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ABSTRACT

Accurate annotation is fundamental to quantify the performance
of multi-sensor and multi-modal object detectors and trackers.
However, invasive or expensive instrumentation is needed to au-
tomatically generate these annotations. To mitigate this problem,
we present a multi-modal approach that leverages annotations from
reference streams (e.g. individual camera views) and measurements
from unannotated additional streams (e.g. audio) to infer 3D tra-
jectories through an optimization. The core of our approach is a
multi-modal extension of Bundle Adjustment with a cross-modal
correspondence detection that selectively uses measurements in the
optimization. We apply the proposed approach to fully annotate
a new multi-modal and multi-view dataset for multi-speaker 3D
tracking.

Index Terms— Multi-modal annotation; Multi-view; Audio-
visual speaker tracking.

1. INTRODUCTION

The annotation of multi-modal and multi-sensor datasets is cumber-
some in the absence of an accurate positioning system, which is ex-
pensive or invasive [1, 2, 3, 4, 5, 6]. Furthermore, annotation errors
may be introduced that significantly bias any further evaluation pro-
cedure when shortcuts to speed-up the process are taken, such as
interpolating between two manually annotated frames [7].

Annotations are easy to produce on the image plane and there-
fore most audio-visual datasets focus on image-plane tracking
only [8, 9, 10, 11]. However, measuring the accuracy of the results
of a 3D tracker requires annotations in the target domain (i.e. the
3D space). Moreover, the aggregation of annotations of the same
target from multiple visual streams requires a selection or fusion
step. Finally, expensive instrumentation and human intervention are
necessary to calibrate all the sensors used in the data collection and
to annotate non-visual streams, such as data from microphones.

In this paper, we present MM-BA, a Multi-Modal extension
of Bundle Adjustment (BA) [12] that infers the 3D trajectories
of freely moving speakers from multi-modal streams captured by
multiple sensors (cameras and microphones). MM-BA selects sen-
sor measurements only when supporting 3D estimates with a low
re-projection error in the respective stream within a cross-modal
correspondence selection mechanism. The proposed approach mini-
mizes in each stream a re-projection error that is a function of the 3D
location and calibration parameters. Given an initialization of the
positions of the targets from multiple views, such as an algorithmic
estimation of mouth locations on the image plane or a manual anno-
tation, MM-BA infers their 3D trajectories through an optimization
that involves measurements from non-annotated additional streams,
such as cross-correlation features from paired audio streams, as well
as the calibration of the sensors for each stream (see Fig. 1). We
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Fig. 1. Our multi-modal approach to define trajectories in 3D, X ,
and in the audio-visual streams, (Ba,Bv), as well as the calibration
parameters, Θ. A cross-modal correspondence selection updates the
flags Va ⊂ Ba of the speech presence for the audio observations
Ba. The multi-modal optimization iterates until convergence over
Bundle Adjustment and the correspondence selection (TDoA: Time
Difference of Arrival; union operation).

apply the proposed approach on a new audio-visual dataset with
multiple speakers, CAV3D, which we distribute to the research
community together with its full annotation1.

2. PROBLEM FORMULATION

Let xn,t ∈ R3 be the position in the 3D space of target n at time t
and Xn its trajectory (with duration Tn + 1) defined as

Xn = {xn,t : t = tn,0, . . . , tn,Tn}. (1)

Let an audio-visual recording system with M pairs of micro-
phones2 and V cameras generate for the same duration synchronized
streams of audio and video frames.

The trajectory of a target n is observed as an annotation, bn,t,s,
within the time interval of the stream captured by each sensor s =
1, . . . ,M + V , whose sensing model is f(·):

bn,t,s = f(xn,t, θs) + εn,t, (2)

where θs contains the calibration parameters of the sensor and εn,t

models the noise (e.g. interferences, reverberations, or background
noise for the audio and clutter and noise for the video).

The annotation of the trajectory of target n in the stream of a
visual sensor k = 1, . . . , V (e.g. the bounding boxes of a face or a
point indicating the position of a mouth on the image plane) is

Bn,k = {bn,t,k, νn,t,k : t = tn,0, . . . , tTn}, (3)

1 https://ict.fbk.eu/units/speechtek/CAV3D/
2We model each microphone pair as a single acoustic sensor.

https://ict.fbk.eu/units/speechtek/CAV3D/


where νn,t,k ∈ {0, 1} denotes the visibility of bn,t,k at time t: when
bn,t,k is undefined because the target is unobservable due to an oc-
clusion or because it is outside the field of view, then νn,t,k = 0. The
set of all visual annotations is Bv = {Bn,k}. The sensing model
for camera k is a perspective camera whose calibration parameters
are the 6D camera pose and 3 intrinsics (focal length and principal
point), θk ∈ R9 [13]. The set of all camera calibration parameters is
Θv = {θk}.

The annotation of the trajectory of target n in the stream of an
acoustic sensor m = 1, . . . ,M is

Bn,m = {bn,t,m, νn,t,m : t = tn,0, . . . , tTn}, (4)

where νn,t,m ∈ {0, 1} denotes the presence or absence of speech3 at
time t. This annotation is a set of pair-wise TDoAs associated to the
acoustic signal generated by the speaker at each position xn,t and re-
ceived by the microphone pair m. The set of all audio annotations is
Ba = {Bn,m}. The sensing model for the microphone pair m is the
TDoA function whose calibration parameters are the 3D positions of
the pair of microphones, θm = (µm,1, µm,2) ∈ R6 with µm,q ∈ R3

and q ∈ {1, 2}. The set of all microphone calibration parameters is
Θa = {θm}.

To conclude, Θ = Θa∪Θv denotes the calibration parameters of
all the sensors in the system, B = Ba∪Bv is the set of all annotations
of the trajectories of all targets in all sensors, and X = ∪N

n=1Xn is
the set of all the 3D trajectories, and N is the number of targets.
Given a partial annotation of Θ and Bv , the problem is to produce a
complete annotation of the system that comprises

• X : the 3D trajectories;

• Θ: the calibration parameters of all the sensors; and

• B: the location of all targets’ observations in all the streams.

3. MULTI-MODAL BUNDLE ADJUSTMENT

We now demonstrate how to extend BA to account for other modal-
ities, such as audio, and complement the optimization with a cross-
modal correspondence selection. We term this approach Multi-
modal Bundle Adjustment (MM-BA).

3.1. Bundle Adjustment extension

The problem of simultaneously estimating 3D speaker trajectories
and sensor parameters is closely related to the image-based 3D re-
construction problem, which is usually solved with feature-based
Structure-from-Motion (SfM) [13, 14]. The goal of SfM is to ac-
curately estimate the 3D scene structure and the camera parameters
(motion) using as input multiple 2D views (images). After obtaining
an initial estimation of the 3D scene points and the camera motion
through feature point matching, SfM uses BA [12], which minimizes
the error between the feature points and 3D points re-projected in
each view.

While SfM relies on multiple correspondences of feature points
extracted from each view, in our multi-modal scenario we obtain
one multi-modal correspondence for each target position xn,t by
grouping the corresponding annotations from the respective frame
of each sensor s. We treat each 3D point in a trajectory as an inde-
pendent point and denote it with xj = xn,t. We thus rewrite X as
X = {xj : j = 1, . . . , J}, where J =

PN
n=1(tTn − tn,0 + 1). In

3When we cannot validate the measurement due to silence, interfering
sources, or non-stationarity of the speaker, then �n,t,m = 0.

the rest of the paper, depending on the context, we will refer to X as
set of trajectories or set of (independent) 3D points.

Let C = {(..., bj,s, νj,s, ...) : j = 1, ..., J ; s = 1, ...,M + V }
be the set of all the correspondences. Given a sufficient number of
frames with a correspondence, we use 3D reconstruction to jointly
optimize the calibration parameters, Θ, and trajectories in 3D, X , by
minimizing the re-projection error on all the streams simultaneously,
such that

(X �,Θ�) = arg min
(X ,Θ)

M+VX
s=1

JX
j=1

νj,s‖bj,s − f(xj , θs)‖22. (5)

This objective function leads to a non-linear optimization prob-
lem that is usually solved with the Levenberg-Marquardt algo-
rithm [15, 16], also known as BA [12]. The large number of
parameters involved (3 × J speaker parameters, 9 × V camera
calibration parameters, and 6 × M audio calibration parameters)
makes the optimization computationally expensive [17]. However,
as subgroups of parameters are uncorrelated, the Jacobian is sparse
thus increasing the efficiency of the solution [17]. We exploit this
sparseness, as done in Sparse Bundle Adjustment (SBA) [17, 18],
to support the parametrization of the reconstruction problem using
arbitrary sensing models4 f(·). We model a planar circular micro-
phone array with radius R and known height from the ground H ,
and derive the corresponding Jacobian.

If c is the speed of sound, the expected TDoA for a general mi-
crophone pair at sampling frequency Fs is

bj = f(xj , θ) =
Fs

c
(‖xj − µ1‖ − ‖xj − µ2‖), (6)

with Jacobian

Fs

c

�
x− µ1

‖x− µ1‖
− x− µ2

‖x− µ2‖
,
x− µ2

‖x− µ2‖
∂µ2

∂θ
− x− µ1

‖x− µ1‖
∂µ1

∂θ

�
.

For the circular microphone array, the position of each micro-
phone is parametrized with respect to the centre of the array, µm,q =
h(ξ,m, q) where ξ = (px, py, H, ψ, 0, 0) ∈ R6 is the 6D pose (po-
sition and orientation) of the array, with only (px, py, ψ) ∈ R3 as
free parameters to optimize5 in Eq. 5. For each pair of opposite mi-
crophones, m, the TDoAs, bj,m is defined with positions

µm,q = [px, py, H]T +

R[cos(ψ +
π

4
(m+ q − 1), sin(ψ +

π

4
(m+ q − 1)), 0]T , (7)

having Jacobianh
12�3, R[− sin(ψ +

π

4
(m+ q − 1), cos(ψ +

π

4
(m+ q − 1), 0]T

i
,

where 12�3 is the 2× 3 identity matrix.
This model for the microphone array allows us to project 3D

trajectories in the TDoA domain (Eq. 5) and enables MM-BA to
accurately calibrate the array coherently with the rest of the system
as well as with the reconstructed trajectories.

3.2. Initialization

We initialize the 3D trajectories, X 0, the calibration parameters, Θ0,
and the correspondences, C, as follows (see Fig. 2).

4For the camera model and its Jacobian, we refer the reader to [18].
5The audio calibration parameters are reduced to 3 under this model.
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Fig. 2. A speaker observed by multiple cameras (C1, C2, C3) and by
a circular microphone array. Our multi-modal approach optimizes
an initial sensors calibration (position and orientation) and the 3D
trajectory while keeping fixed correspondences of multi-view anno-
tations (red boxes) and audio observations (angle of arrival, α).

After estimating the initial camera calibration parameters using
Zhang’s method [19], we localize the mouths (faces) in multiple
views manually or automatically [20]. Given the calibration and the
visual correspondences Cv ⊂ C, we obtain xj by back-projecting
each (visible) annotation bj,k of the multi-view correspondence to
3D rays and computing the spatial least-squares intersection of the
rays using singular value decomposition [13]. The triangulation of
all the correspondences Cv results in an initial guess of X 0. Next,
we randomly initialize on a 2D plane limited by the size of the en-
vironment (i.e. the room where the sensors operate) the pose of the
microphone array, ξ, and obtain Θ0, the initial guess for the param-
eters of all the sensors.

A manual annotation of the TDoA measurements is not possi-
ble and therefore we estimate Ba

m, for each microphone pair, m,
as the peak of the Generalized Cross Correlation with Phase Trans-
form (GCC-PHAT) [21]. To estimate speech activity, νj,m, for each
target location, xj , we threshold the GCC-PHAT values associated
to the estimated bj,m.

We initialize the set of multi-modal correspondences, C, by asso-
ciating Bv , the manual visual annotations, across cameras and with
the estimated audio annotations, Ba.

3.3. Cross-modal correspondence selection

While the set of correspondences C is fixed during the SBA
optimization, after convergence a selection mechanism updates
Va = {νj,m} ⊂ Ba to infer which TDoA measurements bj,m are
valid observations originating from a target. We re-iterate SBA and
the cross-modal selection mechanism until the audio flag no longer
changes, i.e. ν(i+1)

j,m = ν
(i)
j,m, where i is the iteration index6.

To consider only valid measurements in the SBA step, we update
Va
m at iteration i by applying a threshold ηi to the residual between

the re-projection of the target positions x(i)
j in the TDoA domain and

the estimated TDoAs, bj,m as

ν
(i+1)
j,m =

(
1 if ‖bj,m − f(x

(i)
j , θ

(i)
m )‖2 < ηi

0 otherwise.
(8)

By updating ηi according to a pre-defined annealing schedule,
we filter out measurements that do not comply with the acoustic

6Note that iterations of the cross-modal correspondence selection differ
from the internal iterations of SBA.

Algorithm 1: MM-BA with correspondence selection
Input : Bv , Ba, η
Initialize: Θ0, X 0, Va,0 ⊂ Ba, C = (Ba,Bv), i← 0
repeat

// optimize 3D trajectories and sensor parameters
(X (i+1),Θ(i+1))← SBA(X (i),Θ(i), C)

// update correspondences with Eq. 8
ν
a,(i+1)
j,m ← (‖baj,m − f(x

(i+1)
j , θ

a,(i+1)
m )‖2 < ηi)

i+ 1← i
until Va,(i+1) = Va,(i)

Output: (X ,Θ,Va)

sensing model f(·) and the current 3D estimates X (i), and also re-
cover TDoAs that were previously excluded from the optimization.

Algorithm 1 summarizes the proposed MM-BA with cross-
modal correspondence selection.

4. RESULTS

We demonstrate MM-BA on CAV3D, a new dataset for 3D speaker
tracking collected with a sensing platform that consists of a monoc-
ular camera co-located with a circular microphone array [20]. The
sensing platform is positioned on a table in a 4.77 x 5.95 x 4.5 m
room with reverberation time of approximately 0.7s. The micro-
phone array is composed of 8 high-quality omnidirectional micro-
phones (Shure MX391/O), connected to a pre-amplifier (Focusrite
OctoPre LE). We then obtain an analog to digital conversion at 96
kHz 24 bits with a RME ADI-8 DS board. A Marlin F-080C color
camera with progressive scan SONY CCD ICX-204AL image de-
vice and vari-focal lense recorded the video at 15 frames per sec-
ond. In addition to the sensing platform, we used other four CCD
F-080C cameras installed at the top corners of the room. The field
of view of the cameras is about 90�. All five cameras are hardware-
synchronized using external trigger shutter. We manually synchro-
nize the audio with the visual streams.

The dataset includes 20 sequences whose duration varies from
15 to 80s and are organized in three sessions: CAV3D-SOT: nine
sequences with a single speaker; CAV3D-SOT2: six sequences with
a single active speaker but another person is in the scene as inter-
ferer; CAV3D-MOT: five sequences with up to three targets speaking
simultaneously. In each session, speakers undergo occlusions and
abrupt direction and pose changes thus creating non-frontal views,
and may also walk outside the field of view of the camera. Fur-
thermore, an air conditioner produces noise that compounds with
human-made noise when a speaker arranges objects, claps or stomps.

We use MM-BA to annotate CAV3D-SOT and CAV3D-SOT2
using all the streams from the microphone array and the cameras,
whereas we annotate CAV3D-MOT using the visual modality only
as it contains overlapping speech signals for long periods. For the vi-
sual streams, we manually annotate on the image plane the position
of the mouth of each speaker for each frame from the five cameras.
For the annotator to easily update the position of the mouth with a
mouse click, we display sequentially in a graphical user interface
frames from the same camera with a superimposed 50 x 50 zoomed-
in view of the candidate region, centred at the position annotated
in the previous frame. For the audio streams, we use the four mi-
crophone pairs with the longest distance from each other from the
8-element circular array of radius R = 10 cm to obtain the TDoAs
with the GCC-PHAT. For calibrating the cameras, we use scene




	 Introduction
	 Problem formulation
	 Multi-modal Bundle Adjustment
	 Bundle Adjustment extension
	 Initialization
	 Cross-modal correspondence selection

	 Results
	 Conclusion
	 References

