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ABSTRACT 

 
A novel technique for detecting single and multi-note ornaments is 
presented. The system detects audio segments by utilising an onset 
detector based on comb filters (ODCF), which is capable of 
detecting very close events. In addition, a novel method to remove 
spurious onsets due to offset events is introduced. The system 
utilises musical ornamentation theory to decide whether a 
sequence of audio segments correspond to an ornamentation 
musical structure. In order to evaluate the results, a database of 
signals produced by different players using the three different 
instruments has been utilised. The results represent a step forward 
towards fully automating ornamentation transcription.  
 
Index Terms— Music, acoustic signal analysis 
 

1. INTRODUCTION 
 

Ornamentation techniques are utilised for giving more expression 
to the music by altering or embellishing small pieces of a melody. 
There is no general agreement in the use of specific symbols to 
transcribe ornamentation, where its notation and understanding has 
considerably varied across centuries [1]. There are many different 
types of ornaments; where grace notes, appoggiaturas, mordant, 
trills, turns and rolls are only a few examples.  
Numerous approaches perform pitch detection, including models 
based on detecting the periodicity of the time or frequency domain 
[2], auditory modelling [3], knowledge modelling [4] or data 
representations [5]. However, the detection of ornamentation 
remains an open-field of research. In [6], a single-note 
ornamentation detection system customised to the characteristics 
of the tin whistle was presented. The system is limited to the 
detection of just cuts and strikes. A method that uses independent 
component analysis (ICA) to detect piano trills is presented in [7].  
A more general approach to detect different types of 
ornamentation is presented here. The model utilises a very accurate 
onset detector [8], which detects very close events that typically 
occur when ornamentation is utilised. By defining a set of rules 
that describe different types of ornamentation, the transcription of 
these ornaments is performed. The presented ornamentation 
transcription system is applied to the context of Irish traditional 
music, in which ornamentation plays a very important role. This 
represents a very challenging context, since the sound duration of 
the ornaments in Irish traditional music is very brief. In this case, 
ornaments modify the note they embellish, and only one note will 
be finally heard [9]. However, by defining a different set of 
ornaments, the approach could be applied to any type of music. 

Section 2 describes the different blocks that comprise the 
ornamentation detector. In Section 3, the ornamentation detector is 
applied to the context of Irish traditional music by transcribing its 
most common ornaments. Next, a set of results that evaluate the 

ornamentation detector followed by a discussion of the obtained 
results is provided is Section 4. Finally, conclusions regarding the 
ornamentation transcription system are presented in Section 5. 

 
2. SYSTEM DESCRIPTION 

 
The different parts of the ornamentation transcription system 
presented here are depicted in Figure 1. Firstly, the onset detection 
block is described, from which a vector of onset candidates is 
obtained. Next, spurious onset detections due to offset events are 
removed. Following this, audio segments are formed and divided 
into note and ornamentation candidate segments. Next, the pitch of 
the audio segments is estimated. Finally, single and multi-note 
ornaments are transcribed in Section 4. 
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Figure 1: Ornamentation transcription system 

2.1. Onset detection based on comb filters (ODCF) 
 
Existing onset detectors utilise energy [10, 11], phase [12] or 
combined phase and energy signal properties [13, 14] to generate 
an onset detection function (ODF). In contrast, the onset detection 
system presented in [8], denoted as ODCF, utilises the harmonicity 
changes of the signal by using a bank of FIR comb filters, which 
also have a harmonic type of magnitude response. The filterbank 
utilises 12 comb filters, which delays cover the 12 semitones of 
octave 4. FIR comb filters can be efficiently implemented in the 
time domain. Thus, the harmonicity measure of [8] applied to a 
signal x(n) by using a comb filter with delay D will be given by: 
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where m and N are the frame number and its length respectively. 
Next, as in [8], the squared difference between the harmonicity 
measures for each delay Di of the filter bank is performed for each 
pair of consecutive frames, which generates an ODF:  
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The method relates the harmonicity detection to the energy of the 
frame being analysed. This is suitable for detecting slow onsets, 
and provides a more accurate onset estimation time than other 
approaches. The approach is robust for dealing with amplitude 
modulations, e.g. if the energy of the signal changes between 
successive frames (but not its harmonicity) the onset detection 



function (ODF) remains stable. In addition, the method is robust to 
frequency modulations that gradually occur in the signal, since the 
signal harmonicity does not change considerably between frames. 
Considering Figure 2, where a signal excerpt containing a roll 
played by a flute is depicted in the top plot. The ODF of the signal 
generated by utilising the ODCF is depicted in the bottom plot. It 
can be seen that the ODCF provides a distinctive peak at the 
location of the  new events in the signal.  
Since the harmonicity measure is calculated based on the energy 
content of the frame, small frame lengths such as N = 1024 or long 
hop sizes such as L = 1024 samples, can be oversensitive to signal 
changes. Thus, the pair L/N = 512/2048 samples provides a good 
compromise between robustness and sensitivity to signal changes.  
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Figure 2: B5 roll - D5 - B5 sequence played by a flute 

Generally, ODFs are smoothed by using a low-pass filter in 
order to avoid multiple spurious onset detections [10]. However, in 
the case of rapid ornaments, the use of smoothing will merge the 
successive ornamentation and note onsets into one unique peak. 
Consequently, no smoothing operation is performed in the 
presented ornamentation detector.  

Peaks in the ODF that reach a given threshold are selected as 
onset candidates. In order to set the threshold, a method based on 
the standard deviation is presented. This measure provides an 
estimation of how the values of a signal deviate from the mean of 
the signal [15]. When an onset occurs, its value in the ODF is 
significantly prominent. Thus, the onset peak value deviates from 
the mean of the ODF more than its standard deviation. By using a 
sliding rectangular window length L centred at each frame number 
m of the ODF, the threshold will dynamically vary as follows: 

∑∑
+

−=

+

−=

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+=

12/

2/

2/112/

2/

2 1 where)(1)(
L

Li

L

Li
Wi

L
WWWi

L
WmT  (3)  

where Wi are the values of ODF within the rectangular window 
The use of the sliding window provides a dynamic threshold, 

which value varies according to the statistical content within the 
window. However, in very slow tunes such as “slow airs” in 
traditional Irish music, the separation between consecutive onsets 
can be long. In this case, the threshold will provide low values 
which produce spurious detections in that region. This limitation is 
overcome by setting a static and a dynamic component in the 
threshold, which values correspond to the mean of the entire ODF 
and to the standard deviation of the window respectively: 
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where M is the length of the ODF  

This threshold structure resembles to the method utilised in 
[12, 16], which is based on dynamic median measures of the 
ODCF. However, in [12, 16] the static component δ is set by 
obtaining onset detection results for different δ values. Then, the 
results are compared against a database of hand labelled onsets. 
Finally, the δ that obtains the best detection results is chosen. By 
contrast, Equation 2’s thresholding method is fully automated. 

Onset detectors [10, 11] centred a sliding window length 
50ms at each onset candidate. The most prominent candidate is 
maintained, while the remaining onset candidates are assumed to 
belong to the same onset and so are discarded. In the presented 
ornamentation detector, both ornamentation and note events can be 
separated by less than 40 ms, and using such window will cancel 
one of the candidates. Consequently, no window is utilised to 
combine onset candidates in this approach. 
 

2.2. Offsets cancellation 
 
The offset part of a signal also contains unexpected harmonicity 
changes, which can cause spurious onset detections. This can be 
seen in Figure 3, where the middle plot depicts the ODF generated 
by the ODCF of the tin whistle signal depicted in the top plot. 
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Figure 3: slow offset-onset transition 

This problem is solved by applying the following method; firstly, 
the existence of an energy decrease peak E1 successively followed 
by an energy increase peak E2 is first investigated. This is the case 
in Figure 3, where the bottom plot shows the energy variation of 
the top plot signal. Next, if two peaks P1 and P2 arise in the ODF 
within the above mentioned transition, the first peak P1 is 
considered to be an offset candidate. 
However, this scenario can also arise in the case of three notes 
connected in legato, where the second note in time order has lower 
energy content than the other two notes. In this case, a correct 
onset will be estimated as a spurious onset. 
In order to differentiate between the two scenarios, a measure of 
the noise content of the audio signal is calculated by using a 
method described in [17]. First, the energy E1 and E2 of the 
frequency range [1:3000] Hz and [18000:21000] Hz is respectively 
obtained. If a note has been played, it is expected that E1 has a 
much higher value than E2. Thus, by performing No = E1/E2, a 
measure of the noise content of the signal is obtained.  
The method is applied to the following two regions within the 
audio signal: 

Pr

P1 P2

E1 

R2 R1 

E2



1. R1: region comprised in between P1 and P2 peaks in the 
ODF (see Figure 3), which provides a No1 value.  

2. R2: region comprised by E1 and the previous onset peak 
in the ODF (Pr in Figure 3), which provides the No2 value. 
Finally, the noise measure of both No1 and No2 regions are 
compared in order to investigate if the value of No1 is significantly 
greater than No2: 

1*2 NoTdNo >         (5) 
where Td is set to a high value If the condition is fulfilled, the 
offset represented by P1 is removed as an onset candidate. 
 

2.3. Audio segmentation 
 
As in [18], every onset candidate onn is matched to the next onset 
candidate in time order onn+1 to form audio segments Sgn = [onn, 
onn+1]. Next, a table of audio segments is formed, where the 
second and third columns denote the beginning and ending of the 
audio segments. As an example, Table 1 shows the audio segments 
of the signal depicted in Figure 2. 
n onn (sec)  onn+1 (sec) Sgn P(n) SNOr MN Or 
1 6.235  6.42 note B5  Roll 
2 6.42 6.467 orn C#6 cut Roll 
3 6.467 6.606 note B5 cut Roll 
4 6.606 6.653 orn A5 str Roll 
5 6.653 6.873 note B5 str Roll 
6 6.873 7.07 note D5   
7 7.07 … note B5   

Table 1: Table of audio segments of Figure 2 (top plot) 

Next, according to time duration, the audio segments are split into 
note and ornamentation segment candidates as follows: 

Te   on - on if          note  Sg
Te  on - on if     orn         Sg
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where Te is the longest expected ornamentation time for an 
experienced player, which has been analytically set to Te= 70ms. 
The Sgn segment type is shown in the fourth column of the audio 
segments table, as it can be seen in Table 1. 
 

2.4. Segment pitch detection 
In order to obtain the pitch of the audio segments, a similar method 
to [Brown 92]’s is utilised. Following this, the fundamental 
frequency estimation is refined by using parabolic interpolation 
[18]. The pitch of each audio segment Sgn is shown in the fifth 
column of Table 1, and is denoted as P(n). 
 

3. ORNAMENTATION TRANSCRIPTION 
 
The system detects single-note ornaments (SNO) by utilising 
musical ornamentation theory [9] to establish a set of rules to 
decide whether a note has been played with SNO. Finally, multi-
note ornaments (MNO) are formed by combining the estimated 
SNO and pitch information. 
 

3.1. Single-note ornaments transcription (cuts and strikes) 
 

• The cut momentarily increases the pitch. By considering 
Figure 2 example, it can be seen that the second and third 
segments in Table 1 are an ornamentation and a note segment. In 
addition, P(2)= C#6 is higher than P(3) = B5. Consequently, B5 

has been ornamented with a cut in C#6, and both segments 
together form a cut segment. 

• The strike separates two notes of the same pitch by 
momentarily lowering the pitch of the second note. A strike 
ornament that separates two notes is also present in Figure 2 
example. From Table 1, it can be derived that the fifth segment is a 
B5 note, which is separated from another B5 note by using the 
strike represented by the fourth segment. 
 

3.2. Multi-note ornamentation transcription 
 

Cranns and rolls are formed by combining ornamented and 
unornamented slurred notes of the same pitch: 

• The roll is formed by a note followed by a cut segment, 
and a strike segment. By considering Table 1, it can be seen that 
the combination of a B5, a cut segment and a strike segment form 
a roll, where the three note segments have the same pitch B5. The 
short roll version removes the first unornamented note.  

• The crann segment structure is similar to the roll. The 
difference lies in the use of only cuts to ornament the notes. The 
short crann removes the first unornamented note 

• The shake is a four notes ornament formed by rapid 
alterations between the principal note and a note a whole or a half 
step above it [9]. It commences with the three ornaments and 
finishes with the principal note. An example of a shake can be seen 
Figure 4 (top plot), where an excerpt of a tin whistle tune is 
depicted. In the bottom plot, the ODF generated by the ODCF is 
also depicted. By obtaining the pitch of those segments, a sequence 
of three ornaments (F#5, E5, F#5) and the principal note again E5 
is obtained, which corresponds to a shake ornament. 

2 2.1 2.2 2.3 2.4 2.5 2.6
-0.4

-0.2

0

0.2

0.4

Time (seconds)

A
m

pl
itu

de

2 2.1 2.2 2.3 2.4 2.5 2.6
0

0.1

0.2

0.3

0.4

0.5

F#5
E5 F#5

E5 D5 

Time (seconds)

O
D

C
F

 
Figure 4: example of a shake played by a tin whistle 

4. RESULTS AND DISCUSSION 
 
In order to analyse the performance of the ornamentation 
transcriptor, two different tests have been performed. The tunes 
were selected from CD recordings as well as from informal live 
session recordings. First, a set of tin whistle excerpts is utilised in 
the evaluation. Next, the robustness of the algorithm in detecting 
ornaments produced by other instruments, including the flute and 
the pipe, is also investigated. In both cases, both SNO and MNO 
are transcribed. 

The accuracy of the detection is obtained by calculating two 
different measures pGP and acc. The value of pGP (percentage of 
good positives) is obtained by dividing the number of correct 
detections by the total of ornaments in the database. A correct 
single-note ornamentation detection should be separated by less 



than 50ms from the commencement of the ornamentation, which 
has been previously hand-labelled. In the multi-note ornamentation 
case, a more flexible distance of 200ms is utilised, since two 
different multi-note ornaments will rarely fall within that distance. 
The value of acc is obtained by using the following equation [10]: 

total
FPFNtotalacc −−

=    (7) 

where total, FN and FP are the total of ornaments, false negatives 
(undetected) and false positives (spurious). It should be noted that 
in both cases, the ornament database is smaller than the actual 
notes played, which increases the difficulty of the testing method. 
 

4.1. Test 1: tin whistle signals 
 

The tin whistle database comprises 11 excerpts of Irish traditional 
music played by three different players. 493 notes comprise the 
database, from which 86 were single-ornamented. Also, 22 multi-
note ornaments were played. The results are shown in Table 2. 
 pGP (%) FN FP acc (%) 
Single-Note 63/86 = 73.26 23 11 60.47 
Multi- Note 9/22 = 40.91 13 0 40.91 

Table 2: Orn. detection results for the tin whistle database 

In Table 2, it can be seen that both measures pGP and acc provide 
high percentage results in the single-note ornamentation case. The 
majority of FP errors are due to incorrect cut detections before the 
real onset in the informal live recordings excerpts. These 
recordings have a more noisy nature than the selected CD 
recordings. In addition, a large number of FN errors is detected, 
which is due to repeating strikes. When playing this type of 
ornament on a wind instrument, the only movement of the players 
fingers is to rapidly cover the first uncovered hole without 
interrupting the flow of air [9]. Due to the extreme brevity of the 
strike and the high responsiveness of the tin whistle, strikes can be 
missed (FN error) by the ornamentation detector. Since the strike 
separates the second and third notes of the roll, this error also 
affects the multi-note ornamentation results. 
  

4.2. Test 2: Flute and Pipe signals 
 
A signal database comprised by 7 excerpts of flute and pipe 
excerpts coming from 4 different players is utilised. The database 
consists in 290 notes, from which 36 were single-ornamented. 5 
MNO were also played. The results are shown in Table 3. 
 pGP (%) FN FP acc (%) 
Single-Note 31/36 = 86.11 5 10 58.33 
Multi- Note 4/5 =80 1 0 80 

Table 3  Orn. detection results for the flute and pipe database  

As it can be seen in Table 3, the percentage of pGP in the SNO 
case is also high. As in the tin whistle test, the problem of 
detecting incorrect cuts in noisy parts before the onset is also 
manifested in this evaluation. This has the effect of increasing FP 
and consequently degrading the percentage of acc. The pGP and 
acc measures for the multi-note ornamentation case is also high. 
(80%)  In the multi- ornamentation evaluations, both Test1 and 
Test2 provide a FP = 0. This is explained by the large number of 
conditions required to estimate a correct multi-note detection. 
 

5. CONCLUSIONS 
 

A novel ornamentation detector has been presented, which focuses 
on the accuracy of the onset detection results for slow onsets 
provided by [8]. The system also incorporates a novel thresholding 
method and a novel offset cancellation method. The ornamentation 
detector has been applied to highly ornamented Irish traditional 
music. However, by creating new rules to transcribe the detected 
audio segments, the approach could be configured to detect 
ornaments in other types of music. Thus, ornaments such as grace 
notes, mordent, trills, appoggiaturas and turns can also be detected. 
The system has been evaluated by using two different databases of 
different instruments, players and recording types. Considering the 
difficulty of the task, the results are relatively high in both single 
and MNO. However, some limitations of the approach have been 
identified in Section 5, which warrants future research. 
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