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ABSTRACT
We propose a gyro-based camera-motion detection method
for videos captured with smartphones. First, the delay be-
tween the acquisition of video and gyroscope data is esti-
mated using similarities induced by camera motion in the
two sensor modalities. Pan, tilt and shake are then de-
tected using the dominant motions and high frequencies in
the gyroscope data. Morphological operations are applied
to remove outliers and to identify segments with continu-
ous camera-motion. We compare the proposed method with
existing methods that use visual or inertial sensor data.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Video analysis, Motion

Keywords
Gyroscope sensor, Visual sensor, User-generated videos, Cam-
era motion, Detection, Synchronization

1. INTRODUCTION
Camera-Motion Detection (CMD) helps video summariza-

tion, composition, shot detection, segmentation and content
analysis [1, 3, 4, 12]. When available, inertial sensors com-
plement visual data and can support video-quality analysis
with modest memory and battery consumption. We are in-
terested in detecting camera motion that a user introduces
while recording a video with a hand-held camera.

Most CMD methods analyze visual content, for example
using template matching [1, 8], optical flow [2, 9, 10] or
Luminance Projection Correlation (LPC) [4, 11]. Template
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Figure 1: (a) Definition of a device reference coordinates,
pan Gx(t) and tilt Gy(t) signals. (b) A sample multi-modal
video containing pan, tilt and shake: (i) and (ii): pan; (iv)
and (v): tilt; (vii) and (viii): shake.

matching can be applied to estimate the horizontal, verti-
cal and zoom motion combined with a support vector ma-
chine [1, 8]. Optical flow-based methods classify frames into
stationary or moving frames based on the magnitude of mo-
tion vectors. Moving frames are then classified into pan, tilt
or zoom frames based on the dominant orientation or tem-
plate matching [2, 9, 10]. LPC [11] correlates the horizontal
and vertical projections of consecutive frames to compute
pan and tilt [3, 4, 12, 13]. Existing methods are generally
computationally expensive and can be corrupted by moving
objects and brightness changes. Inertial sensors can help
overcome these problems.

Cricri et al. [5] use inertial sensor data for event under-
standing in User-Generated Videos (UGVs). Low-Pass Fil-
tered (LPF) compass data (sampled at 10Hz) are used to
detect pan by calculating the angular speed of the cam-
era; the tilt angle is computed from unfiltered accelerometer
data (sampled at 40Hz); and High-Pass Filtered (HPF) ac-
celerometer data are analyzed to detect shake. However,
compass is sensitive to drift and errors induced by nearby
magnetic objects, and unfiltered accelerometer data can af-
fected by noise that reduces the detection accuracy.

Unlike accelerometer and compass, a gyroscope is neither
affected by gravity nor magnetic field. A gyroscope measures
the angular velocities around the device’s x, y and z axes
(Fig. 1(a)). These velocities correspond to camera pan, tilt
and roll, respectively. A high correlation on the motion of
a device exists between visual and gyroscope data captured
from the same device.

In this paper, we propose a gyro-based method for CMD.
To the best of our knowledge, this is the first method that
uses the output of a gyroscope to detect pan, tilt and shake
in UGVs. We exploit the tri-axial gyroscope data captured
along with the video to identify visual frames with motion.
Because visual data logged with an inertial sensor have un-
known delay due to the time taken for the camera initializa-



tion, we synchronize video and gyroscope data using similar-
ities induced by the camera motion itself. Dominant motions
of the LPF gyroscope data in polar coordinates are utilized
for pan and tilt detection, whereas dominant high-frequency
motions are considered for shake detection. We further ap-
ply morphology to remove outliers and to identify segments
with the same camera-motion type.

2. PROPOSED METHOD
Let C(t) = {V (t), D(t)} be the multi-modal data of a

UGV captured with a hand-held device. V (t) is the visual
data sampled at Vr frames per second (fps) and D(t) repre-
sents the inertial data stream sampled at fr Hz. D(t) con-
tains tri-axial gyroscope data G(t) = (Gx(t), Gy(t), Gz(t))
logged simultaneously with V (t).

We aim to estimate the delay t̂ for gyro-visual synchro-
nization, and then to detect pan Pd(t), tilt Td(t) and shake
Sd(t) using gyroscope data only. We assume that the gy-
roscope is auto-calibrated such that Gx(t), Gy(t) and Gz(t)
are zero at steady state and the gyroscope data are free from
offset error.

2.1 Gyro-visual synchronization
The magnitude of G(t) for a smartphone video captured

without a tripod is affected by involuntary human body
movements. Even in the absence of intentional camera mo-
tion, this low-magnitude motion due to involuntary body
movement is sufficient for gyro-visual data synchronization.
The frequency of involuntary human body movements when
holding a device lies within fi = 20Hz [7]. Inertial sensors
are logged and analyzed at fr = 50Hz > 2fi, thus satisfying
the Nyquist theorem [6].

We correlate gyroscope and visual data to determine the
recording delay between the two modalities. Firstly, LPC [11]
(detailed in [13]) is used to compute the horizontal Lx(t) and
vertical Ly(t) displacements from V (t). Lx(t) and Ly(t) are
the video-based pan and tilt, and correspond to the gyro-
scope Gx(t) and Gy(t) signals, respectively.

Let I(t, i, j) be the grayscale value of pixel (i, j) at time
t, and Iy(t, i) and Ix(t, j) its horizontal and vertical projec-
tions, respectively. These projections are computed as

Iy(t, i) =
1

h

h∑
j=1

I(t, i, j) , Ix(t, j) =
1

w

w∑
i=1

I(t, i, j), (1)

where h is the height and w is the width of the frame.
Lx(t) and Ly(t) (Fig. 2(a)(b)) are then computed as

Lx(t) = arg min
δp

w−δp2∑
i=1+δp1

DIy (t, i, δp), (2)

Ly(t) = arg min
δp

h−δp2∑
j=1+δp1

DIx(t, j, δp), (3)

where δp ∈ [−20, 20]. When δp < 0 then δp1 = 0, δp2 = δp,
whereas when δp ≥ 0 then δp1 = δp, δp2 = 0. DIx(t, j, δp)
and DIy (t, i, δp) are computed as follows:

DIx(t, j, δp) = (Ix(t, j)− Ix(t+ 1, j − δp))2,
DIy (t, i, δp) = (Iy(t, i)− Iy(t+ 1, i− δp))2,
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Figure 2: Gyro-visual synchronization. (a) LPC pan Lx(t)
and gyroscope Gx(t), (b) LPC tilt Ly(t) and gyroscope
Gy(t). Correlation (c) Rx(t) and (d) Ry(t).
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Figure 3: Analysis of fc for the LPF. (a) The RMSE between
the Gx(t) and GLx (t) for 10 recordings containing fast pan
for varying values of fc. (b) The raw Gx(t) (for the fast pan)
for one of the recording and its LPF signals with varying fc.

where DIx(.) and DIy (.) are the projection distances be-
tween two consecutive frames in the horizontal and vertical
direction, respectively.

We downsample G(t) to have the same sampling rate as
V (t) and compute the pan cross-correlation

Rx(t) =

∞∑
k=−∞

Gx(k)Lx(k + t). (4)

The correlation peak is êx = maxtRx(t) and the estimated
delay is t̂x = argmaxtRx(t). Likewise, Ry(t), t̂y and êy are
computed from the tilt signals. The overall estimated delay
t̂ is selected as

t̂ =

{
t̂x if êx ≥ êy,
t̂y if êy > êx.

(5)

Figure 2(c)(d) shows an example of cross correlations Rx(t)
and Ry(t), and their corresponding peaks.

2.2 Gyro-based camera motion detection
Panning produces higher magnitudes of Gx(t) whereas

tilting produces higher magnitudes of Gy(t). We low-pass
filter the signals to obtain GLx (t) and GLx (t) using a cut-off
frequency fc = 4Hz (Fig. 3).

We then jointly analyze GLx (t) and GLy (t) in polar coor-

dinates with radial value GLr (t) =
√
GLx (t)2 +GLy (t)2 and

angular value GLθ (t) = arctan

(
GL

y (t)

GL
x (t)

)
(Fig. 4).

Pan, P (t), is detected as

P (t) =

+1 if 0− α ≤ GLθ (t) ≤ 0 + α,
−1 if 180− α ≤ GLθ (t) ≤ 180 + α,

0 otherwise,
(6)
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Figure 4: Analysis of Gx(t) and Gy(t) in polar coordinate.
(a) GLr (t) and GLθ (t), detected (b) pan and (c) tilt vectors,
(d) GHr (t) and GHθ (t) for shake detection are shown.
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Figure 5: Camera motion detection. For pan, (a) GLx (t)
and GLy (t), (c) P (t), (e) Pd(t), and for shake, (b) GHx (t) and

GHy (t), (d) S(t), (f) Sd(t) are shown.

where α (degrees) is a tolerance angle, and +1 and−1 denote
pan left and right, respectively (Fig. 5c). Similarly, tilt T (t)
is detected as

T (t) =

+1 if 90− α ≤ GLθ (t) ≤ 90 + α,
−1 if 270− α ≤ GLθ (t) ≤ 270 + α,

0 otherwise,
(7)

where +1 and −1 denote tilt down and up, respectively.
The value of α should facilitate the detection of horizontal
and vertical motions. Because freehand pan is not strictly
along the x-axis in real-world scenarios, a higher magnitude
of Gx(t) is also associated to a non-zero value of Gy(t) while
panning with a smartphone. We therefore empirically set
α = 30o (Fig. 6(a)).

For shake detection, we obtain GHr (t) and GHθ (t) after
high-pass filtering GHx (t) and GHy (t) (Fig. 4(d)). GHr (t) is
used to classify shake camera motion as

S(t) =

{
1 if GHr (t) > β,
0 otherwise.

(8)

GHr (t) ranges from 0 to 0.5. We selected β = 0.06 empiri-
cally (Fig. 6(b)) to remove the influence of involuntary body
movement in freehand recordings.
|P (t)|, |T (t)| and S(t) give binary signals for samples with

detected pan, tilt and shake motions (Fig. 5(c-d)).
As we have not yet considered time continuity, false cam-

era motion can be detected in few samples. To remove these
outliers and to identify time-continuous camera-motion seg-
ments, we apply morphological operations to the binary sig-
nals [6]. In particular, we apply opening to |P (t)| and |T (t)|
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Figure 6: F1-score of the proposed CMDG method with
respect to the varying values of (a) α and (b) β for the
captured multi-modal dataset.
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Figure 7: Gyroscope-visual synchronization result for 24
multi-modal UGVs. %age of synchronized data w.r.t the
absolute delay error for varying OverlapN .

to remove false detection by erosion, followed by dilation to
detect continuous segments, and to obtain the final motion-
detection results Pd(t) and Td(t) (Fig. 5(e)). To detect con-
tinuous segments of shake, we apply closing that performs
dilation to connect discontinuous segments followed by ero-
sion to maintain the original length of the shake detected
segments. Segments that are shorter than 0.25 seconds are
considered as outliers, and are removed to obtain the final
shake detection signal Sd(t) (Fig. 5(f)).

3. EXPERIMENTAL EVALUATION
To evaluate the proposed method, CMDG, we recorded

multi-modal data in several scenarios such as concerts, pa-
rades, festivals and firework display, using Cellbots Data
Logger1 and compared with an existing visual [13, 4] (re-
ferred as VISUAL) and inertial sensor-based [5] (referred as
ISENSOR) method.

We captured 24 UGVs for a total duration of 70 mins in
High Brightness (HB) and Low Brightness (LB) scenarios
(e.g. day and night-time). This collected dataset is available
for downloading2 and it contains single camera recordings at
distinct timings and locations, changing lights and varying
camera motions. The Ground-Truth (GT) delay is obtained
by observing a pan/tilt/shake motion simultaneously in the
gyro-visual data. Each captured video was manually anno-
tated to get labels for camera motions for each second.

Figure 7 shows the results for gyro-visual synchronization
for the captured multi-modal dataset. Acceptable delays are
obtained for all UGVs with an absolute error of 0.7sec be-
tween GT and estimate. This error is mainly due to the
imprecise GT labels as it was difficult to manually observe a
coherent motion both in the video and gyroscope data. By

1
https://cellbots.googlecode.com/files/CellbotsDataLogger_v1.

1.0_full.apk (Last accessed: 30/07/2015). Note that the video
frame rate and frame size varied depending on the brightness of the
recorded scene due to the programmed settings of the App.
2
http://www.eecs.qmul.ac.uk/~andrea/cmdg



Table 1: Results for CMDG and its comparison with a VISUAL [13, 4] and ISENSOR [5] method. Key: HB: high brightness
recordings; LB: low brightness recordings; TP: true positive; FP: false positive; P: precision; R: recall; F1: F1 score.

Pan Tilt Shake
Method Type GT TP FP P R F1 GT TP FP P R F1 GT TP FP P R F1

CMDG
HB 294

272 11 0.96 0.93 0.94
36

29 6 0.83 0.81 0.82
389

365 129 0.74 0.94 0.83
VISUAL [13, 4] 217 64 0.77 0.74 0.75 19 42 0.31 0.53 0.39 260 118 0.69 0.67 0.68
ISENSOR [5] 175 52 0.77 0.60 0.67 14 46 0.23 0.39 0.29 188 93 0.67 0.48 0.56

CMDG
LB 123

117 12 0.91 0.95 0.93
49

41 7 0.85 0.84 0.85
272

235 37 0.86 0.86 0.86
VISUAL [13, 4] 31 44 0.41 0.25 0.31 10 48 0.17 0.20 0.19 200 606 0.25 0.74 0.37
ISENSOR [5] 44 40 0.52 0.36 0.43 23 24 0.49 0.47 0.48 213 129 0.62 0.78 0.69

jointly visualizing the synchronized data, we cross-validated
the correctness of the obtained results. Acceptable delay is
achieved even in the presence of slight camera motion. Al-
though the illumination is extremely low in some LB record-
ings (e.g. fireworks) that resulted in low magnitude of Lx(t)
and Ly(t) and inaccurate CMD, correlation existed between
the gyro-visual data. A slight clue of brightness (e.g. an
exploding firework) is sufficient to establish the correlation.

To investigate the robustness of gyro-visual synchroniza-
tion, we changed the overlap duration between the gyroscope
and visual data for the whole dataset. OverlapN denotes
that complete visual data and onlyN% of the duration of the
gyroscope data are used. For Overlap80, Overlap60, Over-
lap40 and Overlap20, the percentage of synchronized record-
ings are 91%, 87%, 78% and 48%, respectively (Fig. 7). Note
that the visual quality and frame rate are low in some of the
night-time recordings: this affects Lx(t) and Ly(t), and de-
creases the performance when the overlap decreases.

For the evaluation of the proposed CMDG, we analyze its
performance with respect to the GT and compared with al-
ternative approaches (Table 1). To have a fair comparison,
the parameters within the VISUAL and ISENSOR are ad-
justed to give the best possible results. To select α and β
for pan, tilt and shake detection, we analyzed the effect of
varying these parameters on the detection results (Fig. 6),
for the captured multi-modal dataset. At α = 30o, the best
F1-score of 0.94 for pan and tilt, and at β = 0.06, the best
F1-score of 0.85 for shake were achieved and selected for the
experimentation. In order to investigate their performance,
we divided the UGVs into HB and LB recordings having to-
tal durations of 30 mins and 40 mins, respectively. In our
dataset, most events of interest existed in the latitudinal
plane (e.g. singer, crowd, parade), with the exception of few
that existed in the longitudinal plane (e.g. fireworks, flying
balloons), resulting in fewer tilt samples (Table 1). CMDG
outperformed the existing methods giving the F1-score of
94%, 82% and 83% for Pd(t), Td(t) and Sd(t), respectively,
for the HB recordings, and 93%, 85% and 86% for the LB
recordings. VISUAL and ISENSOR are the second best for
the HB and LB recordings, respectively.

VISUAL is affected by the motion of objects and light
conditions, thus reducing its performance in LB recordings
compared to CMDG and ISENSOR, which are independent
of these factors. ISENSOR uses compass and accelerometer,
and is affected by magnetic noise, low sampling rate and un-
filtered processing, resulting in false detections. CMDG is
a more desirable solution for CMD because of the use of
a more accurate sensor (gyroscope), and inclusion of the
post-processing stage that suppresses outliers. Pan signals
from CMDG and VISUAL are comparable in HB record-
ings. However, ISENSOR is less accurate due to the lower
sampling rate (10Hz) of the compass [5]. Increasing the

sampling rate to 50Hz increases the effect of noise that af-
fects the derivative of the compass signal.

4. CONCLUSION
We proposed a method for camera motion detection us-

ing gyroscope data for user-generated videos. The method
aligns multi-modal data and uses the tri-axial gyroscope
data captured simultaneously with the video to detect pan,
tilt and shake. Our proposed method outperformed existing
approaches with a collective F1-score of 89% for pan, tilt
and shake.

As future work, we are interested in developing a real-time
application of the proposed method and in analyzing trans-
lational motion generated when users change their position
while recording.
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