ICA 2007

ICA 2007
7th International Conference on
Independent Component Analysis
and Signal Separation

London, UK        9 - 12 September 2007

Banner showing images of London
- Home
- Committee
- Call for Papers
- Submission
- Info for Presenters
- Dates
- Programme
- Tutorials
- Keynotes
- Papers
- Registration
- Accommodation
- Venue
- Maps
- Arrival
- Travel Tips
- Links
- Contact

Paper No: 142

A Robust Complex FastICA Algorithm Using the Huber M-Estimator Cost Function

Author(s): Jih-Cheng Chao, Scott Douglas


In this paper, we propose to use the Huber M-estimator cost function as a contrast function within the complex FastICA algorithm of Bingham and Hyvarinen for the blind separation of mixtures of independent, non-Gaussian, and proper complex-valued signals. Sufficient and necessary conditions for the local stability of the complex-circular FastICA algorithm for an arbitrary cost are provided. A local stability analysis shows that the algorithm based on the Huber M-estimator cost has behavior that is largely independent of the cost function's threshold parameter for mixtures of non-Gaussian signals. Simulations demonstrate the ability of the proposed algorithm to separate mixtures of various complex-valued sources with performance that meets or exceeds that obtained by the FastICA algorithm using kurtosis-based and other contrast functions.

Last Updated: 14-Aug-2007   Please read our disclaimer