AUDIO Audio Engineering Society

Convention Paper
W@ Presented at the 138th Convention p

2015 May 7-10 Warsaw, Poland

This Convention paper was selected based on a submitted abstract and 750-word precis that have been peer reviewed
by at least two qualified anonymous reviewers. The complete manuscript was not peer reviewed. This convention
paper has been reproduced from the author’s advance manuscript without editing, corrections, or consideration by the
Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request
and remittance to Audio Engineering Society, 60 East 42”d Street, New York, New York 10165-2520, USA; also see
www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct
permission from the Journal of the Audio Engineering Society.

An Environment for Submillisecond-Latency
Audio and Sensor Processing on BeagleBone

Black

Andrew P. McPherson! and Victor Zappi?

L Centre for Digital Music, School of Electronic Engineering and Computer Science, Queen Mary University of
London, UK

2Media and Graphics Interdisciplinary Centre, University of British Columbia, Vancouver, BC, Canada

Correspondence should be addressed to Andrew P. McPherson (a.mcpherson@qmul.ac.uk)

ABSTRACT

This paper presents a new environment for ultra-low-latency processing of audio and sensor data on embedded
hardware. The platform, which is targeted at digital musical instruments and audio effects, is based on the
low-cost BeagleBone Black single-board computer. A custom expansion board features stereo audio and 8
channels each of 16-bit ADC and 16-bit DAC for sensors and actuators. In contrast to typical embedded
Linux approaches, the platform uses the Xenomai real-time kernel extensions to achieve latency as low as 80
microseconds, making the platform suitable for the most demanding of low-latency audio tasks. The paper
presents the hardware, software, evaluation and applications of the system.

1. INTRODUCTION a performer: cables can be restrictive and wire-
less communication links can be unreliable. More-
This paper presents BeagleRT, a new environment over, general-purpose operating systems impose a

for ultra-low-latency processing of audio and sen- minimum audio latency below which dropouts are
sor data on embedded hardware. Low-cost self- likely to occur. In some cases, including live in-ear
contained processing is valuable for designers of dig- monitoring, even a few milliseconds latency is de-
ital musical instruments and real-time audio effects. tectable by the performer [9]; in other cases, includ-
Using a laptop for performance is not always practi- ing feedback control systems, microsecond latencies

cal, especially for devices which need to move with

McPherson AND Zappi

Submillisecond-Latency Audio and Sensor Processing

are needed for mathematical stability [3].

Real-time audio systems can be divided into hard
and soft real-time categories according to whether
the timing is guaranteed by design. Audio on
general-purpose computers is soft real-time: audio
calculations usually hit their deadlines, but system
load can cause buffer underruns and, therefore, gaps
in the output. Hard real-time, which guarantees that
every deadline will be met, is achievable with single-
function microcontroller and DSP systems. The sys-
tem in this paper achieves hard real-time perfor-
mance using a commodity single-board ARM com-
puter and a custom software environment based on
the Xenomai Linux kernel extensions.!

1.1. Latency of Audio Systems

Audio latency on general-purpose operating systems
can vary wildly; in 2010, Wang et al. [14] found re-
sults ranging from just over 3ms on Linux and Mac
OS X to over 70ms on certain configurations of Win-
dows. Mobile and embedded platforms are similarly
variable, with latency as low as 2.5bms for certain
settings of the Linux ALSA sound architecture on
BeagleBone Black [12] to hundreds of milliseconds
on some versions of the Android OS (as of 2012) [8].

Latency comes from several sources: buffering by
the OS and drivers, group delay of interpolation and
decimation filters within sigma-delta audio convert-
ers [13], and group delay introduced by the end-user
audio processing itself (especially where block-based
calculations are used). Of these, buffering is the fac-
tor most affected by the design of the operating sys-
tem. Minimum latency measurements can mask per-
formance limitations: while simple audio code might
be able to run with small buffers, more demanding
code might require a large buffer size and hence a
long latency to avoid frequent buffer underruns.

1.2. Embedded Musical Instrument Platforms

Many platforms for creating self-contained musical
instruments have been developed in the past few
years. These can be divided into high-performance

1In this audio context, the term hard real-time is used
not in the strictest sense that a single missed deadline is a
catastrophic event certified never to occur, but in the looser
sense that deadline performance depends only on the content
of the audio code and not on any external system factors, and
that dropouts should be essentially zero with suitable code.
The term firm real-time is also sometimes used here.

microcontrollers and embedded computers running
general-purpose operating systems. Recent micro-
controller instrument platforms include CUI32Stem
[11], the OWL effects pedal [15], the SPINE toolkit
[7] and the Mozzi? audio library for Arduino. Other
commonly used boards include mbed (mbed.org),
Teensy 3.1 (pjrc.com), STM32F4Discovery (st.com)
and Arduino Due (arduino.cc).

Other instrument platforms are based on embedded
Linux/Unix computers. Mobile phones and tablets
are widely used for audio. Satellite CCRMA [1, 2] is
a popular and well-supported platform using Rasp-
berry Pi (or BeagleBoard XM) connected to an Ar-
duino microcontroller; sound is generated by audio
programs such as Pd and ChucK. Sonic Pi? is a live-
coding environment for Raspberry Pi intended for
classroom use. The original BeagleBone running Pd
has also been used for real-time audio [10].

In general, microcontroller platforms offer easy con-
nections to hardware sensors and predictable tim-
ing, but have limited computing power. Embedded
computers benefit from the ability to use familiar
software tools (Pd, SuperCollider, ChucK, etc.) and
from the resources of a general-purpose OS, includ-
ing file I/O and networking. On the other hand,
general-purpose operating systems are optimised to
balance many simultaneous processes, and may not
guarantee audio performance under load.

Since many mobile devices and embedded comput-
ers do not provide easy hardware connections for
sensors, Arduino and similar microcontrollers are of-
ten connected by a serial port. This creates a bot-
tleneck which limits sensor bandwidth (typically to
115.2kbps or less). As a result, sensor data is often
sampled infrequently or at low bit resolution. Serial
or USB timing uncertainties also contribute to jitter
between sensor and audio samples. Each of these
effects can reduce the sensitivity of the instrument.

1.3. Goals

BeagleRT aims to combine the best aspects of
embedded Linux systems and dedicated microcon-
trollers for real-time audio. The specific goals are:

2http://sensorium.github.io/Mozzi/
3http://sonic-pi.net

AES 138t Convention, Warsaw, Poland, 2015 May 7-10
Page 2 of 7

McPherson AND Zappi

Submillisecond-Latency Audio and Sensor Processing

1. Simultaneous stereo audio and multichannel
sensor data capture

2. Ultra-low latency, less than 1ms round trip

3. High sensor bandwidth with no bottleneck be-
tween sensor and audio processing

4. Jitter-free synchronisation of audio and sensor
data

5. Robust performance under load; no buffer un-
derruns due to unrelated processes

6. Lightweight C-based API

7. Self-contained platform suitable for inclusion in-
side a digital musical instrument

2. HARDWARE

BeagleRT is based on the BeagleBone Black? single-
board computer, which contains a 1GHz ARM
Cortex-A8 processor with NEON vector floating-
point unit, 512MB of RAM and 4GB of onboard
storage. The BeagleBone also includes two Pro-
grammable Realtime Units (PRUs), 200MHz micro-
controllers with access to the same memory and pe-
ripherals as the CPU. The PRUs are specifically
designed for real-time, timing-sensitive tasks, with
most instructions executing in a single 5ns cycle.

Figure 1 shows a custom hardware expansion board
(“BeagleRT cape”) which provides stereo audio in-
put and output, plus 8 channels each of 16-bit ADC
and 16-bit DAC for sensors and actuators. The
board also contains onboard stereo 1.1W speaker
amplifiers for making self-contained instruments.

2.1. Audio

The audio portion of the cape derives from the
schematic of the open-source BeagleBone Audio
Cape, revision B®. It uses a TLV320AIC3104 codec
from Texas Instruments; the codec is capable of
up to 96kHz operation though BeagleRT uses it in
44.1kHz mode. The codec includes an onboard head-
phone amplifier as well as a line output, both of

4http://beagleboard.org/black
Shttp://elinux.org/CircuitCo:Audio_Cape_RevB

Speakers

Out

“Audio Audio
In

Fig. 1: BeagleRT cape: expansion board contain-
ing stereo audio in/out, 8-channel ADC and DAC,
stereo speaker amplifiers. BeagleBone Black seen
underneath at left.

which are accessible on the cape. Like nearly all
audio codecs, the TLV320AIC3104 uses sigma-delta
modulation, and the internal decimation and inter-
polation filters introduce 17 and 21 samples of la-
tency, respectively (together, approximately 860us
at 44.1kHz).

2.2. Sensor/Actuator ADC and DAC

Sensor and actuator signals are provided by an
AD7699 8-channel ADC and an AD5668 8-channel
DAC from Analog Devices. Both ADC and DAC
(hereafter termed the sensor ADC and DAC) are
DC-coupled; the ADC inputs are buffered with op
amps, and the DAC outputs can drive up to 30mA,
making these signals suitable for a variety of sensor
applications.

The ADC uses an SAR-type converter which adds
only 2us sampling latency. Typical settling time for
the DAC output is 2.5us. Therefore, applications re-
quiring near-zero latency are better suited to these
parts than the audio codec. However, any antialias-
ing filters must be implemented externally in analog.

The sensor ADC and DAC share a 24MHz SPI bus;
the bus speed sets the upper limit on sample rate. In
total, BeagleRT achieves 176 ksps input and output
(2.8 Mbps each direction) when synchronised to the
audio clock, with selectable configurations of 2, 4 or
8 channels (see Section 3.1). If the ADC and DAC
are free running without synchronisation to audio,
roughly 50% higher sample rate can be achieved.

AES 138t Convention, Warsaw, Poland, 2015 May 7-10
Page 3 of 7

McPherson AND Zappi

Submillisecond-Latency Audio and Sensor Processing

3. SOFTWARE

BeagleRT is based on Linux with the Xenomai® real-
time kernel extensions. In 2010, Brown and Martin
[4] found that Xenomai is the best-performing of the
hard real-time Linux environments. On BeagleRT,
audio processing runs as a Xenomai task with higher
priority than the kernel itself, ensuring audio is un-
affected by Linux system load.

Running audio at higher priority than the Linux ker-
nel means that kernel hardware drivers cannot be
used. We developed a custom driver for the audio
codec and the sensor ADC/DAC. The driver uses the
BeagleBone PRU to effectively act as a sophisticated
DMA (Direct Memory Access) controller. The PRU
shuttles data between the hardware and a memory
buffer; the Xenomai audio task then processes data
from this buffer (Figure 2).

BeagleRT)
Audio Task PRU 12S Audio

BeagleRT P . . SPI ADC/DAC
System Calls ” LIﬂUX

Kernel

»
(non-realtime)

A
A

Other OS Network,
Processes USB, etc.

Fig. 2: Operation of the BeagleRT software. The
audio task runs under Xenomai, bypassing the kernel
using a custom PRU-based hardware driver.

3.1. Sample Rates and Formats

Audio is sampled at 44.1kHz. The PRU also sam-
ples each of the 8 sensor ADC and DAC channels at
22.05kHz, a much higher sample rate than typically
found in digital musical instruments. This allows
capturing subtle details like audio-rate vibrations or
detailed temporal profiles within sensor signals. It
also means that sensor data is immediately available
to the programmer, with no need to request and wait
for readings.

Buffer sizes as small as 2 audio samples (= 1 sen-
sor ADC/DAC sample) are supported. This com-
pares favourably with audio buffer sizes of 32 sam-
ples or more on typical general-purpose operating

Shttp://xenomai.org

systems [14]. Alternative sensor ADC and DAC
formats are available: instead of sampling 8 chan-
nels at 22.05kHz each, 4 channels can be sampled at
44.1kHz, or 2 channels at 88.2kHz.

3.2. API

BeagleRT is written in C++, but the API for work-
ing with audio and sensor data is standard C. Full
code is available through the Sound Software project
[5].7 In an arrangement similar to common au-
dio plug-in APIs, the programmer writes a callback
function which is called by the BeagleRT system ev-
ery time a buffer of new samples is required. The
callback function provides input and output buffers
for both audio and sensor data. For convenience,
all data is in float format, normalised -1 to 1 for
audio, 0 to 1 for sensor ADC/DAC data.

In addition to the audio callback, the API provides
initialisation and cleanup functions in which the pro-
grammer can allocate and free resources. A sim-
ple wrapper is provided to create and manage other
Xenomai real-time tasks; the programmer can spec-
ify the priority of these tasks, which will always be
higher than the Linux OS but lower than the audio
rendering task. For example, large block-based cal-
culations might be delegated to a lower-priority task
if the audio buffer size is very small, since the entire
calculation might not fit in one audio period.

Finally, all of the resources of the standard Linux
OS are available at normal (non-realtime) priorities.
Xenomai will transparently switch a task from real-
time to non-realtime mode whenever an OS call is
made. BeagleRT thus offers the performance advan-
tages of a dedicated microcontroller system with the
broader feature set of a general-purpose OS.

4. PERFORMANCE AND APPLICATIONS
4.1. Latency

The theoretical round-trip latency of either audio
or sensor data is given by twice the buffer length.
For example, a simple passthrough program running
with a buffer size of 8 audio samples at 44.1kHz will
produce 16 samples (0.36ms) of latency from input
to output. The TLV320AIC3104 audio codec adds a
further 17 samples latency at the input for the dec-
imation filter and 21 samples at the output for the

Thttps://code.soundsoftware.ac.uk/projects/beaglert

AES 138t Convention, Warsaw, Poland, 2015 May 7-10
Page 4 of 7

McPherson AND Zappi

Submillisecond-Latency Audio and Sensor Processing

| Latency: Audio In to Audio Out

Buffer Predicted Predicted
Size | (buffer only) | (4 codec) | Measured
64 2.90ms 3.76ms 3.84ms
32 1.45ms 2.31ms 2.38ms
16 0.73ms 1.59ms 1.66ms
8 0.36ms 1.22ms 1.30ms
4 0.18ms 1.04ms 1.11ms
2 0.09ms 0.95ms 1.02ms
Table 1: Audio latency performance of Bea-

gleRT environment under different buffer sizes, fs =
44.1kHz. Predicted values given without and with
860us group delay internal to codec.

interpolation filter (0.86ms in total). The conversion
latency for the sensor/actuator ADC and DAC are
negligible, about 5us total.

Actual latency was measured with an oscilloscope
and signal generator. In each test, a 50Hz square
wave was applied to the input, and the software was
configured to pass input to output unchanged. The
latency was calculated by measuring the difference
in time between edges of the input and output. For
tests with the sensor ADC, the edge of the square
wave could drift with respect to the ADC sampling
period; this artifact is a form of aliasing from the un-
filtered test signal. Latency measurements involving
this ADC would drift by up to one sampling period
(46us). The mean value is reported for these tests.

Results for audio input/output are reported in Ta-
ble 1, and sensor results are reported in Table 2.
In both cases, the results conform closely to pre-
dictions. Minimum audio latency is just over lms,
mostly due to the sigma-delta codec, while the min-
imum sensor latency is 120 + 23us.

A hybrid scenario was tested passing audio input to
sensor/actuator DAC and, conversely, sensor ADC
to audio output (Table 3). The measured latency
is approximately halfway between audio and sensor
scenarios, with the audio DAC showing greater in-
ternal latency than the audio ADC. This result con-
forms to expectations from the datasheet.

Finally, the effect of different sensor and actuator
channels was tested (Table 4). These channels are
sampled in a round-robin fashion via the SPI bus,
so channel 7 will be sampled almost 7/8 of a period

’ Latency: Sensor ADC ch. 0 to DAC ch. 0 ‘

Buffer Size | Predicted Measured
32 2.90ms 2.92ms
16 1.45ms 1.48ms
8 0.73ms 0.76ms
4 0.36ms 0.38ms
2 0.18ms 0.21ms
1 0.091ms 0.12ms

Table 2: Sensor ADC/DAC latency performance of
BeagleRT environment under different buffer sizes,
fs = 22.05kHz.

later than channel 0. The lowest latency is obtained
by passing ADC channel 7 (the last to be sampled)
to DAC channel 0 (the first to be sampled), with
this arrangement measuring 80 4 23 us.

All of these results compare favourably with 3ms+
latency using the Linux ALSA drivers on the same
hardware [12]. 1ms audio latency meets even the
most demanding of live monitoring applications [9].

’ Latency: ADC to Audio Out; Audio In to DAC

Audio Buffer | ADC to Audio | Audio to DAC
16 1.25ms 1.14ms

8 0.89ms 0.80ms

4 0.71ms 0.62ms

2 0.62ms 0.53ms

Table 3: Measured latency performance of Bea-
gleRT environment for signals going from sensor
ADC to audio output and from audio input to sensor
DAC, fs,qua = 44.1kHz, f; sens = 22.05kHz.

4.2. Performance

Informal testing suggests that audio performance is
independent of system load, though the reverse is
not true: smaller buffer sizes and more complex
audio calculations reduce the computing resources
available to the Linux OS. This is expected from the
Xenomai implementation. BeagleRT is intended for
single-purpose embedded devices, so a penalty on
non-realtime system tasks is generally acceptable.

As an approximate metric for overall audio perfor-
mance, a wavetable oscillator bank was implemented
using ARM NEON vector floating point instruc-

AES 138t Convention, Warsaw, Poland, 2015 May 7-10
Page 5 of 7

McPherson AND Zappi

Submillisecond-Latency Audio and Sensor Processing

| Latency: Effect of ADC/DAC Channels |

ADC Channel | DAC Channel | Measured
0 7 0.158ms
0 4 0.144ms
0 0 0.120ms
4 0 0.097ms
7 0 | 0.080ms

Table 4: Latency performance of BeagleRT envi-
ronment for different combinations of sensor ADC
and DAC channels, 1 sensor frame per buffer, f; =
22.05kHz.

tions.2 Table 5 shows the results wih a 1024-point
wavetable (wavetable size did not have a significant
impact on performance). Performance is similar for
buffers of 8 samples or larger, plateauing at 740 os-
cillators above 32 samples. The smallest buffer size
of 2 samples shows a performance reduction of about
25%, due to the overhead of frequent task switching.

By comparison, earlier testing using ALSA and C
code with compiler optimisation showed a maximum
of 74 oscillators with a buffer size of 512 samples.”

’ NEON Oscillator Bank Performance ‘

Audio Buffer Size | Max # Oscillators
32 740

16 724

8 700

4 648

2 552

Table 5: Maximum number of oscillators before un-
derruns occurred using a 1024-point wavetable oscil-
lator bank.

4.3. Applications

BeagleRT forms the basis for the D-Box hackable
musical instrument [16] (Figure 3). The D-Box is
a self-contained instrument: a 15cm wooden cube
containing two capacitive touch sensors, a pres-
sure sensor, two piezo pickups, a 10cm speaker and
a rechargeable battery along with the BeagleBone
Black and BeagleRT cape.

8Code included in the BeagleRT repository:
https://code.soundsoftware.ac.uk/projects/beaglert

9J. Topliss, unpublished MEng thesis, Queen Mary Uni-
versity of London

Uniquely, the behaviour of the D-Box can be sub-
verted by rewiring analog circuits on an internal
breadboard. Unlike modular synthesisers, the in-
strument’s behaviour is determined by feedback
loops between software and circuits, creating un-
usual results when changed. The feedback loops,
which are implemented using the sensor ADC and
DAC, are only possible because of BeagleRT’s low
and predictable latency.

BeagleRT can also be used for active feedback con-
trol applications; [6] uses it to apply feedback and
feedforward control to a string instrument bridge.
Using the sensor ADC and DAC on the same chan-
nels, active feedback control up to 3.1kHz bandwidth
can be obtained with 45° phase margin.

F

Fig. 3: The D-Box hackable instrument, which uses
BeagleRT. The breadboard contains signals from the
8 sensor ADC and DAC channels.

5. CONCLUSION

BeagleRT is a new hardware and software frame-
work for ultra-low-latency audio and sensor data
processing which combines the resources of an em-
bedded Linux system with the performance and
timing guarantees typically reserved for dedicated
DSP chips and microcontrollers. Audio and sensor
data are sampled synchronously without the bottle-
neck imposed by some hybrid microcontroller-plus-
computer systems. With hardware buffers as small
as 2 audio samples, latencies as small as 1ms for the
audio codec and 80us for the sensor ADC/DAC can
be achieved.

Various extensions to the project are possible, in-

AES 138t Convention, Warsaw, Poland, 2015 May 7-10
Page 6 of 7

McPherson AND Zappi

Submillisecond-Latency Audio and Sensor Processing

cluding synchronous sampling of digital I/O pins, in-
corporation of real-time MIDI or 12C, and improve-
ments to the communication between PRU (Pro-
grammable Realtime Unit) and Xenomai to reduce
CPU overhead. The BeagleBone Black is an ideal
host on account of its powerful PRUs and numerous
GPIO pins, but the same principles could also be
applied to other embedded systems.

6. ACKNOWLEDGMENTS

This work was supported by grants EP/K032046/1
and EP/K009559/1 from the UK Engineering and
Physical Sciences Research Council.

7. REFERENCES

[1] E. Berdahl and W. Ju. Satellite CCRMA: A
musical interaction and sound synthesis plat-
form. In Proc. New Interfaces for Musical Ez-
pression, 2011.

[2] E. Berdahl, S. Salazar, and M. Borins. Em-
bedded networking and hardware-accelerated
graphics with satellite ccrma. In Proc. New In-
terfaces for Musical Ezxpression, 2013.

[3] E. Berdahl, H.-C. Steiner, and C. Oldham.
Practical hardware and algorithms for creating
haptic musical instruments. In Proc. New In-
terfaces for Musical Expression, 2008.

[4] J. H. Brown and B. Martin. How fast is fast
enough? choosing between Xenomai and Linux
for real-time applications. In Proc. Real-Time
Linuz Workshop, 2010.

[5] C. Cannam, L. A. Figueira, and M. D. Plumb-
ley. Sound software: Towards software reuse
in audio and music research. In Proc. Inter-

national Conference on Acoustics, Speech and
Signal Processing, pages 27452748, 2012.

[6] L. B. Donovan and A. P. McPherson. Active
control of a string instrument bridge using the
posicast technique. In Audio Engineering Soci-
ety Convention 138, 2015.

[7] A. Hadjakos and S. Waloschek. SPINE: a TUI
toolkit and physical computing hybrid. In Proc.
New Interfaces for Musical Expression, 2014.

[8] V. Lazzarini, S. Yi, and J. Timoney. Digital
audio effects on mobile platforms. 2012.

[9] M. Lester and J. Boley. The effects of latency
on live sound monitoring. In Audio Engineering
Society Convention 123, 2007.

[10] D. MacConnell, S. Trail, G. Tzanetakis,
P. Driessen, and W. Page. Reconfigurable au-
tonomous novel guitar effects (RANGE). In
Proc. Sound and Music Computing, 2013.

[11] D. Overholt. Musical interaction design with
the CUI32Stem: Wireless options and the
GROVE system for prototyping new interfaces.
In Proc. New Interfaces for Musical Expression,
2012.

[12] J. Topliss, V. Zappi, and A. P. McPherson. La-
tency performance for real-time audio on Bea-
gleBone Black. In Proc. Linuz Audio Confer-
ence, 2014.

[13] Y. Wang. Latency measurements of audio sigma
delta analog to digital and digital to analog con-
verts. In Audio Engineering Society Convention
131, 2011.

[14] Y. Wang, R. Stables, and J. Reiss. Audio la-
tency measurement for desktop operating sys-
tems with onboard soundcards. In Audio Engi-
neering Society Convention 128, 2010.

[15] T. Webster, G. LeNost, and M. Klang. The
OWL programmable stage effects pedal: Revis-
ing the concept of the onstage computer for live
music performance. In Proc. New Interfaces for
Musical Expression, 2014.

[16] V. Zappi and A. P. McPherson. Design and use
of a hackable digital instrument. In Proc. Live
Interfaces, 2014.

AES 138t Convention, Warsaw, Poland, 2015 May 7-10
Page 7 of 7

