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Abstract
A rate code assumes that a neuron’s response is completely characterized by
its time-varying mean firing rate. This assumption has successfully described
neural responses in many systems. The noise in rate coding neurons can be
quantified by the coherence function or the correlation coefficient between the
neuron’s deterministic time-varying mean rate and noise corrupted single spike
trains. Because of the finite data size, the mean rate cannot be known exactly
and must be approximated. We introduce novel unbiased estimators for the
measures of coherence and correlation which are based on the extrapolation
of the signal to noise ratio in the neural response to infinite data size. We
then describe the application of these estimates to the validation of the class
of stimulus–response models that assume that the mean firing rate captures
all the information embedded in the neural response. We explain how these
quantifiers can be used to separate response prediction errors that are due to
inaccurate model assumptions from errors due to noise inherent in neuronal
spike trains.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Knowledge of spiking variability is essential to the understanding of neuronal function. At
the cellular level, the characterization of neuronal spike train variability is important for
studying the biophysical mechanisms underlying neural behavior. At the systems level,
spiking variability limits the capacity of a neuron to convey information about a stimulus,
potentially restricting perceptual accuracy. In addition, the nature of spiking variability is
directly related to the neural code.
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92 A Hsu et al

Many models of spiking neurons assume that the deterministic part of the neural
response can be fully characterized by a time-varying rate function (Gabbiani 1996, Johnson
1996, Baddeley et al 1997, Svirskis and Rinzel 2000, Barbieri et al 2001) and it has been
shown that in many sensory systems this time-varying mean rate fully characterizes the
information in neural response (Baker et al 1991, Oram et al 1999). Recent experimental
and computational work has also demonstrated that neurons are capable of a high degree of
spike timing precision (Bair and Koch 1996, Lestienne 2001) and high rates of information
transfer (de Ruyter van Steveninck et al 1997, Reinagel and Reid 2000, Borst and Haag 2001,
Lewen et al 2001). The high spiking precision observed experimentally does not necessarily
violate the rate coding assumption. Most cases of precise spiking observed in sensory systems
have been in response to a stimulus with relatively fast dynamics. In these cases, the reliable
spiking pattern is locked in time relative to stimulus onset and presumably phase locked to
the stimulus dynamics (Theunissen and Miller 1995, Oram et al 1999, Lestienne 2001). These
coding regimes are adequately described by a mean rate function with rapid fluctuations. The
rate coding model, however, is an incomplete description of more complex neuronal response
properties, where spike patterns which are not phase locked to the stimulus can encode specific
stimulus attributes. For example, in the olfactory system of the locust, temporal patterns of
neural activity that are not phase locked to stimulus dynamics have been shown to carry
information on odor identity (Wehr and Laurent 1996).

Under the rate coding assumption, neuronal variability is considered as noise. This
neuronal noise can be characterized by estimating the expected difference between a single
example of neuronal response (a spike train) and its time-varying mean rate function. This
difference can be quantified by calculating the correlation coefficient (CC) between the time-
varying mean response and individual sample spike trains. More generally, the coherence
between sample spike trains and the mean rate will quantify the signal to noise ratio in the
neuronal response as a function of frequency (Brillinger 1975). There are two issues with
the estimation of these quantifiers. First, the presence of noise in high frequencies due to the
spike shapes or the representation chosen for spikes can result in an overestimation of
the coherence and an underestimation of the correlation coefficient. Second and more
importantly, since the actual mean rate is not known, sampling methods must be used to
obtain unbiased estimates of both the correlation coefficient and the coherence. We propose a
simple methodology for these estimations. We use both model neurons and experimental data
to demonstrate that the method converges rapidly and that reliable estimates of correlation and
coherence can be obtained with a relatively small number of trials.

We then show how this methodology can be used to judge the accuracy of models of
stimulus–response functions for single neurons. We have applied our validation methodology
to spectro-temporal receptive fields, a linear stimulus–response model that we have used
extensively in our laboratory. However, our procedure is equally suitable for the validation
of all (including nonlinear) models of stimulus response functions that assume the neuronal
response is entirely described by a time-varying mean firing rate. Spectro-temporal receptive
fields in audition and spatial-temporal receptive fields in vision are linear models often used
to describe the response properties of high-level sensory neurons (Theunissen et al 2000,
2001). Nonlinear models include predictions obtained from neural networks (e.g. Lau
et al 2002) or from specific analytical models (Victor and Knight 1979). To validate these
models of stimulus–response functions, the predicted response must be compared with the
actual response, the time-varying mean firing rate being estimated from real spike data. In
previous studies, this comparison was often quantified using the correlation coefficient or the
coherence between the predicted response and an estimation of the actual response obtained by
averaging the spike data (e.g. Eggermont et al 1983, Dan et al 1996, Theunissen et al 2000).
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Neural noise and model validation 93

However, since the observed response of the neuron is a combination of a predictable or
deterministic response plus noise, an estimation of the actual response by averaging the spike
data will be inaccurate. More recently, methods have been proposed to accurately estimate
the power in the deterministic response using the assumptions of additive and independent
noise (Sahani and Linden 2002). For stimulus–response model validation, this deterministic
power can then be compared to the predictive power. Using similar assumptions, we show
how to estimate the coherence and correlation between the predicted mean firing rate and a
single sample spike train. As long as the neuron’s response to a stimulus can be captured by
its time-varying mean firing rate, the prediction can be validated by comparing these measures
with those obtained between the actual mean firing rate and a single sample spike train. We are
then able to separate prediction errors due to the limitations of the stimulus–response model
function from those due to the intrinsic noise in the response.

2. Correlation coefficient, coherence and coherency

The correlation coefficient, r, measures the linear relationship between two variables, and for
two time-varying signals s1(t) and s2(t), it is often calculated with

r = 〈(s1(t) − s1(t))(s2(t) − s2(t))〉t√
〈(s1(t) − s1(t))2〉t 〈(s2(t) − s2(t))2〉t

, (1)

where the angular brackets and overbar designate expected values taken by averaging over
time.

The coherence, |γ |2, between the two signals s1(t) and s2(t), is given by (Brillinger 1975):

|γS1S2(ω)|2 = 〈S1(ω)S∗
2 (ω)〉〈S∗

1 (ω)S2(ω)〉
〈S1(ω)S∗

1 (ω)〉〈S2(ω)S∗
2 (ω)〉 , (2)

where S1(ω) is the Fourier transform for s1(t) and the angular brackets designate the
expected value obtained by averaging over sections of data: the Fourier components of time
signals s1 and s2 are obtained by windowing the data into multiple sections. Given enough data,
the time window should be chosen to be on the order of the length of correlations between the
two signals. In multi-tapered coherence estimation methods, multiple orthogonal windows are
used for each section resulting in increased robustness of the estimation (Thomson and Chave
1991).

The coherence measures the degree of linear relationship between S1 and S2 at each
frequency ω. It is the generalization of the correlation coefficient for time series and is
effectively the correlation coefficient squared for each frequency component of the two
signals. It is a superior measure to the correlation coefficient because it addresses many
possible scenarios in time series where the correlation coefficient would give an erroneous
description of the linear relationship of the two signals (i.e. when the two signals are related
by a linear filter). For example, the two signals could be linearly related but with a particular
delay resulting in a very low (or zero) correlation coefficient. The correlation coefficient can
also give erroneously high measures of correlations when the two signals have significant
autocorrelation. In that situation, an actual correlation at one given point in time between the
two signals could lead to additional non-independent correlations at later times. Nonetheless,
the correlation coefficient is a simpler measure than coherence, and has been used extensively
in neuroscience. For cases in which there is no delay and in which the autocorrelations of the
signals are small, the two measures will yield very similar results.

The measures of correlation and coherence are affected both by the degree of linearity
between the two signals and by the noise. This relationship is more rigorously described by
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examining the coherence between the two time-varying signals under different conditions.
If the two signals s1 and s2 are linearly related and noise free, their coherence is equal to
1, as demonstrated in the following short proof: if s2(t) = ∫ ∞

−∞ h(t − τ)s1(τ ) dτ ∗(ω), then
S1(ω) = H(ω)S2(ω) (convolution theorem). Thus,∣∣γS1S2(ω)

∣∣2 = 〈S1(ω)H ∗(ω)S∗
1 (ω)〉〈S1(ω)∗H(ω)S1(ω)〉

〈S1(ω)S∗
1 (ω)〉〈H(ω)S1(ω)H ∗(ω)S∗

1 (ω)〉 = 1,

since H(ω) is a constant and can be pulled out of the expected values.
The coherence is less than 1 if the two signals are either nonlinearly related or if the two

signals are linearly related but corrupted by noise. In these cases, the coherence is a function
of the signal to noise ratio of the signals (Marmeralis and Marmeralis 1978). In the general
case, for two noisy signals s ′

1 = s1 + n1 and s ′
2 = s2 + n2, the coherence between s ′

1 and s ′
2 is∣∣γS ′

1S
′
2
(ω)

∣∣2 = 〈S1(ω)S∗
2 (ω)〉〈S∗

1 (ω)S2(ω)〉
〈S1(ω)S∗

1 (ω) + N1(ω)N∗
1 (ω)〉〈S2(ω)S∗

2 (ω) + N2(ω)N∗
2 (ω)〉 < 1.

In a stimulus–response paradigm, we can hypothesize an encoding scenario in which the
neural response, s ′

2(t), is noisy but with a mean, s2(t) that is linearly related to the noiseless
stimulus, s ′

1(t) (i.e. n1(t) = 0), then

∣∣γS ′
1S

′
2
(ω)

∣∣2 = 〈|S1(ω)|2〉
〈|S1(ω)|2〉 + 〈|N2(ω)|2〉

|H(ω)|2
= 〈|S2(ω)|2〉

〈|S2(ω)|2〉 + 〈|N2(ω)|2〉 < 1.

If the neural response is not noisy, and not linearly related to the stimulus then∣∣γS ′
1S

′
2
(ω)

∣∣2 = 〈S1(ω)S∗
2 (ω)〉〈S∗

1 (ω)S2(ω)〉
〈S1(ω)S∗

1 (ω)〉〈S2(ω)S∗
2 (ω)〉 < 1,

and if the neural response is both noisy and not linearly related to the stimulus then:∣∣γS ′
1S

′
2
(ω)

∣∣2 = 〈S1(ω)S∗
2 (ω)〉〈S∗

1 (ω)S2(ω)〉
〈S1(ω)S∗

1 (ω)〉〈S2(ω)S∗
2 (ω) + N2(ω)N∗

2 (ω)〉 < 1.

In all three cases the coherence between the stimulus and the neural response will be less
than 1. To separate the nonlinear encoding situation from the noisy neural response situation,
estimations of the neural noise, n2, need to be obtained. We will show how to estimate the
neural noise and validate both linear and nonlinear stimulus–response models of neurons under
the time-varying mean rate coding assumption. To validate the stimulus–response models we
will calculate the coherence, not between the stimulus and the response, but between the
predicted response obtained from the model and a single spike train. This coherence will
then be compared to the coherence between a single spike train and the actual time-varying
mean firing rate. This latter coherence effectively quantifies the neural noise. If the two
coherences are equal, one can conclude that the proposed stimulus–response model describes
the response property of the neuron. If a linear stimulus–response model is used, then the
degree of discrepancy between the two coherences quantifies the degree of nonlinearity in the
actual stimulus–response function.

The coherence can also be obtained from the correlation function calculated in the time
domain. The correlation function, R(τ), measures the variance of the product between two
signals with a time lag of τ :

RS1S2(τ ) = 〈s1(t)s2(t + τ)〉t , (3)

where the angular brackets mean the average across time t. The Fourier transform (FT) of
R(τ) is given by

FT
{
RS1S2(τ )

} = 〈S∗
1 (ω)S2(ω)〉 (correlation theorem),
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where we now average across the windowed segments of data. Therefore, the coherence
between S1 and S2 can be written as

∣∣γS1S2(ω)
∣∣2 = FT

{
RS1S2(τ )

}
FT

{
RS2S1(τ )

}
FT

{
RS1S1(τ )

}
FT

{
RS2S2(τ )

} .

A time series measure of coherence can also be obtained in the time domain by taking the
inverse Fourier transform (IFT) of the correlation function between the two signals normalized
by the square root of the product of the autocorrelation functions. This measure is called the
coherency and is given by

γS1S2(τ ) = IFT


 FT

{
RS1S2(τ )

}
√

FT
{
RS1S1(τ )

}
FT

{
RS2S2(τ )

}

 ,

where τ is a time delay. In addition to quantifying the degree of linear relationship between
s1 and s2, the coherency also shows the phase relationship or, equivalently, the overall
deterministic delay between the two signals. Note that the coherency at delay time zero
is generally not equal to the correlation coefficient. The two measures will be equal only if
the signals have zero mean and if the autocorrelation functions are delta functions.

Correlation and coherency are defined between two signals that are functions of time.
Spike data can be represented in the time domain as a sum of discrete time delta functions.
(Each time bin will have either 1 or 0 for spike or no spike.) The resolution of the discrete
time should be chosen to preserve the order of spike arrival times, i.e. no more than one spike
in each time bin. For our calculations we chose a discrete time resolution of 1 ms. Under our
assumptions that neural information is conveyed in a time-varying mean firing rate, it is useful
to estimate spike trains to be smoother functions of time by convolving the spike train with a
smoothing window. Subsequent data processing results will depend on the size and shape of
the smoothing window. While smoothing spike trains is a useful pre-processing step for the
calculation of CC, the calculation of coherence does not require this smoothing, as explained
with further details in the next section.

3. Quantifying neural noise with correlation and coherence

The correlation coefficient and coherence can both be used to quantify the neural noise in
spike trains when the signal is assumed to be the time-varying mean firing rate. Under that
assumption, the noise in rate-coding neurons is the difference between a single spike train and
the time-varying mean rate. Since the raw spike train is a sum of delta functions, the neural
noise calculated in this fashion often has broadband energy with significant amounts of energy
at high frequencies where signal power is relatively small. This characteristic neural noise
spectrum is due to the discrete nature of spikes and the small variations in spike timing. In
these situations, calculating the CC without smoothing the neural responses will result in very
low values since all frequencies will be weighted equally in the calculation. In order to reduce
the effect of high-frequency noise in the estimate of the CC, the data can be low-pass filtered
with a smoothing window. The choice of window can have strong effects on the CC measure.
Windows that are too large will yield values of CC arbitrarily close to 1 because in the limit
of an infinite sized window, the smoothed signals approach constant values in time. Windows
that are too small will yield arbitrarily small CCs due to the confounding presence of the
high-frequency noise mentioned above. As we will describe in more detail below, an optimal
window can be found when the CC is used to quantify the goodness of fit of the proposed
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stimulus–response functions for the neurons. In such situations, the appropriate time scale of
the smoothing window can be obtained by only smoothing the neural response. The predicted
response from the stimulus–response function is not smoothed and therefore determines the
appropriate time scale of the mean response signal: the resulting smoothing time window will
take into account the amount of prediction power relative to response noise power at different
frequencies.

In contrast to the CC, the coherence is a function of frequency which naturally separates
signal from noise. Therefore, the spike trains do not need to be smoothed and are left in their
original time representation, a sum of discrete delta functions. The resolution of discrete time
chosen to represent the spike train does determine the coherence function’s Nyquist frequency,
the highest frequency at which signal power can be detected. However, by choosing a small
enough time resolution (e.g. 1 ms), coherence power of neuronal data will be almost zero
or largely noise well before the Nyquist frequency limit. A more critical choice, with a
similar effect to that of a smoothing window, is the choice of a cutoff frequency above which
the estimated coherence can be disregarded and small positive values attributed entirely to
sampling error. Analogous to the choice of smoothing window for the CC calculation, one
wants to choose a cutoff which keeps all frequencies at which there are significant signal
dynamics and which neglects all frequencies that are mostly corrupted by noise. Again,
there is the risk of cutting out too much signal power, or including too much noise. We
suggest finding the lowest frequency at which lower bound estimates of coherence equal zero,
and setting coherence values equal to zero from this point on. Lower and upper bounds on
coherence can be obtained by using a jack-knife method (Thomson and Chave 1991).

The coherence is a function of frequency, and it can be useful to collapse this function into
a number that summarizes the overall strength of correlation and effectively obtain a single
measure akin to the CC. One possibility is to calculate the average coherence by integrating
over all relevant frequencies. In its discrete formulation, the overall linear correlation could
then be obtained by averaging all values of the coherence over the desired frequency range.
Equivalently, invoking the discrete form of Parseval’s theorem, the sum of the coherency
squared would yield the same result:

M∑
i=1

(γ (τi))
2 = 1

M

M∑
i=1

γ 2(fi),

where M is the number of frequency bins or time bins used in the fast Fourier transform (FFT).
If the upper frequency is not bounded and if the signal is corrupted with high-frequency noise,
then this overall measure would approach zero as the upper frequency (or Nyquist limit)
increases. This has the same effect as making the smoothing window arbitrarily small in the
calculation of the correlation coefficient.

A second measure of overall coherence is to calculate a quantity, which we call the normal
mutual information defined as follows:

I = −
∫ ∞

0
log2(1 − γ 2(ω)) dω, (4)

where γ 2(ω) is the coherence as a function of frequency. If the coherence in this formula
is between a signal and another function that is the signal plus additive noise, the integral
in equation (4) is related to Shannon’s mutual information, given certain conditions. First,
both signal and noise are assumed to be stationary. Second, both the signal and the noise
are Gaussian. Under these conditions, the normal mutual information equals the mutual
information, and thus the name. If the mean rate is Gaussian but the noise is not, equation (4)
gives a lower bound estimate on the mutual information. Conversely, if the mean rate is not
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Gaussian and the noise is, the same equation can be used to estimate the channel capacity, an
upper bound on mutual information (Shannon and Weaver 1963, Borst and Theunissen 1999).
Because of the discrete nature of spike trains, neural noise usually has a probability distribution
that is far from Gaussian. However, if the mean firing rate of the neuron is Gaussian, a lower
bound on the mutual information can be established. This can be useful when data limitations
prevent reasonable estimations of mutual information in spike trains using a direct method
for estimating the mutual information (Strong et al 1998). In the case that neither is normal,
nothing can be said in terms of upper or lower bounds on mutual information. However, in all
cases, the normal mutual information quantifies the noise power level and can be used as an
alternate measure to the correlation coefficient or the average coherence.

4. Estimating the coherence and CC for neural data

In this section, for conciseness, we provide equations using the coherence and not the CC.
However, the following examples of estimating coherence can be applied analogously to
estimations of the CC squared. This is because the coherence is precisely the squared CC for
each individual frequency component of the signals and the properties of uncorrelated noise
are identical in time and frequency for stationary signals: by definition n(t) is uncorrelated
with a(t) if and only if 〈a(t)n(t + τ)〉t = 0 for all τ or equivalently 〈A(ω)N(ω)〉 = 0
for all ω.

The calculation of the coherence is done in the frequency domain. Since we assume
that the noise is uncorrelated with the mean rate, we can divide the response power, R2,
into a deterministic part, the power of the actual mean rate, A2, and the power of the neural
noise, N2. If the second-order statistics are stationary, we then have for each frequency, ω:
R2(ω) = A2(ω) + N2(ω), where for notational simplicity, we use R2(ω) = 〈R(ω)R∗(ω)〉 and
similarly for A2 and N2.

In experiments, the actual mean rate is not known but, by averaging responses over
multiple trials, one can obtain a post-stimulus time histogram (PSTH) that will converge to
the real rate in the limit of infinite trials. If we call the PSTH obtained with M trials, RM , we
then have

R
2
M(ω) = A2(ω) + N2(ω)/M.

The noise power in RM is reduced by a factor, M, because, as long as A captures the
deterministic part of the response, noise, by definition, will be independent from trial to trial.
The coherence between the actual mean rate and the noise corrupted response, γ 2, can also be
thought of as a normalized measure of the signal to noise A2(ω)

N2(ω)
(Marmeralis and Marmeralis

1978)

γ 2
AR(ω) = 〈R(ω)A∗(ω)〉〈R∗(ω)A(ω)〉

〈A(ω)A∗(ω)〉〈R(ω)R∗(ω)〉 = A2(ω)

A2(ω) + N2(ω)
. (5)

Following the nomenclature of Borst (Haag and Borst 1997, Borst and Theunissen 1999), we
call the above quantity the expected coherence when R is a single spike train.

We will show that a robust measure for the expected coherence shown in equation (5)
can be obtained by calculating the coherence directly from the PSTH. Since the coherence
between the actual rate and the PSTH is given as

γ 2
ARM

(ω) = 〈RM(ω)A∗(ω)〉〈R∗
M(ω)A(ω)〉

〈A(ω)A∗(ω)〉〈RM(ω)R
∗
M(ω)〉 = A2(ω)

A2(ω) + N2(ω)/M
,
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we then have

γ 2
AR =

γ 2
ARM

γ 2
ARM

+ M
(
1 − γ 2

ARM

) . (6)

With equation (6), we can calculate the expected coherence (between one spike train and the
actual mean rate) directly from the PSTH. Equation (6) yields the same results as averaging
the coherence with mean rate obtained from individual spike trains. It also has comparable
convergence properties with a number of spike train trials. Thus, equation (6) does not offer
us anything new except saving computational time as the number of trials becomes large.
However, equation (6) serves as a stepping stone for the case described next, where the mean
rate is unknown.

To verify the validity of our approach and to estimate how well it estimated the expected
coherence as a function of data size, we implemented a spike train model where we could
specify the actual mean firing rate to be an arbitrary function of time. We modeled the
stochastic aspect of the neuronal response by generating spike trains with point process
statistics with gamma orders 1 (Poisson) and 3. Gamma processes are a specific class of
point processes, defined by a varying mean rate and a gamma order constant. The higher the
gamma order, the less variable the point process. The results of the coherence calculation
using equation (6) for such a model neuron are shown in figure 1. We found that our
estimate of the expected coherence converged rapidly with the number of trials. As expected,
the more reliable gamma order 3 neuron shows greater coherence than the Poisson neuron.

The small values of expected coherence, shown in the middle panels of figure 1, result
from taking the coherence between the underlying mean rate, a smooth function of time, and
a single realization of the stochastic point process with that rate, a particular spike train. In
other words, a single spike train is a poor representation of the actual time-varying mean firing
rate. In order to obtain a good representation of this mean firing rate, neural systems must
average across redundant neurons with similar time-varying mean firing rates. As indicated
by the PSTH coherence, by averaging over as few as ten trials of spike trains (or ten redundant
neurons), the coherence with the mean rate goes up significantly (figure 1, upper panels).
Therefore, the spike train responses converge relatively quickly to the time-varying mean rate.

Cortical neurons show wide range variance versus mean firing rate noise behavior but are
for the most part well modeled with Poisson statistics (Shadlen and Newsome 1998, Kara et al
2000). Mammalian peripheral visual neurons (Kara et al 2000) and visual neurons in the fly
(de Ruyter van Steveninck et al 1997, Borst 2003) are remarkably more reliable than Poisson.
Avian auditory forebrain neurons are, for the majority, well described by a Poisson process.
However, a small fraction of neurons (8/185) are better described by a gamma process of
order 2 or greater (Hsu and Theunissen, unpublished observations).

Equation (6) can be used for spike train modeling purposes when the actual mean rate
function is known. For data obtained from an experiment, the actual rate function is unknown.
Estimating the actual rate function to be the PSTH leads to positive biases in the coherence
because the individual spike trains will be more correlated with the PSTH than with the actual
rate function. Alternatively, one can estimate the actual rate from a PSTH from which the
test spike train has been deleted. Other possibilities include implementing a bootstrap or any
similar re-sampling technique. These methods, however, are computationally intensive for
long data sets. Instead, we propose the following solution: estimate the expected coherence
directly from the data composed of M trials by calculating the coherence between two PSTHs,
each obtained from M/2 different trials.

R
2
1,M/2(ω) = A2(ω) + N2(ω)2/Mand R

2
2,M/2(ω) = A2(ω) + N2(ω)2/M . The coherence

between these two PSTHs is
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Figure 1. (A) Expected coherences estimated from the PSTH as a function of the number of trials
with known mean rate. The expected coherence between a single spike train and its time-varying
mean firing rate, γ 2

AR , can be estimated from the coherence between a PSTH of M trials and the
mean rate, γ 2

ARM
. The PSTHs were obtained from spike trains modeled with a Poisson process

(left panels) and with a less noisy third-order gamma process (right panels). The results for γ 2
ARM

estimated with different numbers of trials (10, 20, 40, 60, 80, 100) are shown on the top panels. The
estimated coherences, calculated with equation (6), γ 2

AR , are shown in the middle panels. The lines
obtained for different numbers of trials overlap completely demonstrating the robustness of the
estimation even for a small number of trials. The bottom panels show the normal mutual information
as a function of the number of trials. The dashed line indicates the value estimated with 1000 trials.
The dotted lines are two standard deviation error bars formed from jack-knifing the coherence.
In these simulations, the spike trains were generated from a random 0–25 Hz band limited
Gaussian mean rate function. The coherence cutoff occurred at 65 Hz. (B) Reliable estimates
of the expected coherence are obtained with a small number of trials, converging as quickly and
reliably as taking the average coherence of individual spike trains with the mean rate function.
The calculations are from the same two model spike train sets as in (A). The top panel shows
coherences of ten individual spike trains with the known mean rate. The middle panel shows
coherence averages with different numbers of trials. The normal mutual information is shown in
the bottom panel.

γ 2
R1,M/2R2,M/2

(ω) = 〈R1,M/2(ω)R
∗
2,M/2(ω)〉〈R∗

1,M/2(ω)R2,M/2(ω)〉
〈R1,M/2(ω)R

∗
1,M/2(ω)〉〈R2,M/2(ω)R

∗
2,M/2(ω)〉 = A2

A2 + 4N2

M
+ 4N4

M2A2

. (7)

We then get an estimate of the expected coherence, given by (appendix A):

1

γ 2
AR

− 1 = 1

2

(
−M + M

√
1

γ 2
R1,M/2R2,M/2

)
. (8)

With this method, the expected coherence can be estimated with one simple calculation. We
validated this approach both for a real neuron’s responses and for modeled spike trains that
had mean rates equal to those estimated from the real neuron’s PSTH. The real neuron was
the H1 visual interneuron of the fly. The real neural spike trains were obtained in response
to a randomly drifting grating (Borst 2003). Figure 2 shows the convergence of different
types of coherence estimates for data from the two model neurons as well as the H1 neuron.
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Figure 2. Estimates of expected coherence when the actual mean rate is unknown, as a function of
the number of trials. The calculation was performed for three cases: (A) model spike trains using a
Poisson process; (B) model spike trains using a gamma order 3 process; and (C) for data obtained
experimentally from the H1 neuron of the fly visual system (Borst 2003). The model spike trains
were generated to have the same time-varying firing rate as was estimated from the PSTH of the
fly data. The top panels in each case show the normal mutual information (left-top) obtained by
estimating the expected coherence (right-top) using two PSTHs, each with half the total number
of trials, calculated with equation (8). Reliable estimates can be obtained with a very small number
of trials. The middle panels show expected coherence and normal mutual information estimates
when the mean rate is replaced by the PSTH that excludes the spike train used to estimate the
noise. In this case, the calculation results in a negative bias. The bottom panels show the estimates
when the mean rate is replaced by the PSTH without deleting the trial spike train. This calculation
method results in severe overestimates. Note the different scale of normalized information in
the bottom panel for each case. The dashed line for the model data shows the normal mutual
information estimated with 1000 trials of model data. The gamma order 3 model is a better fit to
the real data, and hence its normal information values are more similar to the real data than that of
the Poisson model.
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Neural noise and model validation 101

Plotted as a function of the number of trials used are coherence estimates for each data set
using equation (8) (top panels), using the PSTH with a deleted trial as the mean rate function
(middle panels) and using the entire PSTH as the mean rate function (bottom panels). The left
panels show the estimated normalized information while the right panels show the estimated
coherence function. It can be seen that equation (8) provides reasonable unbiased estimates
of the expected coherence with as few as twenty to forty trials. Using the PSTH as the mean
rate function results in large positive biases. Using the PSTH with the trial deleted results in
negative bias.

Sometimes it is useful to obtain the coherence between spike trains and some function
other than the actual mean, as described in the following section on neural stimulus–response
model validation. The coherence between a spike train R and any arbitrary rate function B is
given by

γ 2
BR(ω) = 〈R(ω)B∗(ω)〉〈R∗(ω)B(ω)〉

〈B(ω)B∗(ω)〉〈R(ω)R∗(ω)〉 = |AB|2
B2(A2 + N2)

. (9)

Again, the coherence between trial R and B, γ 2
BR , can be obtained from the coherence between

a PSTH of M trials, RM and B, γ 2
BRM

. As previously, the power in the PSTH with M trials

is equal to: R
2
M(ω) = A2(ω) + N2(ω)/M . Thus, we have for the coherence between RM

and B:

γ 2
BRM

(ω) = 〈RM(ω)A∗(ω)〉〈R∗
M(ω)B(ω)〉

〈B(ω)B∗(ω)〉〈RM(ω)R
∗
M(ω)〉 = |AB|2

B2
(
A2 + N2

M

) . (10)

It can be seen that the ratio γ 2
BR

/
γ 2

BRM
= γ 2

AR

/
γ 2

ARM
. That is the ratio between the coherence

of M trials with B and the coherence of one trial with B is the same as the ratio between
the coherences of M trials and one trial with the actual mean rate. In the real experimental
situation where the actual mean rate is unknown, the ratio γ 2

AR

/
γ 2

ARM
is shown in appendix B

to be

γ 2
AR

γ 2
ARM

=
1 +

√
1
/
γ 2

R1,M/2R2,M/2

−M + M
√

1
/
γ 2

R1,M/2R2,M/2
+ 2

, (11)

where γ 2
R1,M/2R2,M/2

is the coherence of the two halves of the PSTH as mentioned before. As in

the case when the actual mean rate is known, this calculation can also be done by averaging
the coherence of each spike train with the function B. However, again, the use of equation (11)
reduces computation time and reduces numerical artifacts due to the smoother nature of a
PSTH versus a single spike train.

5. Validating stimulus–response models

A useful application of our coherence and CC estimation is the validation of stimulus–
response models for single neurons under the time-varying rate coding assumption.
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A stimulus–response model attempts to map neural stimuli to a neuronal response. These
models can include both static nonlinearities, such as saturation, or dynamic non-linearities,
such as adaptation. The stimulus–response model is validated by the quality of its predictions
of neural responses to novel stimuli (i.e. using stimulus–response data that were not used to
fit the model parameters). The goodness of fit of this predicted response is quantified by
comparing it with the actual response of the neuron. In the case where the neural response
can be described by a time-varying mean firing rate, the rate predicted by the model would be
compared with the actual rate of the neuron. Note that this time-varying mean rate assumption
assumes additive noise in a neuron’s response, but does not place any restrictions on the nature
of the stimulus–response model. It only requires that the model (linear or nonlinear) predicts
a time-varying rate as the neuronal response to stimuli.

In practice, actual mean firing rate responses can only be estimated from PSTHs
constructed from limited size noisy spike data. Until recently, researchers have mostly
validated the stimulus–response models using the CC and coherence between predicted
rates and actual mean estimated from the PSTH (e.g. Eggermont et al 1983, Dan et al 1996,
Theunissen et al 2000, 2001). It is not clear whether deviations from unity in these CC and
coherence values arise from inaccuracies of the stimulus–response model’s predicted rates
or from the inaccurate estimate of the actual mean rate from the noisy PSTH. A solution is
to not compare the predicted rate with the actual rate directly. Instead we use our method
(equation (8)) to estimate the expected CC between a spike train and its actual mean rate
without explicitly estimating the mean rate. Because of the noise in the neuronal spike train
this expected CC will be less than 1. We then also estimate the expected CC between a spike
train and the predicted rate from the model. If the predicted rate is exactly equal to the mean
rate, the two expected CCs (spike train with actual rate and with predicted rate) should be
identical. In other words, the model fully describes the stimulus–response function of the
neuron, if the ratio between these two values equals 1.

We can use both coherence and the CC to quantify the goodness of fit of model predictions.
First, we calculate the expected coherence or CC between each spike train and the inferred
mean rate in the validation set, using equation (8). These can be thought of as the ceiling values
for the coherence and CC that we then obtain from the predictions of the stimulus–response
model. Because neural data are inherently noisy, these values are often far from unity. We
then compare these ceiling values to the coherence or CC values that are calculated between
individual spike trains and the time-varying mean rate predicted by the model. For that second
calculation, we use equation (11) with B equal to the predicted rate function. The closer the
predicted rate to the actual mean rate, the closer the ratio of these two sets of CCs (CC ratio)
and coherence values (coherence ratio) will be to unity.

As mentioned above, the calculation of the CC requires a choice of a smoothing window.
We use the following procedure to choose a smoothing window in a principled fashion. First,
we calculate the CC for a wide range of windows. For the calculation of the CC inherent in
the spike data, both halves of the PSTH are smoothed with the same window. Thus, as the two
halves are continually smoothed, they will approach a constant mean value in time, and their
CC will approach 1. For the second calculation, involving equation (11), only the spike trains
are smoothed and the predicted mean rate is not. Thus, the CC between the spike trains and
predicted mean will reach a peak value and then decrease as the smoothing window increases.
We take note of two CC values, one at the maximum CC ratio, and one at a constant smoothing
window. The constant smoothing window is imperative for the comparison of CCs across
different cells since the absolute quality of fit as described by CCs and CC ratio depends
on the smoothing window. A good choice for the fixed window for an ensemble of cells
would be given by the average window of the maximum CC ratios obtained in the data set.
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Neural noise and model validation 103

Alternatively, one might want to report CC ratios for a reasonable range of time windows in
order to compare data sets obtained in different laboratories and different systems.

6. An example linear model: the STRF

Spatio-temporal receptive fields (STRFs) are one type of stimulus–response model. STRFs
are linear filters used to estimate the stimulus–response characteristics of neurons. Our
method of estimating STRFs uses a generalized linear regression formula that is normalized
for autocorrelations in the stimulus (Theunissen et al 2001). In this section, we will apply the
model validation techniques described above to quantify the goodness of fit of the predictions
obtained from STRFs in our laboratory. Note, however, that the same techniques can be
applied to validate nonlinear stimulus–response models.

We first applied our methods of STRF validation to the hypothetical idealized situation
of a perfectly linear neuron. We chose an arbitrary auditory STRF and a set of natural sound
stimuli, which consisted of twenty different zebra finch songs. We used this STRF to define the
stimulus–response transfer function of our idealized linear model neuron. We then obtained
the time-varying mean firing rate of our model neuron by convolving the spectrograms of our
zebra finch songs with this STRF. From this mean rate, we created model spike train data
by generating multiple trials of spike trains using a Poisson process. Then, we proceeded as
with real neural data, and estimated the model neuron’s STRF from our stimuli and model
data using the methodology described in Theunissen et al (2001). Figure 3 shows the original
STRF that we used for generating model data, the STRFs estimated from these data and
estimates of the validation measures. These estimates are shown using 10, 50 and 100 trials
of model data. The non-normalized coherence and CC values are much less than 1. As
mentioned above, these small CC and coherence values result from comparing the mean firing
rate with a single spike train. On the other hand, the coherence and CC ratios for this perfectly
linear model neuron are very close to 1 and indicate the accuracy of the model. The CC and
coherence ratios are not exactly 1 because the predicted rate is obtained from an estimated
STRF, which deviates slightly from the original STRF used to generate the data. The noise in
the predicted STRF arises from the limited data size. The validation measures improve with
data size as expected. For comparison, we also show in figure 3 the CC obtained between the
prediction and the PSTH, which is the common validation technique (dot-dashed line). The
estimate of the goodness of fit is significantly lower because of the noise in the PSTH. As
can be seen, the noise in the PSTH significantly lowers the CC and requires longer smoothing
time windows. Since the actual information transmitted is proportional to both absolute
value of the CC and the inverse of the smoothing time window, the common validation
technique underestimates the predictive power of the model when used with limited data
size.

Finally, we applied the same procedures to the validation of an STRF calculation
performed on actual auditory neurons of zebra finches. In these experiments ten spike trials
were obtained in response to 20 different zebra finch songs, each approximately 2 s long. For
this neuron, the maximum CC ratio is approximately 0.8 and the coherence ratio is above 0.5
for a large frequency range showing that the linear STRF is capable of capturing a significant
portion of the neural response. For this neuron, the original validation measure based on the
correlation between predicted rate and PSH is very close to the new measure of CC ratio (dot-
dashed line of figure 4). The CC original validation measure yields smaller values than the
CC ratio at the shorter smoothing windows, where more noise remains in the PSTH. At longer
smoothing windows, less PSTH noise remains, but more signal is also removed by smoothing.
Most of the neurons in our data have much smaller CC and coherence ratios than the neuron
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Figure 3. STRFs estimated from model data from a linear model neuron, with 10, 50 and
100 trials. The top image shows the STRF used to generate the mean rate function for the linear
model neuron. The second row of images shows the STRFs estimated from the model data.
The plots in the next two rows show the different coherence measures used in the validation
of the STRF and the plots in the bottom two rows show the equivalent CC measures as a function
of the width of the smoothing window. In the third row for the coherence plots and in the fifth row
for the CC plots, the solid lines show the expected coherence and CC, respectively, between spike
trains and their mean rate, γ 2

AR , calculated with equation (8). The dashed lines show the coherence
and CC, respectively, between the spike trains and the predicted mean rate, γ 2

BR̄
, calculated by

estimating γBR̄M
from the data and then using equation (11). The ratio of these two coherences

or CC values is shown, respectively, in the fourth and sixth rows. In the CC plots, the ‘×’
marks the smoothing window at which the ratio between the two CCs is maximum. This is the
optimal smoothing window for this particular data set. The ‘◦’ marks the CC ratio at the constant
smoothing window of 21 ms, which our lab uses to compare across data sets. As expected, the
coherence ratio or CC ratio is close to 1 for this linear but noisy model neuron. The CC between
the smoothed PSTH and the predicted rate is shown as a dot-dashed line on the same plots as the
CC ratio. This CC is significantly less than 1, and reflects error in estimating the actual mean rate
from the PSTH as well as inaccuracies of the estimated STRF.
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Figure 4. The STRF and the corresponding validation plots as shown in figure 3, calculated for a
real neuron from the auditory midbrain of a zebra finch. The coherence ratio shows that, for this
particular neuron, the linear STRF model captures slightly more than half of the response variance
at low frequencies. The square of the maximum CC ratio (0.752 � 0.56) obtained with a smoothing
window of 50 ms gives the same result. The squared CC for a given smoothing window is related
to the coherence averaged for the low frequencies up to a frequency cutoff approximately given
by 1/(2 × width of the smoothing window), or 10 Hz for a 50 ms window. As in figure 3, the
CC between the smoothed PSTH and the predicted rate is shown with a dot-dashed line on the
same plot as the CC ratio. For this neuron, the noise in the PSTH estimation is relatively small
compared to the noise in the STRF as can be seen by the only small difference between the CC
ratio and the CC between predicted rate and PSTH. The noise in PSTH estimation is greater at
higher frequencies, as seen by the greater difference at smaller smoothing windows, where high
frequencies are preserved.

example in figure 4. In figures 5 and 6, we compare the CC ratio measure to the original
validation measure for a representative subset of neurons in the avian forebrain (analyzed in
Theunissen et al 2001). In general, the CC ratios obtained are higher than the CC between
the predicted and PSTH used in the original validation method but these values are still much
smaller than 1. As shown by the modeling example above, even with only ten trials, the CC
and coherence ratios for linear neurons should be near unity. We can therefore conclude that
our linear STRF model is unable to completely characterize the neuronal response for any
of the high-level auditory neurons in our data set. Our validation techniques enabled us to
separate the influence of noise from the limitations in our stimulus–response model.

N
et

w
or

k 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
Pr

ev
en

tio
n 

R
es

ea
rc

h 
C

en
te

r 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



106 A Hsu et al

song tones
0

0.5

1

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

CC spike train with mean rate
CC spike train with predicted rate

song tones
0

0.5

1

song  tones
0

0.5

1

song  tones
0

0.5

1

CC Pre  vs PSTH
CC Ratio

Best Smoothing Window Constant Smoothing Window

V
al

id
at

io
n 

M
ea

su
re

(A)

(B)

Figure 5. (A) Expected CC between a spike train and the mean firing rate and expected CC
between a spike train and the predicted rate obtained from the STRF of a representative set of avian
auditory forebrain neurons. For each neuron STRFs were estimated using bird-song and pure tone
pips stimuli, as explained in more detail in Theunissen et al (2000) and Theunissen et al (2001).
The left panel shows these values for the best smoothing window (resulting in the highest CC)
obtained independently for each neuron. The right panel is for a constant smoothing window of
21 ms for all neurons. (B) Validation of the linear STRF model using CC ratio (the ratio of the CCs
shown in panel A). This proposed validation method is compared to the CC between PSTH and
the predicted rate. The same population of neurons as in (A) is used. The new validation numbers
are slightly higher and reflect the portion of the neurons’ responses that can be described by the
linear STRF model. In general, the STRF is able to predict about half of the neuron’s response.
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Figure 6. Scatter plot of CC ratio (proposed validation quantifier) versus CC between PSTH
and predicted rate (original validation method) for the predictions obtained from the STRFs for
a representative population of avian auditory forebrain neurons. For all neurons, the proposed
validation measures are higher than the previously used measures and are more accurately
quantifying the fraction of a neuron’s response that is captured by the stimulus–response model.
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7. Conclusion

The presence of neural noise combined with limited data size makes the separation of the
deterministic from the stochastic part of a neural response a difficult task. In particular, under
the assumptions of rate coding, the deterministic part of the response cannot be obtained
reliably by simple averaging of experimental data with fewer than 100 trials. To address
this issue, we have proposed a re-sampling method for the estimation of the coherence and
correlation coefficient that uses the mean rate implicitly by taking advantage of the properties
of independent and additive noise. With this method we are able to quantify the signal to
noise ratio in a neural response by the coherence or CC between a single spike trial and the
actual mean rate. When the neuronal response is not described by a rate code, these measures
would not apply. However, under the rate coding assumptions, these quantifiers provide
a measure of the reliability in neural responses and a measure of the information capacity
of the neural channel when there is not enough data to calculate the mutual information
(Strong et al 1998). When comparing the overall coherence amongst different neurons and
stimuli, it is convenient to summarize the coherence with one number, such as the normal
mutual information. If enough data are available, this normal mutual information can be
compared to the direct mutual information and assessments can be made about the normality
of the response distribution and the descriptiveness of the rate coding assumption. The same
methodology can also be used to validate neural response models. The ratio of coherence and
CCs provide bounded measures that separate the effects of limited noisy data from the effects
of limitations in the model itself.
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Appendix A. Estimation of coherence from PSTH

The coherence of a spike train and signal is given by

γ 2
AR(ω) = 〈R(ω)A∗(ω)〉〈R∗(ω)A(ω)〉

〈A(ω)A∗(ω)〉〈R(ω)R∗(ω)〉 = A2(ω)

A2(ω) + N2(ω)
.

For two halves of a PSTH R
2
1,M/2(ω) and R

2
2,M/2(ω) where R

2
1,M/2(ω) = A2(ω) + N2(ω)2/M

and R
2
2,M/2(ω) = A2(ω) + N2(ω)2/M , the coherence between them is

γ 2
R1,M/2R2,M/2

(ω) = 〈R1,M/2(ω)R
∗
2,M/2(ω)〉〈R∗

1,M/2(ω)R2,M/2(ω)〉
〈R1,M/2(ω)R

∗
1,M/2(ω)〉〈R2,M/2(ω)R

∗
2,M/2(ω)〉 = A2

A2 + 4N2

M
+ 4N4

M2A2

(ω from now on will be assumed).
Define

β = N2

A2
.

So now we have

β = 1

γ 2
AR

− 1 and γ 2
R1,M/2R2,M/2

= 1

1 + 4β

M
+ 4β2

M2

.
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Solving for β:

(
γ 2

R1,M/2R2,M/2
− 1

)
+

(
4

M
γ 2

R1,M/2R2,M/2

)
β +

(
4γ 2

R1,M/2R2,M/2

M2

)
β2 = 0

β = 1

2

(
−M + M

√
1

γ 2
R1,M/2R2,M/2

)
= 1

γ 2
AR

− 1.

Appendix B. Ratio of coherence with M trials to one trial with arbitrary function

Again, define

β = N2

A2
.

So now we have

β = 1

γ 2
AR

− 1 and
β

M
= 1

γ 2
ARM

− 1.

From appendix A we have

β = 1

2

(
−M + M

√
1

γ 2
R1,M/2R2,M/2

)
= 1

γ 2
AR

− 1,

which means that

γ 2
AR = 2

−M + M
√

1
/
γ 2

R1,M/2R2,M/2
+ 2

.

Using the relationship between β and β/M , we also have

γ 2
ARM

= 2

1 +
√

1
/
γ 2

R1,M/2R2,M/2

.

Thus the ratio:

γ 2
AR

γ 2
ARM

=
1 +

√
1
/
γ 2

R1,M/2R2,M/2

−M + M
√

1
/
γ 2

R1,M/2R2,M/2
+ 2

.
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