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Abstract
In this paper we present a set of tests aimed at
evaluating the responsiveness of a BeagleBone Black
board in real-time interactive audio applications.
The default Angstrom Linux distribution was tested
without modifying the underlying kernel. Latency
measurements and audio quality were compared
across the combination of different audio interfaces
and audio synthesis models. Data analysis shows
that the board is generally characterised by a re-
markably high responsiveness; most of the tested
configurations are affected by less than 7ms of la-
tency and under-run activity proved to be contained
using the correct optimisation techniques.
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1 Introduction

Research in Music Technology and, in partic-
ular, on Digital Musical Instruments (DMIs)
is strongly connected to the field of Human-
Computer Interaction (HCI). Following the
trend of many other disciplines involving HCI,
like Ubiquitous Computing [Kranz et al., 2009]
and Augmented Reality [Langlotz et al., 2012;
Ellsworth and Johnson, 2013], DMI research
has recently started capitalising on portable and
embedded systems rather than on general pur-
pose architectures. After many years of com-
plete synergy, musical instruments are increas-
ingly abandoning the laptop/desktop computer
in favour of onboard audio processing, leaving
an important mark in both academia [Berdahl
et al., 2013; Oh et al., 2010; Bac lawski and
Jackowski, 2013] and industry (e.g., Aleph1,
ToneCore DSP2 and OWL3).

This is due to the fact that DMIs require a
specific set of design features to provide the user
(i.e., a performer, a composer, a casual player)

1http://monome.org/aleph/
2http://line6.com/tcddk/
3http://hoxtonowl.com/

with a musical experience not too far from the
one typical of acoustic and electric instruments
[Berdahl and Ju, 2011]. This natural compari-
son with well known “devices”, such as piano
and guitar, underlines qualities like reconfig-
urability, independence/autonomy and high re-
sponsiveness, which can be assured only on a
dedicated system.

As designers and developers of open source
novel DMIs, we have decided to explore the
promising and evolving world of embedded
Linux technologies, focusing as starting point on
the concept of responsiveness. The work here
presented shows the result of a series of tests
aimed at measuring the latency of a Beagle-
Bone Black4 board (BBB), used as the core of a
self-contained, open-source musical instrument.
Different hardware and software configurations
based on the same Linux kernel (v3.8.13) have
been analysed under different CPU loads and
levels of code optimisation.

This work is part of a larger structured
study, whose goal is to assess longevity, usabil-
ity and reconfigurability of DMIs, compared to
the standards of acoustic and electric musical
instruments.

2 Related Work

In 2011 Berdahl et al. presented the Satellite
CCRMA [Berdahl and Ju, 2011], a platform for
teaching and practicing interaction design for
diverse musical applications, completely based
on embedded Linux. It runs on a BeagleBoard5

coupled with an Arduino Nano6 and a bread-
board, to support the use of sensors and ac-
tuators. Two years later, Berdahl et al. up-
graded the platform enabling the compatibil-
ity with more powerful boards, such as Rasp-

4http://beagleboard.org/products/beaglebone%
20black

5http://beagleboard.org/Products/BeagleBoard
6http://arduino.cc/en/Main/arduinoBoardNano
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berry Pi7 and BeagleBoard-xM8, and expanded
the range of possible applications including net-
working capabilities and hardware-accelerated
graphics [s[Berdahl et al., 2013]. The project is
based on a Fedora distribution with a custom
low latency kernel.

A good example of how new generation em-
bedded Linux boards can be used to extend the
capabilities of a musical instrument has been
recently presented by MacConnell et al. [Mac-
Connell et al., 2013]. This work introduces
a BBB-based open framework for autonomous
music computing eschewing the use of the lap-
top on stage. Some important features of em-
bedded systems are here used to provide the in-
struments designed using the framework with
high degrees of autonomy and reconfigurabil-
ity. Authors include also data regarding the
latency of the system running Ubuntu 12.04.
Since mainly FX-like processes are addressed,
only the audio-throughput time is measured,
under different system load configurations. Re-
sults vary between 10 to 15 ms, according to the
kind of filtering.

The necessity of measuring the responsive-
ness of computer-based systems is not recent
at all, especially in the context of real-time op-
erative systems. In 2002, Abeni et al. used
a series of micro-benchmarks to identify major
sources of latency in the Linux kernel [Abeni
et al., 2002]. They also evaluated its effects
on a time-sensitive application, in particular an
audio/video player. Moving towards computer-
based audio systems, it is worth mentioning the
work by Wright et al. [Wright et al., 2004], in
which the latency of MacOS, Red Hat Linux
(with real-time kernel patches) and Windows
XP are compared, both in an audio-throughput
configuration and in an event audio-based con-
figuration. The technique used to estimate
the event audio latency consists of measuring
the time delay between the sound produced by
pressing a button on the keyboard and a sinu-
soidal audio output triggered on the computer
by pressing the button itself.

3 System Configuration

The tests presented throughout this work aim
at the evaluation of the capabilities of a BBB-
based system when used as development plat-
form for DMIs. The chosen configuration in-

7http://www.raspberrypi.org/
8http://beagleboard.org/Products/

BeagleBoard-xM

cludes most of the standard components re-
quired to synthesise and control audio in real-
time on a self-contained instrument (i.e., with-
out the need of laptops and any additional ex-
ternal devices). Details on each of these com-
ponents are given in the following subsections.

3.1 Board and OS

The BBB is an embedded Linux board based
on a 1GHz ARM Cortex-A8 processor. It is
shipped with an embedded Angstrom Linux dis-
tribution (v3.8), optimised to run on embedded
architectures. This distro is meant to run gen-
eral purpose applications and it is not specif-
ically audio-oriented. Our first intent was to
explore the capabilities of this default board
configuration, without introducing any changes
in the underlying kernel. We believe this ap-
proach could be very useful for the community
of embedded developers to have a clear outline
of the built-in audio capabilities of the BBB,
thus helping choose the right board.

Although belonging to a new generation of
compact and fully accessorised boards (e.g.,
HDMI, uSD card slot), the BBB does not na-
tively provide any audio interfacing. To test
the performances of this board in relation to
high quality audio synthesis, two commercially
available audio interfaces were chosen for com-
parison; these were both configured for use with
the board so as to provide real-time audio out-
put.

Figure 1: The USB interface and the Audio
Cape attached to the BeagleBone Black.

3.2 Audio Interfaces

We tested one USB interface and one Beagle-
Bone expansion “cape” providing audio output.

http://www.raspberrypi.org/
http://beagleboard.org/Products/BeagleBoard-xM
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This choice aimed at comparing the two most
common solutions used by BBB users for gen-
erating audio output. Figure 1 shows both the
interfaces attached to the board.

The first interface used is the Turtle Beach
Amigo II USB Interface9’This device is bus-
powered and USB 2.0 class-compliant.. Once
attached, this device is automatically recog-
nised as a new hardware interface, meaning that
it simply requires being specified as the selected
device for audio applications. This interface
provides 2 stereo 3.5mm jack receptors, one for
input the other for output. Only the latter has
been used for our tests.

The second interface used for our tests is
the BeagleBone Audio Cape10; this device effec-
tively acts as an extension to the BBB, it simply
attaches to the top of the board to provide an
audio interface. Audio data are exchanged to
and from the BBB using an I2S connection. Un-
like the USB interface, this device requires some
manual configuration to be recognised as a plug-
in hardware interface. The on-board HDMI au-
dio virtual cape must be disabled so that the
Audio Cape can be loaded by the firmware as
the main audio device; this can be easily done
by changing the uBoot parameters passed at
boot-time. As the USB interface, this cape in-
cludes a couple of stereo 3.5mm input/output
jack receptors.

3.3 Audio Synthesis

Two different audio backend systems were de-
veloped in C++ and cross-compiled to run on
the ARM Cortex-A8 processor, one based on
ALSA, the other based on JACK. ALSA and
JACK implementations are currently adopted
by a large number of Linux audio developers.

The audio backend system based on ALSA
(Advanced Linux Sound Architecture11) essen-
tially comprises an audio engine and a para-
metric synthesizer. The synthesizer produces
frame data; it is connected to the audio engine,
which is responsible for collecting and trans-
porting this frame data to the selected output
device.

The audio backend system based on JACK
(Jack Audio Connection Kit12) was similarly
designed. A fundamental difference between
these two APIs is that JACK uses a client-server

9www.turtlebeach.com
10http://elinux.org/CircuitCo:Audio_Cape_RevA
11www.alsa.opensrc.org
12www.jackaudio.org

model between operating processes and output
devices. For this reason, only a synthesizer class
was designed to operate as the client process,
while a standard JACK server acts as the audio
engine for transport. In this configuration the
server pulls audio from the client process every
time it requires new output data, this is in stark
contrast to the ALSA system whereby audio is
pushed to the output devices.

Concerning audio synthesis, both the synthe-
sizers implemented in ALSA and JACK gener-
ate simple sine waves based on reading from
a wavetable. Both systems are configured to
provide CD quality audio, (i.e., 16bit resolu-
tion, 44.1KHz sample rate) and to run the au-
dio thread at the maximum priority level using
a real-time FIFO scheduling.

A parallel control thread was included to
manage user input through the keyboard and to
have access to the general-purpose in/out pins
(GPIO) read/write capabilities of the BBB.

4 Performance Test

The responsiveness and the audio quality of
four different specific configurations were tested,
combining the use of the 2 audio backends
(ALSA an JACK) with the 2 audio devices
(USB and Audio Cape). Responsiveness was
evaluated considering the latency occurring be-
tween the triggering of an audio task produc-
ing a waveform and the actual output of the
waveform through the audio interface; the as-
sessment of audio quality was connected to the
incidence of under-runs.

The performances of each configuration were
measured running the audio task in 3 distinct
test scenarios. Each of these scenarios (de-
scribed in the following subsection) involved
testing different period and buffer size config-
urations. As the focus of the test is concerned
with very low latency, only the smallest possi-
ble period and buffer sizes were examined. In
addition, each measurement was repeated en-
abling 3 different optimisation settings on the
C++ cross-compiler (Linaro GCC 4.7 hosted on
a x86 64 architecture), using the O1, O2 and O3
flags.

4.1 Test Scenarios

The first scenario involved the generation of a
simple monophonic tone. As mentioned in Sec-
tion 3.2, a simple lookup table was used to gen-
erate the frames for this tone.

The second scenario consisted of creating the
same monophonic tone as used in the first sce-

www.turtlebeach.com
http://elinux.org/CircuitCo:Audio_Cape_RevA
www.alsa.opensrc.org
www.jackaudio.org


nario, however whilst a Top background pro-
cess was active with a fast refresh rate (passing
the command line argument “-d 0.1”) (but with
standard priority). This scenario allowed for the
efficiency of audio synthesis to be observed and
measured whilst the system was under heavier
load.

The final test scenario was concerned with
the generation of a more complex polyphonic
tone; this was achieved through the summation
of three harmonically related monophonic oscil-
lators. The addition of these two extra tones
was considered to be a suitably harder task to
synthesise than the simple monophonic tone. It
must be noted that no background process was
executed during this scenario.

Figure 2: The setup to measure latency when
using the USB interface.

4.2 Procedure

The BBB was connected by USB; tests were
performed over an ssh connection via BBB’s
USB network connection. One of the board’s
GPIOs was attached to the first input channel
of an oscilloscope. The audio output was con-
nected to the second channel of the oscilloscope.
For the case of the USB interface, the complete
setup is shown in Figure 2.

In detail, the test procedure ran as follows.
Upon starting one of the executables, the gener-
ated system (ALSA or JACK) was programmed
to initialise itself but then wait for user input
(i.e. a keystroke) before beginning to fill the
output buffers with frames. Once the keystroke
signal was received across the serial connection,
the first task of the system was to drive the
GPIO connected to the oscilloscope from low to
high. Only immediately after this the audio cy-

cle could begin, outputting the signal into the
oscilloscope. The oscilloscope was set to trigger
a single display capture on both the channels
upon the detection of a rising edge in the GPIO
signal. The time distance between the GPIO
rising edge in the display and the beginning
of the captured audio output hence provided a
measurement of the operational latency (Figure
3); each measurement was repeated 5 times [as-
suming that’s right] and an average value cal-
culated.

Figure 3: Examples of oscilloscope display cap-
ture for scenarios 1 and 3. Latency is measured
as the horizontal distance (time gap) between
the GPIO signal rising edge (in yellow) and the
start of the waveform (in light blue).

It must be noted that the period and buffer
sizes chosen were dependent upon both the sys-
tem type and the target interface; configura-
tions that worked well for one pair did not nec-
essarily run well for another. The six smallest
usable configurations were tested for each sys-
tem and interface pair.

In addition to measuring the output latency,
the quality of the output audio was also ob-
served; this observation relied upon noting the
frequency of frame dropout (under-run activity)
and visible distortion displayed on the oscillo-
scope (if any).

5 Results

The reported measurements are here presented
and discussed, first globally and then analysing
more specific cases. Both latency and quality of
the output (under-runs) are taken into account
and the singular contributions are combined.



5.1 Latency

The latency results were highly consistent
across trials: when using the USB audio in-
terface with both ALSA and JACK systems
(Fgures 4 and 6) the maximum difference be-
tween individual measurements generally only
varied by one millisecond, with only few excep-
tions; this was true regardless of the used opti-
misation. Measurements concerning the Audio
Cape (Figures 5 and 7) were even more consis-
tent than for the USB interface. Across the five
measured latencies, measurements only varied
by half of a millisecond, without exceptions.

As expected, for all configurations, latency is
directly related to buffer and period sizes. No
significant, systematic latency differences were
noted amongst the three optimisation settings.

However, the choice of monophonic versus
polyphonic synthesis and the system load in-
troduce unexpected variations in the latency.
These variations may reflect a delay in start-
ing up the ALSA or JACK system, rather than
a difference in steady-state latency once the au-
dio rendering is running. Our test procedure
toggles a GPIO pin and then immediately be-
gins filling the audio buffers; it is possible that
this initial startup produces an additional tran-
sient delay compared to reacting to an event
once audio is already running. In any case, the
difference between test conditions is always less
than 1ms.

Figure 4: ALSA latency measurements for the
USB interface.

Figure 5: ALSA latency measurements for the
Audio Cape.

It can be noted that, on both systems, the
Audio Cape allows for smaller buffer and period

Figure 6: JACK latency measurements for the
USB interface.

Figure 7: JACK latency measurements for the
Audio Cape.

configurations. Unfortunately, the set of avail-
able configurations varies between the 2 sys-
tems, making impossible a direct performance
comparison. For the only overlapping configu-
ration (buffer 512 - period 32), JACK performed
unexpectedly badly, showing a higher latency
than configurations based on larger period sizes.

Conversely, USB interface results extend on
the same set of configurations for both ALSA
and JACK, so that a quantitative comparison
is here possible. For the smallest period size
(i.e. 64 frames) the JACK system shows bet-
ter or equal performances, while increasing the
size ALSA proved remarkably more responsive.
In particular, the last 3 cases listed in Figure 6
shows that JACK’s latency is almost the same
and quite high, regardless of all the conditions,
i.e. buffer/period sizes, test scenario and opti-
misation level.

5.2 Under-runs

The test highlighted a certain incidence of
under-runs, whose effects varied according to
the chosen configuration. Generally, they oc-
curred in particular when lowest buffer and pe-
riod sizes were tested. Also the different opti-
misation settings proved to strongly affect their
incidence.

5.2.1 ALSA

Using ALSA on the USB interface, it was ob-
served the occurrence of frame dropout issue
only when the buffer and period were set to
the minimum values (i.e. respectively 128 and 8
frames). This was true across all the build qual-



ities of the system and for all of the scenarios.
During the first scenario (pure tone) and third
scenario (polyphonic tone) observed dropouts
were not too severe, normally only being exhib-
ited once or twice at the beginning of synthesis.
The second scenario seemed to generate signif-
icantly higher rates of frame dropout, leading
to audible clicks. An interesting observation is
that the O2 optimised versions of the system
appeared to always exhibit the least amount of
under-runs.

In the case of the ALSA system using the Au-
dio Cape, it was observed that frame dropout
only occurred whilst using the smallest period
size configurations (period size of 8), regardless
of the buffer setting. Again this was true across
all the build qualities of the system and all of the
scenarios. The first and third scenario produced
a very small amount of under-run activity, in-
terestingly only for the first period and buffer
size configuration tested. Similarly to the USB
interface, these observed dropouts were very mi-
nor, normally only being exhibited once or twice
at the beginning of synthesis. In the second
scenario the amount of frame dropout did in-
crease slightly. Interestingly, this time the O3
optimised versions exhibited the best improve-
ments, almost completely preventing all under-
runs.

5.2.2 JACK

Since in JACK the stream to the audio device is
not managed by the client, under-runs can occur
only not he server. In relation to the JACK sys-
tem using the USB audio interface, most frame
dropout issues observed occurred during the
first size configurations (buffer 128 - period 16),
the second one (buffer 128 - period 32) and the
fourth one (buffer 256 - period 32). In regards to
the first and third scenarios, the frame dropouts
noted for the first period and buffer size con-
figuration were very severe for the O1 and O2
optimisations. The amount of under-run activ-
ity for this configuration made it very difficult
to gather any measurements for latency; some-
times the JACK server would under-run con-
tinuously without the client even being active.
The O3 optimisation however did not experi-
ence this problem for this configuration; under-
runs were noted however were nowhere near as
severe. In the case of the second scenario, far
less dropouts were observed consistently across
all build qualities, a surprising result. Again,
O3 optimisation proved to provide the best per-
formance enhancement.

In the case of the JACK system using the
Audio Cape, it was noticed that the occurrence
of frame dropout appeared more frequently for
the first three period and buffer size config-
urations. The first scenario produced a very
small amount of under-run activity, in regards
to all the three optimisations; only during the
first scenario were any frame dropouts observed.
The nature of these under-runs however was dif-
ferent to those previously observed; during the
synthesis the server ran smoothly, while under-
runs were noted only after the client had been
disconnected. It was observed during the sec-
ond scenario that the amount of frame dropout
increased slightly; the type of under-run seen in
the first scenario (after the termination of the
client) occurred more frequently. This behav-
ior was exhibited in both the first and second
period and buffer size configurations for the O1
and O3 optimisations. In the case of the O2 op-
timisation, this behavior was not observed; in-
stead a severe under-run issue occurred during
the second period and buffer size configurations
whereby the server immediately began to under-
run before the client had even been launched.
In relation to the third scenario, similar types
of under-run behavior were seen as in the previ-
ous two scenarios whereby under-runs occurred
after the termination of the client. No frame
dropouts were observed for the O2 optimisation
for this particular scenario.

6 Conclusion

Throughout this paper we presented a study
aimed at evaluating the responsiveness of a
Linux embedded system. As part of a larger
study on DMIs design, we focused on test-
ing latency and quality of audio output on a
BeagleBone Black board running the standard
Angstrom distribution with no kernel modifi-
cations. Two different audio backend systems
were taken into consideration, one based on
ALSA, the other on JACK, and measurements
using a USB audio interface and an Audio Cape
were compared. The test monitored event-to-
audio latency and included the monitoring of
under-run activity.

Data analysis showed for both ALSA and
JACK audio systems remarkably low latency
values, especially for small buffer and period
size configurations. In particular, the use of the
Audio Cape allows for latency values lower than
3ms. In some of the different CPU scenarios
taken into consideration the audio stream pre-



sented dropouts and clicks, especially when us-
ing small buffer and period size configurations.
However, the usage of the different levels of code
optimisation available in the chosen compiler
(cross-Gcc O1, O2 and O3) completely fixed the
audio quality in most of the tested configura-
tions.

No previous works delved into the audio capa-
bilities of the BeagleBone Black while running
the default Linux distribution (Angstrom with
kernel 3.8). Compared to other distributions,
like Ubuntu or Fedora, the usage of Angstrom
on the BeagleBone Black proved to support very
low latency configurations without the need of
a customised kernel. In the context of digital
musical instrument design, this feature is re-
markable and makes the BeagleBone Black an
appealing platform for instrument development.
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