Refining Graph Matching Using Inherent Structure Information
Wenzhao Li, Yi-Zhe Song, Andrea Cavallaro
{wenzhao.li, yizhe.song, a.cavallaro}@qmul.ac.uk

1. Introduction
- Graphs are made up by nodes (vertices) and edges (links)
- Graph matching maps nodes of two graphs G^A and G^B by preserving relative structural relationships, which deals with:
 - non-rigid deformation
 - scale changes
- Graph matching challenges in real-world scenes:
 - unreliable nodes (do not necessarily have true matches)
 - false correspondences due to inaccurate descriptors
 - insufficient constraints of IQP (Integer Quadratic Programming) model [1]

2. Proposed Approach
- (Input) graph matching result $\chi \rightarrow$ (output) substructures \hat{G}^A_{sub} and \hat{G}^B_{sub} that:
 - comply with the graphs’ inherent structure
 - encode rich information describing the objects of interest
- Mining global and local information as refinement constraints:
 - global affinity $S_i(.)$ in the active association graph G:
 - connectivity $S_i(.)$ and stability $S_i(.)$. Inspired by [2]
 - local consistency $S_i(.)$ in two matched graphs \hat{G}^A and \hat{G}^B:
 - common linkage information within neighbours. Inspired by [3]

3. Experiments
- Comparison with SM (Spectral Matching) [4] and RRWM (Re-weighted Random Walk Graph Matching) [5]
- CMU dataset: same object, deformation increases with temporal baseline
 - graph nodes: manually labeled points in images

<table>
<thead>
<tr>
<th>Method</th>
<th>Precision</th>
<th>Recall</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>0.5114</td>
<td>0.5507</td>
<td>0.5303</td>
</tr>
<tr>
<td>Refined SM</td>
<td>0.6743</td>
<td>0.4843</td>
<td>0.5637</td>
</tr>
<tr>
<td>RRWM</td>
<td>0.7955</td>
<td>0.8566</td>
<td>0.8249</td>
</tr>
<tr>
<td>Refined RRWM</td>
<td>0.8556</td>
<td>0.8562</td>
<td>0.8559</td>
</tr>
</tbody>
</table>

- CMU dataset: different objects, various poses with different background
 - graph nodes: MSER (Maximally Stable Extremal Regions) feature points in images

<table>
<thead>
<tr>
<th>Method</th>
<th>Precision</th>
<th>Recall</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>0.3236</td>
<td>0.7677</td>
<td>0.4553</td>
</tr>
<tr>
<td>Refined SM</td>
<td>0.6459</td>
<td>0.5794</td>
<td>0.6108</td>
</tr>
<tr>
<td>RRWM</td>
<td>0.3283</td>
<td>0.7620</td>
<td>0.4589</td>
</tr>
<tr>
<td>Refined RRWM</td>
<td>0.6583</td>
<td>0.6046</td>
<td>0.6303</td>
</tr>
</tbody>
</table>

4. Conclusion
Promising direction to tackle graph matching in real-world scenes:
- analyse the individual graph structure
- explore graph’s own characteristic and hidden constraints

Acknowledgement
This work is supported by the joint scholarship from CSC (China Scholarship Council) and QMUL (Queen Mary University of London)

References