Performance Evaluation of Tracking for Public Transport Surveillance

J. Orwell, V. Leung, A. Colombo, S. A. Velastin
Digital Imaging Research Centre
Kingston University, London
Objective

- For operators (‘end-users’) of video surveillance systems:
 - It is useful to keep **track** of individuals (or groups of people) in one station, or over the transport network
 - Someone behaving suspiciously
 - Lone woman at night
 - It is sometimes necessary to look at recordings of video surveillance, to find the time and place that an individual entered (or exited) the transport network
- Automatic tracking and recognition methods may be useful
- How can these methods be evaluated, to provide meaningful and useful results to the operators?
Evaluation of Automatic Event Detection

- Detection of events to generate an alert/alarm
 - Left Luggage
 - People exiting through the wrong door
 - Fighting, running
- ROC analysis, precision/recall, F-measure
 - ‘trade-off’ between false positive and false negative
- This provides to the end-user, an estimate of:
 - How many times a day this event type will be missed
 - Frequency of ‘false alarms’ that must be dismissed
Evaluation of tracking methods

Possible metrics for tracking:

- **Accuracy** of track
- **Continuity** of track
- Proportion of total time tracking is **successful**
- Content-based retrieval **metrics** e.g. ANMRR
BUT these do not relate directly to the operator’s priorities:

• How much operator time the proposed method will save?

• How the proposed method will interact with the normal controls to move and switch between cameras?

• How can the operator interact with the system to select from multiple hypotheses?
Operator Evaluation Requirements

From the evaluation, the end-user demands:

- A close correlation with the benefits to the end-user
- An indication of the difficulty of the tracking scenario
- The accommodation of tracking systems that provide multiple hypotheses
- The performance to be evaluated at key way-points (e.g. entry, exits, turnstiles)

The proposal: to measure the performance of a tracking/recognition system, by estimating the reduction in uncertainty (equivalently, gain in information) about a passenger’s whereabouts that it provides.
Representation of a metro network

Hall

Mezzanine

Platforms

Network of stations

Station B

Station A

Station C

Single station
The uncertainty of passenger whereabouts:

Different models:
1. No model: they could be anywhere in the system
 • Location is a continuous random variable across space and time
2. Assume the positions of the n passengers have been detected, and that the target is one of these passengers
 • Location is a discrete random variable in space and time: the passenger is one of the n
3. Some predictions can be made about where the passenger goes, using prior statistics
4. Observations: more information provided by tracking and appearance recognition components
Prior statistics only (1)

Given that a person entered the system at time t_1 station s_i, what is the probability of correctly identifying them, at their exit point?
Prior statistics only (2)

- Probability of correct identification using prior statistics

\[
p(L_2|L_1) = \frac{\theta}{\theta + (n-1)\phi}
\]

The ‘winning’ distribution

- Entropy

\[
H(L_2|L_1) = -p(L_2 = a|L_1 = a) \log p(L_2 = a|L_1 = a) - p(L_2 \neq a|L_1 = a) \log p(L_2 \neq a|L_1 = a)
\]

Right answer Wrong answer

Localisation at exit

Localisation at entrance

Density of other people

Background clutter
Prior statistics + observations

- Provided by recognition algorithms
- Using Bayes’ rule:
 \[p(L_2|L_1, Z) = \frac{p(L_2|L_1) p(L_2|Z)}{p(L_2|L_1) p(L_2|Z) + p(\neg L_2|L_1) p(\neg L_2|Z)} \]

 Can be used to present multiple hypotheses to operators

- Entropy:
 \[H(L_2|L_1, Z) = -p(L_2=a|L_1=a, Z) \log p(L_2=a|L_1=a, Z) \]
 \[-p(L_2\neq a|L_1=a, Z) \log p(L_2\neq a|L_1=a, Z) \]
Experiments

- Examined two entry distributions:
 - Uniform: over three stations
 - Mixture of Gaussians: 2 Gaussians at each of four stations
- Dispersion p.d.f. θ, to simulate choice of destinations and the expected duration of journey:

$$\theta(\alpha_{ij}, \mu_{ij}, \sigma_{ij}, t_2 - t_1) = \begin{cases}
 C \frac{\alpha_{ij}}{\sigma_{ij} \sqrt{2\pi}} \exp \left\{ -\frac{(t_2 - t_1) - \mu_{ij}}{2\sigma_{ij}^2} \right\} & \text{if } (t_2 - t_1) > 0 \\
 0 & \text{Otherwise}
\end{cases}$$

- Ran simulations of up to 100 passengers in the network
- Observations based on earlier work using MPEG-4 Color Descriptors
Sample observations

- Our previous work\(^1\):
 - Examined MPEG-4 descriptors for re-identifying people
 - Used distance between the attributes of the query subject and the other subjects to form p.d.f.s:

Results

Uniform entry distribution

MoG entry distribution

Without measurement: highest uncertainty

The more separated the p.d.f.s the less the uncertainty

Completely separated p.d.f.s: no uncertainty
With 100 people using the network and uncertainty H, the expected number of incorrect identifications is $(2^H-1)/2$.
With tracking information

P(successful tracking) depends on¹:
- Density of people
- Tracker accuracy
- Dimension of measurement space

- Hand-over: Initial confidence in particular individual will dissipate with every handover having non-zero uncertainty
- Combine with appearance-based measurements

Conclusions

- Proposed a metric of a visual surveillance system that can indicate the tracking/recognition performance to an operator
- Information-theoretic approach:
 - Uncertainty of system with prior information only
 - Reduction in uncertainty with side information
 - In the form of appearance-based measurements
Future Work

- Include information provided by tracking in framework
- Perform actual tracking and recognition experiments to compare with theoretical calculations
Acknowledgements

- Funded under CARETAKER project (EU IST 4-027231)
- Thanks to Gruppo Trasporti Torino (GTT) and Agenzia per I Trasporti Autoferrotramviari del Commune di Roma SPA (ATAC) for the permission to use the images from their networks