
3D MOUTH TRACKING FROM A COMPACT MICROPHONE ARRAY
CO-LOCATED WITH A CAMERA

Xinyuan Qian1, Alessio Xompero1, Alessio Brutti2, Oswald Lanz2, Maurizio Omologo2, Andrea Cavallaro1

1Centre for Intelligent Sensing, Queen Mary University of London, UK
2ICT-irst, Fondazione Bruno Kessler, Trento, Italy

ABSTRACT

We address the problem of 3D audio-visual person tracking using
a compact platform with co-located audio-visual sensors, without
a depth camera. We present a face detection driven approach sup-
ported by 3D hypothesis mapping to image plane for visual feature
matching. We then propose a video-assisted audio likelihood com-
putation, which relies on a GCC-PHAT based acoustic map. Audio
and video likelihoods are fused together in a particle filtering frame-
work. The proposed approach copes with a reverberant and noisy
environment, and can deal with person being occluded, outside the
camera’s Field of View (FoV), as well as not facing or far from the
sensing platform. Experimental results show that we can provide
accurate person tracking in both 3D and on image.

Index Terms— audio-visual fusion, particle filter, 3D person
tracking, co-located sensor platform

1. INTRODUCTION

A fundamental task for scene understanding, human-machine and
human-robot interaction is tracking the position of a person. Track-
ing can be carried out on the image plane [1–4], on a ground
plane [5] or in 3D [6–9]. Methods for tracking a person in 3D
mainly use distributed cameras and microphone arrays. However,
the widespread use of smart-home devices, such as Google Home
and Amazon Echo, as well as other robotic assistants, has triggered
an increasing interest on platforms with co-located microphone ar-
rays and cameras (see Fig. 1(a)). Only a handful of works focus
on audio-visual 3D person tracking with small-size sensor con-
figurations. For example [10] uses a single microphone pair in
combination with stereo vision.

Unlike spatially distributed sensors, a compact and affordable
configuration with a small number of co-located sensors facilitates
audio-visual synchronization and calibration and can be used on a
moving platform (e.g. a robot). However, using compact co-located
sensors leads to important issues for person tracking. Besides tradi-
tional challenges like reverberation, background noise, random and
abrupt person motion, other issues include person occlusions or out-
side the FoV of the camera, as well as a dependency on the distance
from and orientation away from the microphones. Moreover the lack
of depth information, due to the fact that sensors do not surround the
person preventing triangulation to estimate its 3D position, is the
most critical issue. In fact, neither a single RGB camera nor a cir-
cular microphone array can provide accurate 3D location estimates,
especially under complex scenarios. We aim to exploit multi-modal
information to improve tracking performance and to overcome the
limitations of co-located sensor setups.

In this paper, we propose a novel approach for 3D person track-
ing using audio-visual signals captured by a co-located sensor plat-

(a) (b) (c)

Fig. 1. (a) The co-located audio-visual sensor platform consisting
of an 8-element circular microphone array and a camera; (b) an ex-
ample of mouth position estimate; and (c) the experimental environ-
ment.

form consisting of an 8-element circular microphone array coupled
with a camera. Unlike most of the state-of-the-art methods [11–13],
our 3D tracker does not need a depth sensor. We extract three sources
of information from the audio-visual streams. First, we estimate the
3D position of the mouth with a face detector. When a face detec-
tion is unavailable, we resort to a color-based measurement using a
reference image, which, however, cannot provide information about
the person distance from the platform. We then use audio as comple-
mentary information to strengthen the 3D position estimation, in par-
ticular when the face detector fails or the person is outside the FoV of
the camera, and to eliminate distractors such as other people or false-
positive detections. We use the previously estimated mouth height
from the video to constrain the audio search space on a 2D plane
and to reduce the audio uncertainties caused by the circular array to
estimate the person distance from the platform. After the modality-
dependent processing stages, information is fused and processed by
a particle filter that estimates the 3D position of the person. Figure 2
shows the block diagram of the proposed method.

2. PROBLEM FORMULATION

We aim to track the 3D position, pt, of a person over time t, given
audio signals, st, captured by an 8-microphone circular array and
frames, It, recorded by a RGB camera. In a sequential estimation,
this task consists in first evaluating a probability P (p | s1:t, I1:t) of
hypotheses p conditioned on past and current observations and then
inferring the target state from P , e.g. via expectation:

p̂t = EP (p | s1:t, I1:t) . (1)

When the signal formation p 7→ s, I is non-linear, incomplete
and non-invertible as in our case, a common choice is a Bayesian
model. Using Bayes rule and the total probability theorem, the
Chapman-Kolmogorov recursion modelling, P is fully specified by



Fig. 2. Block diagram of the proposed audio-visual 3D tracker.

a data likelihood L, a first–order dynamics Q and an initial density
dP0 [14]:

P (p | s1:t, I1:t) ∝ L(st, It | p)

∫
Q(p | q) dP (q | s1:t−1, I1:t−1) .

(2)
The only requirement is on L and Q to be evaluable point-wise,
yielding a model that is flexible and computationally attractive if
combined with sampling methods.

We realize Eq. 2 with a Particle Filter (PF) [14], which main-
tains a non-parametric representation of P by propagating a set of
N independently and identically distributed (iid) samples (particles)
from P , i.e.,

{p(1)
t , ...,p

(N)
t }

iid∼ P (p | s1:t, I1:t) . (3)

This is achieved in two steps by (i) sampling from the prior
mixture

∑N
n Q(p | p

(n)
t−1) and (ii) re-sampling with probability

∝ L(st, It | p). As common in multi-modal tracking, we as-
sume conditional independence between modalities given the target
state. The re-sampling probability is thus the product of the audio
likelihood La(st | p) and the video likelihood Lv(It | p).

Our solution comprises the modelling of the individual likeli-
hoods, Lv, La (Sec. 3.1 and 3.2), and the propagation scheme and
model Q (Sec. 3.3).

3. PROPOSED METHOD

3.1. Visual observation

Our person tracker is driven by a face detector, which allows us to
derive the 3D mouth position with simple geometric considerations
using prior knowledge of the typical size of a human face1.

Let fdt = [u, v, w, h]T be the bounding box of the dth detected
face (d = 1, . . . , D) at time t, where (u, v) is the position of the top
left corner and (w, h) are width and height. We geometrically extract
the mouth position, ρdt = [u+ 0.5w, v + 0.75h]T , and then use the
pinhole camera model and camera calibration information [15] to

1Size variations of the human face are much smaller than those of other
body parts (e.g. upper-body), thus allowing a more accurate 3D inference.

obtain its 3D location. We determine the scaling factor by modelling
the shape of a face with a rectangle oriented towards the camera and
the prior knowledge on the face width W to obtain via image-to-3D
back-projection2 the 3D mouth position: odt = Ψ

[
ρdt ;w,W

]
. We

validate the output of the face detector with:

||ρdt − p′t,∆t||2≤ λ
√
w2 + h2 (4)

where λ controls the acceptable error range and p′t,∆t is the average
estimated mouth position on image plane in the last ∆t frames.

We use spherical coordinates to better model the higher inaccur-
acy in the distance estimation, which is based on the hypothesised
face width W . Let õdt and p̃ be the estimated mouth position and
a generic 3D point in spherical coordinates. Assuming a Gaussian
distribution of the estimates, we evaluate the likelihood of the hypo-
thesis p as:

Lvdet(It | p) =

D∑
d=1

exp

[
−
(

õdt − p̃
)

Σ−1
v

(
õdt − p̃

)T ]
, (5)

where Σv accounts for the different estimation accuracy in the three
spherical coordinates.

When the face is not visible or the face detector fails when
the person is inside the camera’s FoV, we resort to a generative
model and evaluate a color-based likelihood. First, we map each
3D hypothesis (particle) to the image plane by creating a bound-
ing box using a 3D hyperrectangle oriented towards the camera
v = Φ [b (p;W,H)], where b(p;W,H) is the 3D rectangle created
from a generic 3D point p with face width W and height H and
Φ indicates the 3D-to-image projection. Then, we compare the
color features of the bounding box with a reference image (which
is updated to the last detection ft′ ) of the person using a Hue-
Saturation-Value (HSV) spatiogram [16]. We measure the similarity
LvHSV(It | p) between two spatiograms using [17], which is derived
from the Bhattacharyya coefficients.

Finally, we define the visual likelihood as:

Lv(It | p) =


Lvdet(It | p) if D > 0

LvHSV(It | p) if p′t,∆t ∈ I0.9

1/N otherwise,
(6)

where I0.9 is a rectangular crop corresponds to the central 90% re-
gion of the image. It is used with p′t,∆t to indicate whether the
person is inside camera’s FoV.

3.2. Video driven acoustic observations

Acoustic source localization can be accomplished by combining the
information ofM microphone pairs to obtain acoustic maps that rep-
resent the plausibility of an active sound source to be at a given spa-
tial position [18]. Let the source be in p and τm(p) be the expec-
ted Time Difference of Arrival (TDoA) between the microphones of
the mth pair. If Cm(·) is the Generalized Cross Correlation PHAse
Transform (GCC-PHAT) function computed at the mth microphone
pair [19, 20], then the Global Coherence Field (GCF) can be evalu-
ated at each position p as [21]:

g(p) =
1

M

M−1∑
m=0

Cm (τm(p)) . (7)

2The back-projection error is stable when W ∈ [0.13, 0.15] m.



While a position estimate of the sound emission can be obtained
from the maximum of the GCF acoustic map, when a compact mi-
crophone array is employed, GCF fails to provide accurate 3D estim-
ations, in particular along the range dimension. This problem can be
circumvented if some knowledge about the mouth height is avail-
able. Therefore, we propose a video-driven GCF, g′(p, ozt′), which
is computed by projecting a generic 3D point p into the 2D plane
through the mouth height ozt′ , estimated from the most recent face
detection.

Finally, we define the audio likelihood as:

La(st | p) =


g(p) if D > 0, maxp g(·) ≥ ϑa
g′(p, ozt′) if D = 0, maxp g

′(·) ≥ ϑa
1/N otherwise,

(8)

where g(·) is the previous g related variable in the brace. ϑa is
a threshold used to remove not reliable audio observations due to
pauses, presence of noise or narrow-band spectral content. In case
of multiple detections, we select ozt′ as the closest one to the 3D point
p under analysis.

3.3. Prediction

Given the likelihoods defined in Section 3.1 and 3.2 and assuming
conditional independence across the modalities, an approximation of
the posterior in Eq. 2 is obtained from the particle set at time t − 1
as described in Sec. 2, by sampling the random variable p from

{p(1)
t , ...,p

(N)
t }

iid∼ La(st | p)Lv(It | p)

N∑
n=1

N
(
p;p

(n)
t−1, 3

κΣr
)

(9)
Here, we model first-order dynamicsQ (Eq. 2) as a mixture of Gaus-
sian distributions whose covariance matrix Σr is diagonal and κ is 1
if the likelihood product is in the lower 10% (higher prediction speed
for low-scoring hypotheses) and 0 otherwise.

Finally, the 3D position estimate of the mouth is the empirical
expectation that approximates Eq. 1:

p̂t =
1

N

N∑
n=1

p
(n)
t (10)

4. EXPERIMENTS

We evaluate the proposed tracker on two datasets and compare it
against the audio-visual trackers in [22] and in [3], as well as with
trackers using the individual modalities, namely Audio-Only (AO)
and Video-Only (VO). To account for the probabilistic nature of
the PF framework, we consider the average Mean Absolute Error
(MAE) (in m) for 10 runs and the Tracking Rate (TR), which is the
percentage of frames where the error is smaller than 0.4 m.

Datasets. We use the publicly available AV16.3 [23] to allow a
comparison with the literature and we collect a new one with co-
located sensors. In AV16.3, the video is captured by 3 cameras
at 25 Hz with resolution of 360 × 288 pixels and audio is recor-
ded at 16 kHz using two 8-element circular microphone arrays with
10 cm radius. In our experiments we use only one camera and
one microphone array from the sequences seq08, seq11 and seq12.
Moreover, we recorded the FBKAV dataset with co-located audio-
visual sensors and 3D labelling to overcome the lack of a public
dataset with these properties. The co-located sensors consist in a Al-
lied Marlin F-080C camera and an 8-element circular array of omni-
directional microphones with 10 cm radius (Fig. 1(a)), positioned on

(a) FBKAV: poses (b) FBKAV: 2-people

(c) AV16.3: seq11-cam1 (d) AV16.3: seq12-cam3

Fig. 3. Key frames from FBKAV (a-b) and AV16.3 dataset (c-d).

a table in a room of size 4.77×5.95×4.5 m. The room reverberation
time is 0.7 s [18] and audio signals are recorded at 96 kHz. Video is
captured at 15 Hz with resolution of 1024×768 pixels. Synchroniz-
ation and calibration are obtained manually. To generate annotation
data with an accuracy error of less than 10 cm, we use SmarTrack
[24]. To do so, we complemented the dataset with recordings using
a spatially distributed sensor set-up consisting of four Allied cam-
eras at the corners of the room. We use four sequences and each
of them lasts for around one minute: (1) ’easy’: the person moves
around, mostly in the FoV, speaking towards the sensor platform;
(2) ’2-people’: the person always talks, moving around while an-
other silent person enters in the FoV; (3) ’behind’: the person enters
the FoV, walks behind the camera while talking and finally re-enters
the FoV; (4) ’poses’: the person always talking in the FoV, but in a
variety of challenging poses (i.e. not oriented towards the sensors,
bending over). Fig.3 shows sample frames of the two datasets.

Implementation details. We detect faces using a freely
available software based on an MXNet implementation of light
CNN3 [25]. The face width is W = 0.14 m and height is H = 0.18
m. The spatiogram in the HSV color space has 8 bins per channel;
λ = 2.5, ∆t = 3 and Σv in Eq. 5 is a diagonal matrix with elements
(2◦,2◦,0.4 m). We compute GCC-PHAT using a 210-point and a
215-point Hanning window in AV16.3 and in FBKAV, respectively.
The overlapping factor between two consecutive windows is set to
provide one-to-one audio-visual frame correspondence. The val-
idation threshold ϑa in Eq. 8 is set to 0.1 in AV16.3, and 0.03 in
FBKAV. Different parameter settings are used because of their dif-
ferent sampling frequency. All the microphone pairs (M=28) within
the 8-element circular array are used to obtain the GCF acoustic
map. Finally, the diagonal elements of the prediction matrix Σr are
set equivalent to (1, 1, 0.5) m/s and we use 100 particles to perform
3D tracking.

Discussion. Table 1 shows the results of the proposed Audio-
Visual (AV) 3D tracking with AO and VO only. For AO, we con-
sider only 2D tracking fixing the mouth height to 1.5 m. In ’easy’,
both AO and VO perform similarly to AV one, with AO using know-
ledge of the person’s mouth height. In ’2-people’, both VO and AV
perform well thanks to the face validation stage which removes false
positives from the other silent person. In ’behind’, neither AO nor
VO performs satisfactorily, because the person is outside the FOV
for half of the sequence and has long speech pauses when inside the

3https://github.com/tornadomeet/mxnet-face



Table 1. 3D tracking results on FBKAV, in comparison with [22].
MAE (m)

AO (2D) VO [22] AV
easy 0.13±.01 0.15±.01 0.31±.01 0.15±.01
2-people 0.32±.04 0.18±.01 0.50±.01 0.18±.01
behind 0.43±.04 1.07±.43 0.52±.01 0.26±.02
poses 0.95±.03 0.33±.02 0.80±.01 0.42±.02
Avg. 0.46±.03 0.43±.12 0.53±.01 0.25±.01

Fig. 4. FBKAV-’behind’: Comparison between the reference and
AV results in individual X,Y and Z coordinates. Comparison of 3D
Absolute Error (AE) at frame t among AO, VO and AV.

FoV. In this case the proposed audio-visual tracker outperforms the
two individual modalities. Fig.4 illustrates the AV tracking results of
sequence ’behind’ in individual coordinates and its superiority over
AO and VO. The sequence ’poses’ includes very challenging audio
situations with the person arranging objects and facing away from
the microphone array. As a result, the performance of AO consid-
erably deteriorates with respect to the other sequences, in particular
along the range dimension, and affects the AV tracking, which per-
forms slightly worse than VO. Overall, an average 3D error of 0.25
m was obtained on the four sequences, which outperforms [22].

Table 2 reports the TR and the face detection rate. The results
are in line with what reported in Table 1. Note that although the
proposed method heavily relies on the face detector for the visual
likelihood, the VO and AV results are always superior.

Fig.5 quantifies the sensitivity to the face detection results and
helps analyse the impact of the other likelihoods. In ’easy’, both
modalities perform well and the accuracy is unaffected by the re-
moval of face detection results. For the other sequences, the MAE
in 3D increases when the number of detections removed, thus lead-
ing to a performance close to the AO (2D) case. This deterioration
becomes evident only if at least 50% of the detections are removed.

For AV16.3, we report results in 3D as well as on the image
plane to compare them with the audio-visual tracker in [3]. Results
on seq08, seq11 and seq12 over three different camera views are
given in Table 3. For [22], we fit the audio-visual likelihoods into
our PF framework with the same parameters used for tracking. Ad-
ditionally, we replace the Viola-Jones upper-body detector [26] with
the MXNet face detector. The overall 3D tracking accuracy is im-
proved from 0.32 m to 0.17 m thanks to our likelihood computation
method and fusion. When tracking on the image plane, the proposed
method also outperforms the accuracy of [3] in every sequence and

Table 2. % of face detection rate (DR= # of true positives / total # of
frames) and TR on FBKAV.

DR (%) TR (%)
AO (2D) VO [22] AV

easy 70.94 98.03 98.88 74.08 97.17
2-people 80.25 75.18 94.80 44.56 93.81
behind 48.41 62.69 48.24 40.88 81.05
poses 48.02 14.41 71.81 15.08 64.64
Avg. 61.91 62.58 78.43 43.65 84.17
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Fig. 5. Influence of randomly removing a percentage of detections
on 3D tracking performance.

the MAE is improved from 11.75 to 7.09 pixels.

Table 3. Audio-visual tracking results in 3D and on the image plane
on AV16.3(cam∈ 1, 2, 3 is the camera index). Standard deviation is
reported for the image plane only, in 3D it is always small (< 0.04).

MAE (m) MAE (pixels)
seq cam [22] AV [3] AV

08
1 0.15 0.12 10.75± 0.13 4.31± 0.20
2 0.24 0.11 7.33± 0.09 4.66± 0.09
3 0.20 0.09 9.85± 0.12 5.34± 0.13

11
1 0.31 0.33 14.66± 0.34 8.15± 0.71
2 0.29 0.14 14.01± 0.12 7.48± 0.53
3 0.26 0.12 13.96± 0.23 6.64± 0.15

12
1 0.41 0.26 12.49± 0.16 6.86± 0.42
2 0.51 0.17 10.81± 0.24 10.67± 2.00
3 0.47 0.20 11.86± 0.24 9.71± 3.20

Avg. 0.32 0.17 11.75± 0.19 7.09± 0.83

5. CONCLUSION

We propose a novel audio-visual tracker capable of performing 3D
person tracking using a small-size co-located audio-visual set up,
without any depth sensor. The system is supported by a face de-
tector, by 3D hypothesis mapping, and by video assisted audio like-
lihood computation. Thanks to the complementary use of audio and
visual signals, we were able to outperform significantly our previ-
ous method [22], under all the addressed experimental conditions.
In particular, it is worth noting that the audio modality contributes
to system robustness when the person is outside the FoV for a long
time, while the video modality plays a key role, for instance to sug-
gest the most likely mouth height where to compute a 2D acoustic
map.
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