificial-Node-11 Node-6
Artificial-Node-11 Node-1
Artificial-Node-11 Node-5
Artificial-Node-12 Node-1
Artificial-Node-12 Node-6
Artificial-Node-12 Node-4
Artificial-Node-13 Node-6
Artificial-Node-13 Artificial-Node-3
Artificial-Node-13 Node-1
Artificial-Node-14 Node-6
Artificial-Node-14 Artificial-Node-0
Artificial-Node-14 Node-5
Artificial-Node-15 Node-6
Artificial-Node-15 Node-1
Artificial-Node-15 Artificial-Node-0
Artificial-Node-16 Artificial-Node-6
Artificial-Node-16 Node-1
Artificial-Node-16 Artificial-Node-2
Artificial-Node-17 Node-5
Artificial-Node-17 Node-1
Artificial-Node-17 Node-6
Artificial-Node-18 Artificial-Node-4
Artificial-Node-18 Node-6

199

Artificial-Node-18 Artificial-Node-7
Artificial-Node-19 Node-1
Artificial-Node-19 Node-7
Artificial-Node-19 Artificial-Node-17
Artificial-Node-20 Artificial-Node-4
Artificial-Node-20 Node-5
Artificial-Node-20 Artificial-Node-9
Artificial-Node-21 Node-1
Artificial-Node-21 Node-4
Artificial-Node-21 Node-5
Artificial-Node-22 Node-5
Artificial-Node-22 Node-1
Artificial-Node-22 Artificial-Node-4

200

Console Output for AS Topology

Output for AS Topology

ASBR topology for the AS-level topology of A

Source BR: 30 5
Destination BRs: 30 6, 30 13, 5 30,
Source BR: 30 13

201

Destination BRs: 30 6, 30 5, 13 30,
Source BR: 30 6
Destination BRs: 30 13, 30 5, 6 30,
Source BR: 29 5
Destination BRs: 29 4, 29 7, 5 29,
Source BR: 29 7
Destination BRs: 29 4, 29 5, 7 29,
Source BR: 29 4
Destination BRs: 29 7, 29 5, 4 29,
Source BR: 28 2
Destination BRs: 28 22, 28 8, 2 28,
Source BR: 28 8
Destination BRs: 28 22, 28 2, 8 28,
Source BR: 28 22
Destination BRs: 28 8, 28 2, 22 28,
Source BR: 27 8
Destination BRs: 27 13, 27 4, 8 27,
Source BR: 27 4
Destination BRs: 27 13, 27 8, 4 27,
Source BR: 27 13
Destination BRs: 27 4, 27 8, 13 27,
Source BR: 26 6
Destination BRs: 26 21, 26 5, 6 26,
Source BR: 26 5
Destination BRs: 26 21, 26 6, 5 26,
Source BR: 26 21
Destination BRs: 26 5, 26 6, 21 26,
Source BR: 25 16
Destination BRs: 25 5, 25 12, 16 25,
Source BR: 25 12
Destination BRs: 25 5, 25 16, 12 25,
Source BR: 25 5
Destination BRs: 25 12, 25 16, 5 25,
Source BR: 24 13
Destination BRs: 24 5, 24 8, 13 24,
Source BR: 24 8
Destination BRs: 24 5, 24 13, 8 24,
Source BR: 24 5
Destination BRs: 24 8, 24 13, 5 24,
Source BR: 23 5

202

Destination BRs: 23 4, 23 2, 5 23,
Source BR: 23 2
Destination BRs: 23 4, 23 5, 2 23,
Source BR: 23 4
Destination BRs: 23 2, 23 5, 4 23,
Source BR: 22 28
Destination BRs: 22 5, 22 4, 22 13, 28 22,
Source BR: 22 13
Destination BRs: 22 5, 22 4, 22 28, 13 22,
Source BR: 22 4
Destination BRs: 22 5, 22 13, 22 28, 4 22,
Source BR: 22 5
Destination BRs: 22 4, 22 13, 22 28, 5 22,
Source BR: 21 26
Destination BRs: 21 4, 21 5, 21 7, 26 21,
Source BR: 21 7
Destination BRs: 21 4, 21 5, 21 26, 7 21,
Source BR: 21 5
Destination BRs: 21 4, 21 7, 21 26, 5 21,
Source BR: 21 4
Destination BRs: 21 5, 21 7, 21 26, 4 21,
Source BR: 20 17
Destination BRs: 20 8, 20 6, 17 20,
Source BR: 20 6
Destination BRs: 20 8, 20 17, 6 20,
Source BR: 20 8
Destination BRs: 20 6, 20 17, 8 20,
Source BR: 19 5
Destination BRs: 19 1, 19 2, 5 19,
Source BR: 19 2
Destination BRs: 19 1, 19 5, 2 19,
Source BR: 19 1
Destination BRs: 19 2, 19 5, 1 19,
Source BR: 18 13
Destination BRs: 18 4, 18 15, 13 18,
Source BR: 18 15
Destination BRs: 18 4, 18 13, 15 18,
Source BR: 18 4
Destination BRs: 18 15, 18 13, 4 18,
Source BR: 17 20

203

Destination BRs: 17 3, 17 15, 17 11, 20 17,
Source BR: 17 11
Destination BRs: 17 3, 17 15, 17 20, 11 17,
Source BR: 17 15
Destination BRs: 17 3, 17 11, 17 20, 15 17,
Source BR: 17 3
Destination BRs: 17 15, 17 11, 17 20, 3 17,
Source BR: 16 25
Destination BRs: 16 14, 16 7, 16 6, 25 16,
Source BR: 16 6
Destination BRs: 16 14, 16 7, 16 25, 6 16,
Source BR: 16 7
Destination BRs: 16 14, 16 6, 16 25, 7 16,
Source BR: 16 14
Destination BRs: 16 7, 16 6, 16 25, 14 16,
Source BR: 15 18
Destination BRs: 15 3, 15 11, 15 2, 15 17, 18 15,
Source BR: 15 17
Destination BRs: 15 3, 15 11, 15 2, 15 18, 17 15,
Source BR: 15 2
Destination BRs: 15 3, 15 11, 15 17, 15 18, 2 15,
Source BR: 15 11
Destination BRs: 15 3, 15 2, 15 17, 15 18, 11 15,
Source BR: 15 3
Destination BRs: 15 11, 15 2, 15 17, 15 18, 3 15,
Source BR: 14 16
Destination BRs: 14 2, 14 3, 14 6, 16 14,
Source BR: 14 6
Destination BRs: 14 2, 14 3, 14 16, 6 14,
Source BR: 14 3
Destination BRs: 14 2, 14 6, 14 16, 3 14,
Source BR: 14 2
Destination BRs: 14 3, 14 6, 14 16, 2 14,
Source BR: 13 30
Destination BRs: 13 4, 13 11, 13 7, 13 18, 13 22, 13 24, 13 27, 30 13
Source BR: 13 27
Destination BRs: 13 4, 13 11, 13 7, 13 18, 13 22, 13 24, 13 30, 27 13,
Source BR: 13 24
Destination BRs: 13 4, 13 11, 13 7, 13 18, 13 22, 13 27, 13 30, 24 13,
Source BR: 13 22

204

Destination BRs: 13 4, 13 11, 13 7, 13 18, 13 24, 13 27, 13 30, 22 13,
Source BR: 13 18
Destination BRs: 13 4, 13 11, 13 7, 13 22, 13 24, 13 27, 13 30, 18 13,
Source BR: 13 7
Destination BRs: 13 4, 13 11, 13 18, 13 22, 13 24, 13 27, 13 30, 7 13,
Source BR: 13 11
Destination BRs: 13 4, 13 7, 13 18, 13 22, 13 24, 13 27, 13 30, 11 13,
Source BR: 13 4
Destination BRs: 13 11, 13 7, 13 18, 13 22, 13 24, 13 27, 13 30, 4 13,
Source BR: 12 25
Destination BRs: 12 11, 12 4, 12 5, 25 12,
Source BR: 12 5
Destination BRs: 12 11, 12 4, 12 25, 5 12,
Source BR: 12 4
Destination BRs: 12 11, 12 5, 12 25, 4 12,
Source BR: 12 11
Destination BRs: 12 4, 12 5, 12 25, 11 12,
Source BR: 11 17
Destination BRs: 11 4, 11 5, 11 9, 11 12, 11 13, 11 15, 17 11,
Source BR: 11 15
Destination BRs: 11 4, 11 5, 11 9, 11 12, 11 13, 11 17, 15 11,
Source BR: 11 13
Destination BRs: 11 4, 11 5, 11 9, 11 12, 11 15, 11 17, 13 11,
Source BR: 11 12
Destination BRs: 11 4, 11 5, 11 9, 11 13, 11 15, 11 17, 12 11,
Source BR: 11 9
Destination BRs: 11 4, 11 5, 11 12, 11 13, 11 15, 11 17, 9 11,
Source BR: 11 5
Destination BRs: 11 4, 11 9, 11 12, 11 13, 11 15, 11 17, 5 11,
Source BR: 11 4
Destination BRs: 11 5, 11 9, 11 12, 11 13, 11 15, 11 17, 4 11,
Source BR: 10 5
Destination BRs: 10 4, 10 3, 5 10,
Source BR: 10 3
Destination BRs: 10 4, 10 5, 3 10,
Source BR: 10 4
Destination BRs: 10 3, 10 5, 4 10,
Source BR: 9 11
Destination BRs: 9 5, 9 1, 9 3, 11 9,
Source BR: 9 3

205

Destination BRs: 9 5, 9 1, 9 11, 3 9,
Source BR: 9 1
Destination BRs: 9 5, 9 3, 9 11, 1 9,
Source BR: 9 5
Destination BRs: 9 1, 9 3, 9 11, 5 9,
Source BR: 8 28
Destination BRs: 8 7, 8 5, 8 6, 8 20, 8 24, 8 27, 28 8,
Source BR: 8 27
Destination BRs: 8 7, 8 5, 8 6, 8 20, 8 24, 8 28, 27 8,
Source BR: 8 24
Destination BRs: 8 7, 8 5, 8 6, 8 20, 8 27, 8 28, 24 8,
Source BR: 8 20
Destination BRs: 8 7, 8 5, 8 6, 8 24, 8 27, 8 28, 20 8,
Source BR: 8 6
Destination BRs: 8 7, 8 5, 8 20, 8 24, 8 27, 8 28, 6 8,
Source BR: 8 5
Destination BRs: 8 7, 8 6, 8 20, 8 24, 8 27, 8 28, 5 8,
Source BR: 8 7
Destination BRs: 8 5, 8 6, 8 20, 8 24, 8 27, 8 28, 7 8,
Source BR: 7 29
Destination BRs: 7 1, 7 5, 7 8, 7 13, 7 16, 7 21, 29 7,
Source BR: 7 21
Destination BRs: 7 1, 7 5, 7 8, 7 13, 7 16, 7 29, 21 7,
Source BR: 7 16
Destination BRs: 7 1, 7 5, 7 8, 7 13, 7 21, 7 29, 16 7,
Source BR: 7 13
Destination BRs: 7 1, 7 5, 7 8, 7 16, 7 21, 7 29, 13 7,
Source BR: 7 8
Destination BRs: 7 1, 7 5, 7 13, 7 16, 7 21, 7 29, 8 7,
Source BR: 7 5
Destination BRs: 7 1, 7 8, 7 13, 7 16, 7 21, 7 29, 5 7,
Source BR: 7 1
Destination BRs: 7 5, 7 8, 7 13, 7 16, 7 21, 7 29, 1 7,
Source BR: 5 30
Destination BRs: 5 2, 5 4, 5 7, 5 8, 5 9, 5 10, 5 11, 5 12, 5 19, 5 21,
5 22, 5 23, 5 24, 5 25, 5 26, 5 29, 30 5,
Source BR: 5 29
Destination BRs: 5 2, 5 4, 5 7, 5 8, 5 9, 5 10, 5 11, 5 12, 5 19, 5 21,
5 22, 5 23, 5 24, 5 25, 5 26, 5 30, 29 5,
Source BR: 5 26

206

Destination BRs: 5 2, 5 4, 5 7, 5 8, 5 9, 5 10, 5 11, 5 12, 5 19, 5 21,
5 22, 5 23, 5 24, 5 25, 5 29, 5 30, 26 5,
Source BR: 5 25
Destination BRs: 5 2, 5 4, 5 7, 5 8, 5 9, 5 10, 5 11, 5 12, 5 19, 5 21,
5 22, 5 23, 5 24, 5 26, 5 29, 5 30, 25 5,
Source BR: 5 24
Destination BRs: 5 2, 5 4, 5 7, 5 8, 5 9, 5 10, 5 11, 5 12, 5 19, 5 21,
5 22, 5 23, 5 25, 5 26, 5 29, 5 30, 24 5,
Source BR: 5 23
Destination BRs: 5 2, 5 4, 5 7, 5 8, 5 9, 5 10, 5 11, 5 12, 5 19, 5 21,
5 22, 5 24, 5 25, 5 26, 5 29, 5 30, 23 5,
Source BR: 5 22
Destination BRs: 5 2, 5 4, 5 7, 5 8, 5 9, 5 10, 5 11, 5 12, 5 19, 5 21,
5 23, 5 24, 5 25, 5 26, 5 29, 5 30, 22 5,
Source BR: 5 21
Destination BRs: 5 2, 5 4, 5 7, 5 8, 5 9, 5 10, 5 11, 5 12, 5 19, 5 22,
5 23, 5 24, 5 25, 5 26, 5 29, 5 30, 21 5,
Source BR: 5 19
Destination BRs: 5 2, 5 4, 5 7, 5 8, 5 9, 5 10, 5 11, 5 12, 5 21, 5 22,
5 23, 5 24, 5 25, 5 26, 5 29, 5 30, 19 5,
Source BR: 5 12
Destination BRs: 5 2, 5 4, 5 7, 5 8, 5 9, 5 10, 5 11, 5 19, 5 21, 5 22,
5 23, 5 24, 5 25, 5 26, 5 29, 5 30, 12 5,
Source BR: 5 11
Destination BRs: 5 2, 5 4, 5 7, 5 8, 5 9, 5 10, 5 12, 5 19, 5 21, 5 22,
5 23, 5 24, 5 25, 5 26, 5 29, 5 30, 11 5,
Source BR: 5 10
Destination BRs: 5 2, 5 4, 5 7, 5 8, 5 9, 5 11, 5 12, 5 19, 5 21, 5 22,
5 23, 5 24, 5 25, 5 26, 5 29, 5 30, 10 5,
Source BR: 5 9
Destination BRs: 5 2, 5 4, 5 7, 5 8, 5 10, 5 11, 5 12, 5 19, 5 21, 5 22,
5 23, 5 24, 5 25, 5 26, 5 29, 5 30, 9 5,
Source BR: 5 8
Destination BRs: 5 2, 5 4, 5 7, 5 9, 5 10, 5 11, 5 12, 5 19, 5 21, 5 22,
5 23, 5 24, 5 25, 5 26, 5 29, 5 30, 8 5,
Source BR: 5 7
Destination BRs: 5 2, 5 4, 5 8, 5 9, 5 10, 5 11, 5 12, 5 19, 5 21, 5 22,
5 23, 5 24, 5 25, 5 26,

207

Least cost path calculated from source AS 1 to
each of the AS topology of Appendix A

Your source domain is: 1
Your destination domain is: 6
distance: 1
path: 1 6 > 6 1

Your source domain is: 1
Your destination domain is: 2
distance: 3
path: 1 19 > 19 1 > 19 2 > 2 19

Your source domain is: 1
Your destination domain is: 3
distance: 6
path: 1 6 > 6 1 > 6 3 > 3 6

Your source domain is: 1
Your destination domain is: 4
distance: 6
path: 1 6 > 6 1 > 6 4 > 4 6

Your source domain is: 1
Your destination domain is: 5
distance: 3
path: 1 19 > 19 1 > 19 5 > 5 19

Your source domain is: 1 Your destination domain is: 7 distance: 1
path: 1 7 > 7 1

Your source domain is: 1
Your destination domain is: 8
distance: 6
path: 1 6 > 6 1 > 6 8 > 8 6

Your source domain is: 1
Your destination domain is: 9
distance: 1
path: 1 9 > 9 1

Your source domain is: 1
Your destination domain is: 10
distance: 8
path: 1 19 > 19 1 > 19 5 > 5 19 > 5 10 > 10 5

Your source domain is: 1
Your destination domain is: 11

208

distance: 6
path: 1 9 > 9 1 > 9 11 > 11 9

Your source domain is: 1
Your destination domain is: 12
distance: 8
path: 1 19 > 19 1 > 19 5 > 5 19 > 5 12 > 12 5

Your source domain is: 1
Your destination domain is: 13
distance: 6
path: 1 7 > 7 1 > 7 13 > 13 7

Your source domain is: 1
Your destination domain is: 14
distance: 6
path: 1 6 > 6 1 > 6 14 > 14 6

Your source domain is: 1
Your destination domain is: 15
distance: 8
path: 1 19 > 19 1 > 19 2 > 2 19 > 2 15 > 15 2

Your source domain is: 1
Your destination domain is: 16
distance: 6
path: 1 6 > 6 1 > 6 16 > 16 6

Your source domain is: 1
Your destination domain is: 17
distance: 11
path: 1 6 > 6 1 > 6 3 > 3 6 > 3 17 > 17 3

Your source domain is: 1
Your destination domain is: 18
distance: 11
path: 1 6 > 6 1 > 6 4 > 4 6 > 4 18 > 18 4

Your source domain is: 1
Your destination domain is: 19
distance: 1
path: 1 19 > 19 1

Your source domain is: 1
Your destination domain is: 20
distance: 6
path: 1 6 > 6 1 > 6 20 > 20 6

Your source domain is: 1
Your destination domain is: 21

209

distance: 6
path: 1 7 > 7 1 > 7 21 > 21 7

Your source domain is: 1
Your destination domain is: 22
distance: 8
path: 1 19 > 19 1 > 19 5 > 5 19 > 5 22 > 22 5

Your source domain is: 1
Your destination domain is: 23
distance: 8
path: 1 19 > 19 1 > 19 2 > 2 19 > 2 23 > 23 2

Your source domain is: 1
Your destination domain is: 24
distance: 8
path: 1 19 > 19 1 > 19 5 > 5 19 > 5 24 > 24 5

Your source domain is: 1
Your destination domain is: 25
distance: 8
path: 1 19 > 19 1 > 19 5 > 5 19 > 5 25 > 25 5

Your source domain is: 1
Your destination domain is: 26
distance: 6
path: 1 6 > 6 1 > 6 26 > 26 6

Your source domain is: 1
Your destination domain is: 27
distance: 11
path: 1 6 > 6 1 > 6 4 > 4 6 > 4 27 > 27 4

Your source domain is: 1
Your destination domain is: 28
distance: 8
path: 1 19 > 19 1 > 19 2 > 2 19 > 2 28 > 28 2

Your source domain is: 1
Your destination domain is: 29
distance: 6
path: 1 7 > 7 1 > 7 29 > 29 7

Your source domain is: 1
Your destination domain is: 30
distance: 6
path: 1 6 > 6 1 > 6 30 > 30 6

210

AS Topologies for node degree 3

Topology 1

Node-1 Node-2
Node-2 Node-3
Node-1 Node-4
Node-1 Node-3
Node-1 Node-5
Node-5 Node-6
Node-6 Node-1
Node-6 Node-7
Node-5 Node-3
Artificial-Node-0 Node-5
Artificial-Node-0 Node-1
Artificial-Node-0 Node-4
Artificial-Node-1 Node-1
Artificial-Node-1 Node-6
Artificial-Node-1 Node-5
Artificial-Node-2 Node-1
Artificial-Node-2 Artificial-Node-1
Artificial-Node-2 Node-5
Artificial-Node-3 Node-5
Artificial-Node-3 Node-1
Artificial-Node-3 Node-6
Artificial-Node-4 Node-1
Artificial-Node-4 Node-6
Artificial-Node-4 Artificial-Node-0
Artificial-Node-5 Artificial-Node-4
Artificial-Node-5 Artificial-Node-2
Artificial-Node-5 Node-1
Artificial-Node-6 Artificial-Node-2
Artificial-Node-6 Artificial-Node-0
Artificial-Node-6 Node-6
Artificial-Node-7 Artificial-Node-0
Artificial-Node-7 Node-6
Artificial-Node-7 Node-5
Artificial-Node-8 Node-5
Artificial-Node-8 Node-1
Artificial-Node-8 Artificial-Node-6

211

Artificial-Node-9 Artificial-Node-7
Artificial-Node-9 Node-5
Artificial-Node-9 Node-1
Artificial-Node-10 Node-6
Artificial-Node-10 Artificial-Node-8
Artificial-Node-10 Node-2
Artificial-Node-11 Node-6
Artificial-Node-11 Node-1
Artificial-Node-11 Node-5
Artificial-Node-12 Node-1
Artificial-Node-12 Node-6
Artificial-Node-12 Node-4
Artificial-Node-13 Node-6
Artificial-Node-13 Artificial-Node-3
Artificial-Node-13 Node-1
Artificial-Node-14 Node-6
Artificial-Node-14 Artificial-Node-0
Artificial-Node-14 Node-5
Artificial-Node-15 Node-6
Artificial-Node-15 Node-1
Artificial-Node-15 Artificial-Node-0
Artificial-Node-16 Artificial-Node-6
Artificial-Node-16 Node-1
Artificial-Node-16 Artificial-Node-2
Artificial-Node-17 Node-5
Artificial-Node-17 Node-1
Artificial-Node-17 Node-6
Artificial-Node-18 Artificial-Node-4
Artificial-Node-18 Node-6
Artificial-Node-18 Artificial-Node-7
Artificial-Node-19 Node-1
Artificial-Node-19 Node-7
Artificial-Node-19 Artificial-Node-17
Artificial-Node-20 Artificial-Node-4
Artificial-Node-20 Node-5
Artificial-Node-20 Artificial-Node-9
Artificial-Node-21 Node-1
Artificial-Node-21 Node-4
Artificial-Node-21 Node-5
Artificial-Node-22 Node-5

212

Artificial-Node-22 Node-1
Artificial-Node-22 Artificial-Node-4

Topology 2

Node-1 Node-2
Node-2 Node-4
Node-1 Node-3
Node-1 Node-7
Node-2 Node-6
Node-3 Node-7
Node-5 Node-1
Node-7 Node-5
Node-4 Node-6
Artificial-Node-0 Node-1
Artificial-Node-0 Node-4
Artificial-Node-0 Node-6
Artificial-Node-1 Node-7
Artificial-Node-1 Node-1
Artificial-Node-1 Node-2
Artificial-Node-2 Artificial-Node-0
Artificial-Node-2 Node-2
Artificial-Node-2 Artificial-Node-1
Artificial-Node-3 Node-5
Artificial-Node-3 Node-2
Artificial-Node-3 Artificial-Node-1
Artificial-Node-4 Node-2
Artificial-Node-4 Node-1
Artificial-Node-4 Node-4
Artificial-Node-5 Node-2
Artificial-Node-5 Node-6
Artificial-Node-5 Artificial-Node-1
Artificial-Node-6 Artificial-Node-1
Artificial-Node-6 Node-7
Artificial-Node-6 Artificial-Node-2
Artificial-Node-7 Node-7
Artificial-Node-7 Artificial-Node-2
Artificial-Node-7 Artificial-Node-1
Artificial-Node-8 Artificial-Node-2
Artificial-Node-8 Artificial-Node-7

213

Artificial-Node-8 Node-4
Artificial-Node-9 Node-7
Artificial-Node-9 Artificial-Node-3
Artificial-Node-9 Artificial-Node-5
Artificial-Node-10 Artificial-Node-7
Artificial-Node-10 Node-6
Artificial-Node-10 Node-4
Artificial-Node-11 Node-2
Artificial-Node-11 Artificial-Node-1
Artificial-Node-11 Artificial-Node-8
Artificial-Node-12 Artificial-Node-2
Artificial-Node-12 Artificial-Node-1
Artificial-Node-12 Node-7
Artificial-Node-13 Artificial-Node-7
Artificial-Node-13 Node-7
Artificial-Node-13 Node-6
Artificial-Node-14 Node-4
Artificial-Node-14 Node-2
Artificial-Node-14 Artificial-Node-1
Artificial-Node-15 Artificial-Node-1
Artificial-Node-15 Node-2
Artificial-Node-15 Artificial-Node-5
Artificial-Node-16 Node-6
Artificial-Node-16 Node-2
Artificial-Node-16 Artificial-Node-13
Artificial-Node-17 Artificial-Node-8
Artificial-Node-17 Artificial-Node-4
Artificial-Node-17 Artificial-Node-11
Artificial-Node-18 Artificial-Node-12
Artificial-Node-18 Node-1
Artificial-Node-18 Node-2
Artificial-Node-19 Artificial-Node-2
Artificial-Node-19 Node-7
Artificial-Node-19 Node-2
Artificial-Node-20 Node-5
Artificial-Node-20 Artificial-Node-13
Artificial-Node-20 Node-2
Artificial-Node-21 Artificial-Node-2
Artificial-Node-21 Artificial-Node-1
Artificial-Node-21 Node-5

214

Artificial-Node-22 Artificial-Node-5
Artificial-Node-22 Node-2
Artificial-Node-22 Node-6

Topology 3

Node-1 Node-3
Node-2 Node-3
Node-2 Node-4
Node-5 Node-4
Node-5 Node-2
Node-6 Node-1
Node-6 Node-7
Node-7 Node-5
Artificial-Node-0 Node-2
Artificial-Node-0 Node-6
Artificial-Node-0 Node-5
Artificial-Node-1 Node-5
Artificial-Node-1 Node-1
Artificial-Node-1 Node-2
Artificial-Node-2 Node-2
Artificial-Node-2 Node-1
Artificial-Node-2 Node-5
Artificial-Node-3 Node-2
Artificial-Node-3 Node-6
Artificial-Node-3 Node-7
Artificial-Node-4 Node-2
Artificial-Node-4 Node-6
Artificial-Node-4 Node-1
Artificial-Node-5 Node-5
Artificial-Node-5 Node-2
Artificial-Node-5 Artificial-Node-2
Artificial-Node-6 Node-5
Artificial-Node-6 Node-7
Artificial-Node-6 Node-6
Artificial-Node-7 Artificial-Node-3
Artificial-Node-7 Node-1
Artificial-Node-7 Node-5
Artificial-Node-8 Node-5
Artificial-Node-8 Artificial-Node-3

215

Artificial-Node-8 Artificial-Node-7
Artificial-Node-9 Node-6
Artificial-Node-9 Node-5
Artificial-Node-9 Node-1
Artificial-Node-10 Node-1
Artificial-Node-10 Node-5
Artificial-Node-10 Artificial-Node-3
Artificial-Node-11 Artificial-Node-2
Artificial-Node-11 Node-6
Artificial-Node-11 Node-2
Artificial-Node-12 Node-6
Artificial-Node-12 Node-5
Artificial-Node-12 Artificial-Node-1
Artificial-Node-13 Artificial-Node-6
Artificial-Node-13 Artificial-Node-5
Artificial-Node-13 Artificial-Node-8
Artificial-Node-14 Artificial-Node-11
Artificial-Node-14 Artificial-Node-5
Artificial-Node-14 Artificial-Node-2
Artificial-Node-15 Artificial-Node-14
Artificial-Node-15 Artificial-Node-8
Artificial-Node-15 Node-1
Artificial-Node-16 Artificial-Node-10
Artificial-Node-16 Node-5
Artificial-Node-16 Artificial-Node-6
Artificial-Node-17 Node-5
Artificial-Node-17 Artificial-Node-2
Artificial-Node-17 Node-6
Artificial-Node-18 Artificial-Node-2
Artificial-Node-18 Node-7
Artificial-Node-18 Artificial-Node-5
Artificial-Node-19 Node-2
Artificial-Node-19 Artificial-Node-13
Artificial-Node-19 Node-5
Artificial-Node-20 Artificial-Node-3
Artificial-Node-20 Artificial-Node-8
Artificial-Node-20 Node-5
Artificial-Node-21 Node-6
Artificial-Node-21 Artificial-Node-3
Artificial-Node-21 Artificial-Node-11

216

Artificial-Node-22 Node-6
Artificial-Node-22 Node-1
Artificial-Node-22 Artificial-Node-1

Topology 4

Node-1 Node-6
Node-2 Node-3
Node-3 Node-4
Node-4 Node-6
Node-5 Node-2
Node-5 Node-4
Node-6 Node-3
Node-7 Node-1
Node-7 Node-5
Artificial-Node-0 Node-7
Artificial-Node-0 Node-5
Artificial-Node-0 Node-6
Artificial-Node-1 Node-5
Artificial-Node-1 Node-1
Artificial-Node-1 Node-3
Artificial-Node-2 Node-4
Artificial-Node-2 Node-3
Artificial-Node-2 Node-5
Artificial-Node-3 Node-4
Artificial-Node-3 Node-5
Artificial-Node-3 Artificial-Node-1
Artificial-Node-4 Artificial-Node-3
Artificial-Node-4 Node-4
Artificial-Node-4 Node-5
Artificial-Node-5 Node-4
Artificial-Node-5 Artificial-Node-3
Artificial-Node-5 Node-7
Artificial-Node-6 Node-2
Artificial-Node-6 Node-3
Artificial-Node-6 Node-6
Artificial-Node-7 Node-3
Artificial-Node-7 Artificial-Node-3
Artificial-Node-7 Node-2

217

Artificial-Node-8 Artificial-Node-6
Artificial-Node-8 Node-7
Artificial-Node-8 Node-6
Artificial-Node-9 Node-3
Artificial-Node-9 Artificial-Node-7
Artificial-Node-9 Artificial-Node-3
Artificial-Node-10 Node-4
Artificial-Node-10 Artificial-Node-7
Artificial-Node-10 Artificial-Node-5
Artificial-Node-11 Node-1
Artificial-Node-11 Node-2
Artificial-Node-11 Node-5
Artificial-Node-12 Artificial-Node-0
Artificial-Node-12 Node-6
Artificial-Node-12 Artificial-Node-9
Artificial-Node-13 Node-4
Artificial-Node-13 Node-5
Artificial-Node-13 Node-7
Artificial-Node-14 Node-5
Artificial-Node-14 Node-4
Artificial-Node-14 Artificial-Node-5
Artificial-Node-15 Node-4
Artificial-Node-15 Node-2
Artificial-Node-15 Node-5
Artificial-Node-16 Node-5
Artificial-Node-16 Artificial-Node-0
Artificial-Node-16 Artificial-Node-5
Artificial-Node-17 Node-5
Artificial-Node-17 Artificial-Node-4
Artificial-Node-17 Artificial-Node-8
Artificial-Node-18 Artificial-Node-13
Artificial-Node-18 Node-5
Artificial-Node-18 Node-6
Artificial-Node-19 Artificial-Node-5
Artificial-Node-19 Node-4
Artificial-Node-19 Artificial-Node-0
Artificial-Node-20 Artificial-Node-14
Artificial-Node-20 Artificial-Node-0
Artificial-Node-20 Node-2
Artificial-Node-21 Node-4

218

Artificial-Node-21 Node-7
Artificial-Node-21 Node-5
Artificial-Node-22 Node-6
Artificial-Node-22 Artificial-Node-5
Artificial-Node-22 Node-5

Topology 5

Node-1 Node-3
Node-2 Node-5
Node-3 Node-4
Node-4 Node-1
Node-5 Node-3
Node-5 Node-4
Node-6 Node-2
Node-7 Node-2
Node-7 Node-4
Artificial-Node-0 Node-3
Artificial-Node-0 Node-4
Artificial-Node-0 Node-6
Artificial-Node-1 Artificial-Node-0
Artificial-Node-1 Node-4
Artificial-Node-1 Node-6
Artificial-Node-2 Node-1
Artificial-Node-2 Node-4
Artificial-Node-2 Node-3
Artificial-Node-3 Node-4
Artificial-Node-3 Node-1
Artificial-Node-3 Artificial-Node-0
Artificial-Node-4 Node-4
Artificial-Node-4 Node-2
Artificial-Node-4 Node-3
Artificial-Node-5 Artificial-Node-2
Artificial-Node-5 Node-4
Artificial-Node-5 Artificial-Node-1
Artificial-Node-6 Artificial-Node-2
Artificial-Node-6 Artificial-Node-1
Artificial-Node-6 Node-3
Artificial-Node-7 Node-2

219

Artificial-Node-7 Artificial-Node-2
Artificial-Node-7 Node-4
Artificial-Node-8 Artificial-Node-1
Artificial-Node-8 Artificial-Node-4
Artificial-Node-8 Artificial-Node-0
Artificial-Node-9 Node-4
Artificial-Node-9 Artificial-Node-2
Artificial-Node-9 Node-2
Artificial-Node-10 Node-2
Artificial-Node-10 Node-4
Artificial-Node-10 Artificial-Node-2
Artificial-Node-11 Node-2
Artificial-Node-11 Artificial-Node-2
Artificial-Node-11 Artificial-Node-0
Artificial-Node-12 Node-4
Artificial-Node-12 Artificial-Node-2
Artificial-Node-12 Node-5
Artificial-Node-13 Node-2
Artificial-Node-13 Node-4
Artificial-Node-13 Artificial-Node-3
Artificial-Node-14 Artificial-Node-6
Artificial-Node-14 Node-4
Artificial-Node-14 Artificial-Node-3
Artificial-Node-15 Node-4
Artificial-Node-15 Node-2
Artificial-Node-15 Artificial-Node-2
Artificial-Node-16 Artificial-Node-13
Artificial-Node-16 Node-3
Artificial-Node-16 Artificial-Node-0
Artificial-Node-17 Artificial-Node-2
Artificial-Node-17 Artificial-Node-13
Artificial-Node-17 Artificial-Node-16
Artificial-Node-18 Node-1
Artificial-Node-18 Artificial-Node-4
Artificial-Node-18 Node-4
Artificial-Node-19 Node-6
Artificial-Node-19 Node-4
Artificial-Node-19 Artificial-Node-13
Artificial-Node-20 Node-4
Artificial-Node-20 Artificial-Node-4

220

Artificial-Node-20 Artificial-Node-3
Artificial-Node-21 Node-4
Artificial-Node-21 Node-2
Artificial-Node-21 Artificial-Node-18
Artificial-Node-22 Node-4
Artificial-Node-22 Artificial-Node-2
Artificial-Node-22 Artificial-Node-0

221

Appendix B

Path Computation
Algorithm for Tunnels
(PCAT)

Validation

A Small Topology of 7 ASes

222

A Sample Topology of 7 ASes

223

All Possible Paths from AS1 B

224

Possible Paths from AS1 to Other ASes in the Topology

Source Destination Possible Path(s)

1 3 1 2>2 1>2 3>3 2
1 3 1 2>2 1>2 5>5 2>5 3>3 5
1 3 1 2>2 1>2 6>6 2>6 3>3 6
1 3 1 5>5 1>5 3>3 5
1 3 1 5>5 1>5 2>2 5>2 3>3 2
1 3 1 5>5 1>5 2>2 5>2 6>6 2>6 3>3 6
1 3 1 4>4 1>4 5>5 4>5 3>3 5
1 3 1 4>4 1>4 5>5 4>5 2>2 5>2 3>3 2
1 3 1 4>4 1>4 5>5 4>5 2>2 5>2 6>6 2>6 3>3 6
1 2 1 2>2 1
1 2 1 5>5 1>5 3>3 5>3 2>2 3
1 2 1 5>5 1>5 3>3 5>3 6>6 3>6 2>2 6
1 2 1 5>5 1>5 2>2 5
1 2 1 4>4 1>4 5>5 4>5 3>3 5>3 2>2 3
1 2 1 4>4 1>4 5>5 4>5 3>3 5>3 6>6 3>6 2>2 6
1 2 1 4>4 1>4 5>5 4>5 2>2 5
1 5 1 2>2 1>2 3>3 2>3 5>5 3
1 5 1 2>2 1>2 5>5 2
1 5 1 2>2 1>2 6>6 2>6 3>3 6>3 5>5 3
1 5 1 5>5 1
1 5 1 4>4 1>4 5>5 4
1 4 1 2>2 1>2 3>3 2>3 5>5 3>5 4>4 5
1 4 1 2>2 1>2 5>5 2>5 4>4 5
1 4 1 2>2 1>2 6>6 2>6 3>3 6>3 5>5 3>5 4>4 5
1 4 1 5>5 1>5 4>4 5
1 4 1 4>4 1
1 7 1 2>2 1>2 3>3 2>3 5>5 3>5 4>4 5>4 7>7 4
1 7 1 2>2 1>2 5>5 2>5 4>4 5>4 7>7 4
1 7 1 2>2 1>2 6>6 2>6 3>3 6>3 5>5 3>5 4>4 5>4 7>7 4
1 7 1 5>5 1>5 4>4 5>4 7>7 4
1 7 1 4>4 1>4 7>7 4
1 6 1 2>2 1>2 3>3 2>3 6>6 3
1 6 1 2>2 1>2 5>5 2>5 3>3 5>3 6>6 3
1 6 1 2>2 1>2 6>6 2
1 6 1 5>5 1>5 3>3 5>3 2>2 3>2 6>6 2
1 6 1 5>5 1>5 3>3 5>3 6>6 3
1 6 1 5>5 1>5 2>2 5>2 3>3 2>3 6>6 3
1 6 1 5>5 1>5 2>2 5>2 6>6 2
1 6 1 4>4 1>4 5>5 4>5 3>3 5>3 2>2 3>2 6>6 2
1 6 1 4>4 1>4 5>5 4>5 3>3 5>3 6>6 3
1 6 1 4>4 1>4 5>5 4>5 2>2 5>2 3>3 2>3 6>6 3
1 6 1 4>4 1>4 5>5 4>5 2>2 5>2 6>6 2

225

Results and Evaluation

Five topologies with the same network properties

Topology 1

Topology 1: AS-level Topology of 30 ASes

24;4;3
25;4;3
26;4;3
27;4;5
20;3;4
21;3;17
22;2;3;28;29
23;4;10
28;22;3
29;4;22
1;3;4;9
3;1;4;5;8;10;12;14;15;17;18;20;21;22;24;25;26;28;30
2;5;6;7;12;22
5;2;3;4;13;14;16;27
4;3;1;5;7;8;9;10;11;13;15;17;19;20;23;24;25;26;27;29
7;2;4;11;30
6;2;16
9;4;1;19
8;4;3
11;7;4
10;4;3;23
13;4;5
12;2;3;18
15;3;4
14;5;3
17;4;3;21
16;5;6
19;4;9
18;3;12
30;3;7

226

Topology 2

Topology 2: AS-level Topology of 30 ASes

227

Topology 3

Topology 3: AS-level Topology of 30 ASes

228

Topology 4

Topology 4: AS-level Topology of 30 ASes

229

Topology 5

Topology 5: AS-level Topology of 30 ASes

230

A 30-AS topology of average node degree of 2

AS-level Topology of 30 ASes (average node degree:2)

231

	Introduction
	Research Background and Motivation
	Claims of Novelty
	Overview of the Thesis

	Background
	Internet Architecture
	Autonomous System
	Border Gateway Protocol (BGP)

	Latency
	Definition of Latency
	Impact of Latency

	Net Neutrality and Quality of Experience
	Net Neutrality
	Net Neutrality in Different Countries
	Issues with Net Neutrality

	Loose Source Routing (LSR)
	Definition
	Use of Loose Source Routing

	Tunnelling Mechanisms
	Layer 2 Tunnelling Protocol (L2TP)
	G-MPLS (Generalised) Multi-Protocol Label Switching
	Intra-Domain Tunnelling
	Inter-Domain Tunnelling

	Internet Topology Generator
	Importance of Internet Topology Generator
	Internet Topology Generating Models
	Existing Topology Generator Tools
	Choice of Internet Topology Generator
	PFP (Positive Feedback Preference)

	Dijkstra's Algorithm
	Definition
	Adapting the Algorithm for Routers
	Example of Dijkstra's Algorithm

	Multi-Objective Optimisation Problem (MOOP)
	MOOP Problem
	Pareto Dominance
	Pareto Optimality
	Solving MOOP

	Evolutionary Algorithm (EA)
	Similarities and Differences
	Flowchart for EA
	Key Components of EA
	Advantages
	Genetic Algorithm (GA)

	Multi-Objective Evolutionary Algorithm (MOEA)
	Advantages
	Different Types of MOEA

	Summary

	Overall Tunnelling Framework
	Network Operator Functions
	Broker Function
	End-User Functions
	Best Route Selection
	Ticketing Service
	Summary

	Design and Implementation of the Baseline Route Selection Tool
	Design and Implementation
	AS Topology
	ASBR Topology
	Presence of Tunnels
	Least Cost Path
	Flowchart
	Pseudo Code
	Data Structure

	Results and Evaluation
	Results for Different Topologies
	Results for Different Cost Ratio
	Results for Different Node Degree
	Considering “Hotspot” Area

	Summary

	Path Computation Algorithm for Tunnels using GA (PCAT–I)
	Design and Implementation
	AS Topology
	Generating Tunnels
	Calculating the Best Suitable Path
	Implementation of GA
	Flowchart
	Pseudo Code

	Validation
	Possible Paths and Initial Population
	Calculation of Fitness Value
	Selection
	Reproduction
	Final Set of Paths

	Results and Evaluation
	Results for Different Topologies
	Results for Different Node Degree
	Results for Different Weights of the Constraints
	Results Considering Peak Time

	Summary

	Path Computation Algorithm for Tunnels using SPEA (PCAT–II)
	Design and Implementation
	Implementation of SPEA
	Flowchart
	Pseudo Code

	Validation
	Results and Evaluation
	Results for Different Crossover Probability (c) and Mutation Probability (m)
	Results for Different Topologies
	Results for Different Percentages
	Results Considering Peak Time

	Summary

	Discussion and Conclusion
	Overview
	Novel Contributions Revisited
	Feasibility of the Tunnelling Framework
	Exploring Benefits of Tunnels: Are Internet Tunnels Worthwhile?
	Path Selection Tool for End User Software

	Publications
	Future Work
	Concluding Remarks

	Appendices
	 Initial Tool
	Path Computation Algorithm for Tunnels (PCAT)

