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ABSTRACT
The choice of the most suitable fusion scheme for smart cam-
era networks depends on the application as well as on the
available computational and communication resources. In
this paper we discuss and compare the resource requirements
of five fusion schemes, namely centralised fusion, flooding,
consensus, token passing and dynamic clustering. The Ex-
tended Information Filter is applied to each fusion scheme to
perform target tracking. Token passing and dynamic clus-
tering involve negotiation among viewing nodes (cameras
observing the same target) to decide which node should per-
form the fusion process whereas flooding and consensus do
not include this negotiation. Negotiation helps limiting the
number of participating cameras and reduces the required
resources for the fusion process itself but requires additional
communication. Consensus has the highest communication
and computation costs but it is the only scheme that can be
applied when not all viewing nodes are connected directly
and routing tables are not available.

Keywords
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1. INTRODUCTION

Fusion schemes are widely used in sensor networks to
improve task performance and robustness to failures [13].
These schemes define when and what information to share
under specific communication architectures [4]. Resource-
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limited sensor networks require selecting the most suitable
scheme to trade-off performance and resources used. Thus,
quantifying the costs of resources helps in choosing the most
appropriate scheme for each scenario.

Fusion schemes can share raw data (e.g. measurements)
or decisions (e.g. estimations) [30]. In the former case, mea-
surements or features are fused to obtain the global esti-
mate. In the latter case, local estimates at each node are
fused to get the global estimate. Fusion can be centralised,
decentralised or distributed [28]. In centralised fusion, all
nodes send their local information to a fusion centre (FC)
via single-hop or multi-hop communications [8]. The decen-
tralised scheme [10] considers various FCs that collect and
fuse information from nodes in their neighbourhood. The al-
location of nodes to FCs can be static [10] or dynamic [18].
To support topology changes and scalability, dynamic de-
centralisation (or clustering) is preferred. In distributed fu-
sion [27], each node runs an identical peer-to-peer algorithm
to exchange information with other nodes. Flooding [7],
consensus [21] and token passing [11] are widely used dis-
tributed fusion schemes.

In this paper, we analyse the communication and com-
putation costs of five fusion schemes, namely centralised
fusion [8], flooding [7], token passing [11], average consen-
sus [22] and dynamic clustering [18]. We employ the Ex-
tended Information Filter (EIF) [19] for all the schemes
to perform target tracking in smart camera networks us-
ing decision-based fusion. Based on this analysis we discuss
which scheme to use based on the communication topol-
ogy and the available communication and computation re-
sources. The software of the fusion schemes is available
at http://www.eecs.qmul.ac.uk/~andrea/software.htm.

The paper is organised as follows. Section 2 reviews the
EIF-based state estimation. Section 3 discusses the fusion
schemes for target tracking and Section 4 compares their
costs. Finally, Section 5 concludes the paper.

2. EXTENDED INFORMATION FILTER
FOR STATE ESTIMATION

Consider a smart camera network with Nc camera nodes.
Each node ci (1 ≤ i ≤ Nc) consists of an image sensor, a pro-
cessor and a wireless communication module. Let the target
motion model be given by xk = f(xk−1,wk−1), where xk

is the estimated target state at time k and wk−1 is a non-
additive zero-mean Gaussian noise with covariance Qk−1.
Pk represents the error covariance of the state estimation.
The measurement model of a node ci is zi

k = hi(xk) + vi
k,

where zi
k is the target measurement and vi

k is an additive

http://www.eecs.qmul.ac.uk/~andrea/software.htm


zero-mean Gaussian noise with covariance R. Given a pos-
terior at time k− 1 (xi

k−1|k−1, Pi
k−1|k−1) and measurement

at time k (zi
k), filtering at node ci estimates the posterior at

time k (xi
k|k, Pi

k|k).

If either f(·) or hi(·) are mildly non-linear and first-order
approximations of their Jacobians are available via Taylor
series, Extended Kalman Filter (EKF) can be used for state
estimation [19]. The Extended Information Filter (EIF) is
an alternative form of EKF that represents the state and
covariance as the Fisher information vector yk|k = P−1

k|kxk|k

and Fisher information matrix Yk|k = P−1
k|k, respectively.

The prediction step of EIF is [19]:

xi
k|k−1 = f(xi

k−1|k−1),

Pi
k|k−1 = Jf,k−1P

i
k−1|k−1J

T
f,k−1 + Wf,k−1Qk−1W

T
f,k−1,

(1)
where Jf,k−1 = ∂f

∂x
|xi

k−1|k−1
,0 and Wf,k−1 = ∂f

∂w
|xi

k−1|k−1
,0

are the Jacobians of f(·) w.r.t. x and w, respectively. The
results are converted to the information form:

yi
k|k−1 = Pi

k|k−1

−1
xi
k|k−1, Yi

k|k−1 = Pi
k|k−1

−1
. (2)

The update (correction) step in EIF [19] is:

yi
k|k = yi

k|k−1 + JT
h,kR−1[zi

k − hi(xk|k−1) + Jh,kxi
k|k−1],

Yi
k|k = Yi

k|k−1 + JT
h,kR−1Jh,k,

(3)
where Jh,k = ∂h

∂x
|xi

k|k−1
,0 is the Jacobian of hi(·) w.r.t. x

(approximately linearised measurement model hi(·)). EIF
has a simpler update step than EKF.

The posteriors of each ci are fused using one of the five
fusion schemes (centralised fusion, flooding, token passing,
consensus and dynamic clustering) to compute:

yg
k|k =

∑
i∈Cv

k

yi
k|k, Yg

k|k =
∑
i∈Cv

k

Yi
k|k, (4)

where [yg
k|k Yg

k|k] is the global posterior and Cv
k is the set

of all viewing nodes (cameras observing the same target)
at time k and Nv

k = |Cv
k |. The global state estimate and

corresponding error covariance can be calculated using:

xg
k|k = Yg

k|k
−1yg

k|k, Pg
k|k = Yg

k|k
−1. (5)

3. FUSION SCHEMES
We perform decision fusion to combine the posteriors of

EIF-based nodes using centralised fusion, flooding, token
passing, average consensus and dynamic clustering. This
section describes each scheme for target tracking in smart
camera networks.

In centralised fusion [8, 25], all viewing nodes send their
local posteriors (yi

k|k and Yi
k|k) to a FC for computing the

global posterior (yF
k|k and YF

k|k). Centralised fusion is suit-
able for small-scale networks as it has high communication
cost near the FC. Other drawbacks of centralised fusion are
the vulnerability to FC failures and limited robustness to
topology changes.

In flooding (or dissemination) [29, 13] all viewing nodes
broadcast their local posterior (yi

k|k and Yi
k|k) to all or to

subsets of nodes (e.g. viewing nodes) in the network. Infor-
mation can be distributed in a single iteration if the network

is fully connected [17]. Otherwise, flooding requires multi-
hop or multiple iterations of communications. In each iter-
ation, each node sends its own and the previously received
information to its neighbours. Eventually all participating
nodes have the same set of posteriors [7, 6]. Then, each
participating node performs fusion, updates its local poste-
rior. Note that when we aim to flood information only to
viewing nodes, non-viewing nodes might hold less accurate
results as they do not receive the posterior of all viewing
nodes. In such cases, non-viewing nodes do not perform fu-
sion to save computation. For large and sparse networks,
flooding has high communication cost, high processing cost
and high memory requirements [23]. This scheme is there-
fore suitable for sharing low amounts of information when
high connectivity exists among the nodes.

Token passing [24, 11, 12] is a sequential estimator in
which viewing nodes form an aggregation chain (AC). Each
node in the AC receives a partial posterior from the previous
one, updates this posterior using its local posterior and sends
the result to the next node. The process finishes when all AC
nodes are visited once. The most informative node (decided
based on the local posterior and the global knowledge of the
network) is selected as the next node [13]. The last AC node
provides the global posterior at the current time step. Then,
this node initiates the AC for the next time step (often also
becoming the first AC node). The sequential estimation
and the transmission of high dimensional estimations such
as Particle Filter (PF) posteriors cause latency [13]. Nastasi
and Cavallaro [20] applied such a fusion scheme to smart
camera networks using distributed PFs assuming that view-
ing nodes can communicate with each other. The scheme is
suitable when cameras with overlapping FOVs are connected
or routing tables are provided.

Reaching consensus means that all nodes have the same
value for the considered variable(s) such as the target state [29,
22]. Consensus schemes operate at two time scales: collect-
ing measurements and performing iterations between con-
secutive measurement collections [23]. In each iteration,
nodes exchange information with neighbours and perform
fusion using the average [2], gossip [1, 3], maximum or min-
imum [9] approaches. Average consensus is widely used in
wireless sensor networks [22] and smart camera networks [27,
26, 28]. The distributed Kalman Consensus Filter (KCF) [22]
computes local estimates (xi

k|k) via Kalman Filters (KF).
Non-linear measurement models or motion models require
other filters such as EIF [16] or PF [23]. In average con-
sensus, each node ci exchanges its posterior (yi

k|k and Yi
k|k)

with neighbours where non-viewing nodes send either zeros
or predicted posterior [14] as information. Each node ci ex-
ecutes a consensus step as:

yi,l
k|k = yi,l−1

k|k + wij

∑
j∈CN

i

(yj,l−1
k|k − yi,l−1

k|k ), (6)

where yi,l
k|k is the consensus achieved after the lth iteration

and CN
i is the neighbourhood of ci. The same process is

applied to Yi
k|k. The values wij can be set to guarantee

the convergence to the average of the initial estimates of all
nodes after L iterations [21]. The speed of convergence to the
posterior average depends on the number of nodes. By mul-
tiplying the average with the total number of nodes in the
network, Nc, the sum (global posterior) can be calculated as
in Equation 4 [25]. The advantages of this scheme are the



Algorithm 1 Decision based fusion in a camera network
Input:

Nc : number of nodes in the network
C/Cv

k : set of all/viewing cameras at time k

CN
i : set of communication neighbours of node ci

cF , cH : fusion centre, cluster head
cf , cp, cn : first, previous, next node in aggregation chain (AC)

[yi
k|k Yi

k|k] : posterior information of ci at time k

mi
k|k : message containing [yi

k|k Yi
k|k]

send(ci, cj,m): node ci sends message m to node cj
zi
k: measurement of node ci at time k

[yg
k|k Y g

k|k] : global posterior

EIF(yik−1|k−1, Y
i
k−1|k−1, z

i
k): computes posterior using Extended In-

formation Filter
clustering(Cvk): forms a cluster of Cv

k and returns its head
findNextNode(ci): identifies the next node of node ci in AC

avgConsensus(mi
k|k): performs average consensus on mi

k|k (Equa-

tion 6)
L: Number of consensus iterations
For each ci ∈ C

If ci ∈ Cv
k , [yi

k|k Y i
k|k] = EIF(yik−1|k−1, Y

i
k−1|k−1, z

i
k)

Else [yi
k|k Y i

k|k] = [0 0]

endIf
endFor
Switch( Algorithm )

Case Centralized :
For each ci ∈ Cv

k , send(ci, cF,m
i
k|k) endFor

cF performs fusion:

[yg
k|k Yg

k|k] = [yF
k|k YF

k|k] =

 ∑
j∈Cv

k

yj
k|k

∑
j∈Cv

k

Yj
k|k


send(cF, C,m

F
k|k)

break;
Case Flooding :

For each ci ∈ Cv
k , send(ci, C

N
i,m

i
k|k) endFor

For each ci performs fusion:

[yg
k|k Yg

k|k] = [yi
k|k Yi

k|k] =

 ∑
j∈Cv

k

yj
k|k

∑
j∈Cv

k

Yj
k|k


endFor
For each ci ∈ Cv

k , send(ci, C
N
i,m

i
k|k) endFor

break;
Case Token Passing :

cp = cf
While(cn = findNextNode(cp) exists)

send(cp, cn,m
p
k|k)

cn performs local update:
[yn

k|k Yn
k|k] = [yn

k|k + yp
k|k Yn

k|k + Yp
k|k]

cp = cn
endWhile
[yg

k|k Yg
k|k] = [yp

k|k Yp
k|k]

send(cp, C
N
p,m

i
k|k)

cf = cp
break;

Case Consensus :
For l = 1 : L

For each ci ∈ C, send(ci, C
N
i,m

i
k|k) endFor

For each ci ∈ C, avgConsensus(mi
k|k) endFor

endFor
For each ci ∈ C, ci computes posterior:

[yg
k|k Yg

k|k] = [yi
k|k Yi

k|k] = [Ncy
i
k|k NcY

i
k|k]

endFor
break;

Case Dynamic Clustering :
cH = clustering(Cvk)

For each ci ∈ Cv
k , send(ci, cH,m

i
k|k) endFor

cH performs fusion:

[yg
k|k Yg

k|k] = [yH
k|k YH

k|k] =

 ∑
j∈Cv

k

yj
k|k

∑
j∈Cv

k

Yj
k|k


send(cH, C

N
H,m

H
k|k)

break;
return yg

k|k and Yg
k|k

Table 1: Summary of selected characteristics of fu-
sion schemes. Key. CE: Centralised. FL: Flooding.
CO: Consensus. TP: Token Passing. DC: Dynamic
Clustering. CH: Cluster Head. DIS: Distributed.
DEC: Decentralised.

Scheme Type
Fusion centres

Involves
negotiation?

Network
knowledge
needed?

Nodes
Dynamic
selection

CE CE Single No No Yes
FL DIS Viewing Yes No No
TP DIS Viewing Yes During fusion Yes
CO DIS All No No No
DC DEC CH Yes Prior to fusion Yes

availability of global posterior at all nodes and robustness
to node failures. Moreover, this scheme does not require
routing protocols or knowledge about nodes (e.g. observa-
tion models or FOVs) and the network (e.g. communication
graph), thus coping with topology changes and link failures.

In dynamic clustering, nodes viewing the target negoti-
ate locally and form clusters where a node is selected as
cluster head. The node generates the global posterior by
fusing its own (yH

k|k and YH
k|k) and received posterior from

the other cluster members (yi
k|k and Yi

k|k). Static clusters
can be created to track targets based on their overlapping
sensing regions [10] and might use more nodes per cluster
than needed. In order to cluster only the viewing nodes, dy-
namic clustering adapts the cluster membership depending
on the target location and the network topology [18]. Itera-
tive message exchange (or negotiation) is required to select
the cluster head and to propagate the cluster membership
over time. In this case cluster formation is a distributed pro-
cess and fusion is a decentralised process. Cluster formation
and cluster-head selection add computation and communi-
cation costs and increase latency.

Multiple fusion centres exist in all schemes except cen-
tralised fusion. All nodes operate similarly in consensus,
whereas only viewing nodes operate in flooding, token pass-
ing and dynamic clustering. At the end of each time step, the
FCs broadcast the result (global posterior) to their neigh-
bourhood in order to use the global posterior as input for
their local EIFs if the target enters their field of view (FOV)
in the next time step (Equation 1). Moreover, token pass-
ing and dynamic clustering require negotiation among nodes
(prior to fusion) to decide whom to pass the token to and
to propose cluster-head candidates, respectively. If there
is no direct communication among the viewing nodes, dy-
namic clustering forms multiple single-hop clusters, flooding
requires several iterations, and token passing needs routing
tables for multi-hop communication.

The implementation of the five target tracking approaches
is presented in Algorithm 1. The function clustering() is
used in dynamic clustering to decide which cluster a camera
belongs to [18]. The function returns the id of the cluster
head. The function findNextNode() is used in the token
passing approach to decide the next node in the AC [20].
The function returns the id of the next node.

Finally, Table 1 and 2 summarise the fusion schemes used
in sensor networks and the existing approaches in smart
camera networks, respectively; whereas Table 3 compares
the communication and computation costs for each fusion
scheme.



Table 2: Decentralised (DEC) and Distributed
(DIS) tracking techniques for smart camera net-
works. Key. SC: Static Clustering. DC: Dynamic
Clustering. TP: Token Passing. CO: Consensus.
KF: Kalman Filter. EKF: Extended Kalman Filter.
PF: Particle Filter. IF: Information Filter.

Reference
Fusion type Fusion scheme

Filter
Data Decision

DEC DIS
SC DC TP CO

[10] X X KF
[18] X X EKF
[31] X X KF
[20] X X PF
[27, 26] X X KF
[5] X X EKF
[14, 15] X X IF
[16] X X EIF

4. QUANTIFYING THE COSTS OF FUSION
We consider a wireless smart camera network of eight

cameras (Figure 1(a)) that have overlapping FOVs and are
single-hop neighbours. We use the communication graph
shown in Figure 1(b) where error-free communications and
no false measurements are assumed. We consider the 50
trajectories shown in Figure 1(c). Each target is tracked us-
ing the five approaches presented in Section 3. The target
follows the motion model given by [18]:

xk =


xk−1 + vx,k−1δk + axδ

2
k/2

yk−1 + vy,k−1δk + ayδ
2
k/2

vx,k−1 + axδk
vy,k−1 + ayδk

δk + ε

 , (7)

where xk = [xk yk vx,k vy,k δk]T is the state vector at
time k, (xk, yk) is the target position on the ground plane;
(vx,k, vy,k) is the target velocity, (ax, ay) is the target ac-
celeration, δk is the time step between consecutive measure-
ments and ε is the time uncertainty that models synchronisa-
tion errors among cameras. We model (ax, ay, ε) as Gaussian
with zero mean and covariance Q = diag([1 1 0.01]). The
measurement model of node ci is:

zi
k =

[
ui
k

vik

]
=


Hi

11xk +Hi
12yk +Hi

13

Hi
31xk +Hi

32yk +Hi
33

Hi
21xk +Hi

22yk +Hi
23

Hi
31xk +Hi

32yk +Hi
33

+ vk, (8)

where zi
k = [ui

k vik]T is the measurement vector with the
target coordinates in the image plane of the node ci, H

i

is its homography matrix that converts the ground-plane
coordinates to the image plane of ci and vk is the measure-
ment noise independently modelled for each camera as a
zero-mean Gaussian with covariance R = diag([5 5]]). The
Hi values are taken as

Hi =

 397.2508 95.2020 287280
51.7437 396.9189 139100
0.0927 0.1118 605.2481

.

We use the result (global posterior estimation) available
at FC (centralised), cluster head (dynamic clustering) and
the last node (token passing) for accuracy comparison. For
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Figure 1: Experimental setup. (a) Camera loca-
tions and their field of views (FOV). Dotted red
box: 500×500m area where targets move and ’*’:
the FOV centre; (b) communication graph; (c) tra-
jectories used for evaluation.

flooding, the result is available at all viewing nodes. Sim-
ilarly, for consensus the result is available at all network
nodes and therefore we use their average as the final state
estimate for accuracy comparison. Note that the consensus
estimate converges to the centralised estimate when enough
consensus iterations are used [27]. The accuracy error in all
approaches except consensus is 6.48 ± 2.47 meters as they
perform the same operations (Equation 4). The difference is
where and in what order the sum is computed. In the case
of consensus, the error in the estimate is 7.93± 2.76 meters.
We use two consensus iterations (L = 2, see Equation 6) as
an accuracy-cost compromise. The costs of the five fusion
schemes are summarised in Table 4 and discussed in detail
in the next sections.

4.1 Communication cost
During the fusion process cameras transmit their local

posteriors yi
k|k and Yi

k|k. As the information matrix Yi
k|k

is symmetric, only the upper triangular values are sent to
reduce communication cost. The size of the local posterior
([yi

k|k Yi
k|k]) being fused is 20 scalars.

In centralised fusion, all viewing nodes send the local pos-
teriors to the FC and then the FC sends the global posterior
to all nodes. In flooding, each viewing node sends its local
posterior to all other viewing nodes. After fusion each view-
ing node broadcasts the fusion result (global posterior) to its
neighbourhood. Dynamic clustering sends information flags
to distinguish information for clustering and information for
fusion. Dynamic clustering employs similar communications
for fusion to token passing but requires a different additional
cost for negotiation among neighbours to select the cluster
head. The associated overhead is highly reduced when the
set of viewing nodes does not change (i.e. the cluster mem-
bership does not need to be updated). Negotiations are nec-
essary when adding or removing a cluster member. Once
cluster formation is done, communication involves only the
transfer of local posteriors from members to the head. The
estimated global posterior is sent back to all neighbours.

Token passing has a higher communication cost than dy-
namic clustering because each viewing node queries its neigh-
bours at each time step to identify the next node in AC.
Token passing involves transmitting queries to neighbours,
their replies and partial posteriors to the identified next
node. Hence, all viewing cameras, except the last one in the
AC, perform a minimum transmission of size([yi

k|k Yi
k|k])

scalars (the posterior information). The maximum number
of queries a node in AC transmits depends on its number of



Table 3: The costs of fusion schemes at time k. For simplicity the subscript k is discarded in this table.
Key. Nc: Total number of nodes. Cv: Set of viewing nodes. Nv: Number of viewing nodes (|Cv|). m:
message containing the posterior [y Y]. Ccm(·): Communication cost. Ccp(·): Computation cost. L: Number
of consensus iterations.

Fusion scheme
Availability of
global posterior

Communication cost Computation cost
Fusion Negotiation Fusion Negotiation

Centralised Fusion Fusion centre (Nv + 1)× size(m) – Ccp

( ∑
j∈Cv

yj

)
+ Ccp

( ∑
j∈Cv

Yj

)
–

Flooding All viewing nodes 2×Nv × size(m) – Nv × Ccp

( ∑
j∈Cv

yj

)
+Nv × Ccp

( ∑
j∈Cv

Yj

)
–

Token Passing Last node Nv × size(m) Ccm (findNextNode()) Nv × Ccp (y + y)) +Nv × Ccp (Y + Y)) Ccp (findNextNode())

Consensus All nodes L×Nc × size(m) – L×Nc × Ccp (consensus(m)) –

Dynamic Clustering Cluster head Nv × (1 + size(m)) Ccm (clustering()) Ccp

( ∑
j∈Cv

yj

)
+ Ccp

( ∑
j∈Cv

Yj

)
Ccp (clustering())

Table 4: Average costs of fusion schemes when applied to a camera network in which cameras with overlapping
FOVs are connected (see Figure 1). L: Number of consensus iterations.

Fusion scheme Communication cost (no. of scalars transmitted) Computation cost (no. of scalar operations)

Fusion Negotiation Total Fusion Negotiation Total

Centralised Fusion 64.52 ± 8.36 – 64.52 ± 8.36 24.52 ± 8.36 – 24.52 ± 8.36

Flooding 89.04 ± 16.71 – 89.04 ± 16.71 299.32 ± 63.09 – 299.32 ± 63.09

Token Passing 45.07 ± 8.35 16.57 ± 1.61 61.65 ± 9.93 44.52 ± 8.36 119.83 ± 25.25 164.35 ± 33.58

Consensus (L = 2) 320 ± 0 – 320 ± 0 4960 ± 0 – 4960 ± 0

Dynamic Clustering 46.75 ± 8.77 3.57 ± 1.17 50.31 ± 9.39 24.52 ± 8.36 2.46 ± 1.12 26.98 ± 8.98

neighbours. Token passing requires additional communica-
tion between the last node of AC in the previous time step
and the first node of AC of the current time step when the
last node of the previous AC does not have measurements
in the current time step. If Nv

k is the number of viewing
nodes at time step k, only Nv

k −1 nodes transmit their local
posteriors to the next node in the AC in token passing and
to the cluster head in dynamic clustering. In consensus, all
nodes (viewing and non-viewing) participate in the fusion
thus increasing the communication cost. Consensus has the
highest cost whereas dynamic clustering the lowest.

The fusion schemes can therefore be sorted by decreasing
communication cost as consensus, flooding, centralised fu-
sion, token passing and dynamic clustering.

4.2 Computational cost
In our experiments the average filtering cost of 50 trajec-

tories is 3145.3± 590 scalar operations. We do not consider
this filtering cost in the comparison as it is the same for all
the schemes.

The computation cost of fusion depends on how many
nodes are involved and how much information is fused at
the nodes (Table 4). The centralised fusion scheme has the
lowest cost as only one node, the FC, performs fusion. Con-
sensus is the most expensive as it performs iterative fusion.
Even if only a few cameras are viewing the target, all cam-
eras perform the same operations thus resulting in a high
number of computations in the network. In flooding, only
the viewing nodes perform fusion. Therefore flooding has a
smaller computation cost than consensus. In token passing

only viewing nodes perform fusion. However, token passing
requires a significant number of additional computations to
identify the next node (e.g. based on target-to-neighbours
distance). Each viewing node only fuses the partial poste-
rior received from its previous node in the AC and its local
posterior. Cameras participating in the AC do sequential
fusion where viewing cameras update the posterior. Only
the first (or last) camera of the AC does not perform fusion.
Non-viewing cameras do not perform any tasks. Token pass-
ing has a higher computation cost than dynamic clustering
because each camera has to identify the next node and per-
form fusion. In contrast, for dynamic clustering, once the
cluster is formed and as long as the target does not leave
FOV of at least one of the cluster members, the cluster does
not change. For this reason its negotiation cost is signifi-
cantly smaller compared to that of token passing. Moreover,
in dynamic clustering and centralised fusion, only one node
performs fusion; whereas in token passing, flooding and con-
sensus multiple nodes do the fusion. Centralised fusion and
dynamic clustering differ in the extra computation involved
in identifying the cluster head. The computation cost of
flooding is higher than that of token passing as each view-
ing node fuses all received data from other viewing cameras.

The schemes can therefore be sorted by decreasing compu-
tation cost as consensus, flooding, token passing, dynamic
clustering and centralised fusion.

5. CONCLUSIONS
We discussed five fusion schemes and compared their re-

source requirements (communication and computation) in a



wireless camera network assuming that cameras with over-
lapping field of views can communicate. We combined the
Extended Information Filter with centralised fusion, flood-
ing, token passing, consensus and dynamic clustering for tar-
get tracking with non-linear motion and measurement mod-
els.

While consensus-based fusion involves high communica-
tion and computation costs compared to the other four fu-
sion schemes, consensus provides state estimation at each
node in the network and it is more robust to node failures.
Token passing and dynamic clustering require negotiation
among the nodes. Token passing has significant additional
communication and computation costs as it involves sequen-
tial fusion when each node updates its local posterior.

Our future work will aim at reducing the communication
and computation costs by addressing the stopping criteria of
iterative (consensus) and sequential (token passing) analysis.
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