ICA 2007

ICA 2007
7th International Conference on
Independent Component Analysis
and Signal Separation

London, UK        9 - 12 September 2007

Banner showing images of London
- Home
- Committee
- Call for Papers
- Submission
- Info for Presenters
- Dates
- Programme
- Tutorials
- Keynotes
- Papers
- Registration
- Accommodation
- Venue
- Maps
- Arrival
- Travel Tips
- Links
- Contact

Paper No: 108

Discovering Convolutive Speech Phones using Sparseness and Non-Negativity

Author(s): Paul O'Grady

Abstract

Discovering a representation that allows auditory data to be parsimoniously represented is useful for many machine learning and signal processing tasks. Such a representation can be constructed by Non-negative Matrix Factorisation (NMF), which is a method for finding parts-based representations of non-negative data. Here, we present an extension to convolutive NMF that includes a sparseness constraint. In combination with a spectral magnitude transform of speech, this method extracts speech phones (and their associated sparse activation patterns), which we use in a supervised separation scheme for monophonic mixtures. Furthermore, we demonstrate the superiority of sparse convolutive NMF over convolutive NMF, when applied to a supervised monophonic speech separation task.

Last Updated: 14-Aug-2007   Please read our disclaimer