ICA 2007

ICA 2007
7th International Conference on
Independent Component Analysis
and Signal Separation

London, UK        9 - 12 September 2007

Banner showing images of London
- Home
- Committee
- Call for Papers
- Submission
- Info for Presenters
- Dates
- Programme
- Tutorials
- Keynotes
- Papers
- Registration
- Accommodation
- Venue
- Maps
- Arrival
- Travel Tips
- Links
- Contact

Paper No: 25

Morphological diversity and sparsity in blind source separation

Author(s): Jerome Bobin, Yassir Moudden, Jalal Fadili, Jean-Luc Starck

Abstract

This paper describes a new blind source separation method for instantaneous linear mixtures. This new method coined GMCA (Generalized Morphological Component Analysis) relies on morphological diversity. It provides new insights on the use of sparsity for blind source separation in a noisy environment. GMCA takes advantage of the sparse representation of structured data in large overcomplete signal dictionaries to separate sources based on their morphology. In this paper, we define morphological diversity and focus on its ability to be a helpful source of diversity between the signals we wish to separate. We introduce the blind GMCA algorithm and we show that it leads to good results in the overdetermined blind source separation problem from noisy mixtures. Both theoretical and algorithmic comparisons between morphological diversity and independence-based separation techniques are given. The effectiveness of the proposed scheme is confirmed in several numerical experiments.

Last Updated: 14-Aug-2007   Please read our disclaimer