Why Risk Models Should be Parameterised

William Marsh, william@dcs.qmul.ac.uk

Risk Assessment and Decision Analysis Research Group

Acknowledgements

• Joint work with

George Bearfield

Rail Safety and Standards Board (RSSB), London

Aims

- Introduce idea of a 'parameterised risk model'
- Explain how a **Bayesian Network** is used to represent a parameterised risk model
- Argue that a parameterised risk model is
 - Clearer
 - More useful

Outline

- Background
 - Risk modelling using fault and event trees
 - Bayesian networks
- An example parameterised risk model
- Using parameterised risk model

RSSB's Safety Risk Model

- 110 hazardous events
 - Fault and event trees
 - Data from past incidents
- UK rail network
 - Average
- Used to monitor risk for rail users and workers
- Informs safety decision making

Bayesian NetworksP(A | B).P(B) = P(B | A).P(A)Bayes' Theorem

- Uncertain variables
- Probabilistic dependencies

Bayesian Networks P(A | B).P(B) = P(B | A).P(A)Bayes' Theorem

Example Parameterised Risk Model

Falls on Stairs

- Falls on stairs common accident
- 500 falls on stairs / year (2001)
- Influenced by
 - stair design & maintenance
 - the users' age, gender, physical fitness and behaviour
- Injuries
 - Non fatal: bruises, bone fractures and sprains ...
 - Fatal injuries: fractures to the skull, trunk, lower limbs

Fault Tree

	Failures	Description
	TripHazard	Condition or design of stair covering
		creates a trip hazard
	InAttention	Lack of attention to possible trip
		hazard
	Imbalance	Imbalance causes sliding force
		between foot and step
	Slip	Lack of friction causes foot to slip
	Misstep	Foot not placed correctly on stair
		Missten
	GATE 3	GATE 4
	\mathbf{i}	
TripHaza	urd I	nattention Imbalance
		\smile \bigcirc

Events and Outcomes

Events and Outcomes

Lose	Holds	Falls	Break	
Footing	sideways			
	sideways			— Vertical
			yes	— Forward-short
		forward		
Events	States		Desc	cription
Lose	initiating			
Holds	Holds, drop	os, The j	person catch	es the railing, fall
	sideways.	forwa	ards or back	ward, or
	·	overł	balances side	eways into the
		stairv	well.	-
Falls	Forward,	Perso	on falls forw	ards or backwards
	backward			
Breaks	Yes, no	Perso	on breaks the	eir fall at a landing

Can the Model be Generalised?

- Logic of accidents same (nearly) but numbers vary with design
- Reuse logic
- Estimating probabilities once only

Factors – Risk Model Parameters

Factors with discrete values

Factor	Description	Values
Age	Age of the person.	young / old
Design	An open staircase has not sidewall. A straight	open / straight /
	staircase is a single flight, not broken by landings.	landings
Length	The length of the stairs, as determined by the	short / long
	number of steps.	
Pitch	The pitch of the staircase.	gentle / steep
Surface	The material exposed on the floor.	wooden / concrete /
		carpeted
Speed	The speed with which the person descends the	normal / fast
	stairs (before falling).	
Usage	Are the stairs used by a single person at a time	single / many / rush
	('single') or many people or a rush of people?	
Visibility	How easy it is to see the steps. Visibility may be	enhanced / lighted /
	enhanced by contrasting colours of the edge of	poor
	the steps.	
Width	The width of the steps (not the width of the	wide / narrow
	tread).	

Factors to Base Events

• Base event probabilities depend on factors

Age	Age Young		Old	
Speed	Normal	Fast	Normal	Fast
Imbalance=True	0.001	0.002	0.003	0.005

Factors to Events

- Probabilities of event branches depend on factors
- ... also on earlier events

Event Tree Bayesian Network

Accident Injury Score (AIS)

Harm from accident

AgenaRisk see: http://www.agenarisk.com/

Explicit Factors make Clearer Models

• Are there factors in the fault or event tree?

- Reuse of the model
- Modelling multiple scenarios

• Observe (some) factors

• Observe (some) factors

• Observe (some) factors

- Suppose 3 stairs
 - Value of each observed factor

	Design	Length	Pitch	Surface	Vis
CS, Entrance	Landing	Short	Gentle	Carpeted	Poor
CS, Lecture Rooms	Straight	Long	Steep	Wooden	Enhanced
Eng, Bancroft Road	Open	Long	Gentle	Concrete	Lighted

Results – Outcome

- Probability distribution
 - Outcome of a 'stair descent'
 - Hidden 'nothing happens' outcome

Results – Accident Injury Score

Probability

	Accidents Per Year			
AIS	CS	CS	Eng	
	Entrance	Lecture	Bancroft	
		Rooms	Rd	
1-2	0.153	0.518	4.864	
3-4	0.016	0.066	0.920	
5	0.006	0.029	0.397	
6	0.001	0.003	0.096	

System Risk

- University has many stairs in different buildings
- How to assess the total risk?
- Solution 1
 - Used parameterised model for each stairs
 - Aggregate results
- Solution 2
 - Model 'scenario' in the Bayesian Network
 - Scenario: each state has shared characteristics e.g. geographical area

Scenario

 Each value is a 'scenario' for which we wish to estimate risk

Scenario

 Each value is a 'scenario' for which we wish to estimate risk

Imprecise Scenarios

- Imagine three departments
 - Factors do not have single value
 - Probability distribution over factor values

	Age	Design	Length	Pitch
Maths	Young: 80%	Landing: 80%	Short: 50%	Gentle: 25%
	Old: 20%	Straight: 15%	Long: 50%	Steep: 75%
		Open: 5%		
Law	Young: 70%	Landing: 70%	Short: 75%	Gentle: 75%
	Old: 30%	Straight: 30%	Long: 25%	Steep: 25%
		Open: 0%		
Arts	Young: 60%	Landing: 50%	Short: 30%	Gentle: 50%
	Old: 40%	Straight: 50%	Long: 70%	Steep: 50%
		Open: 0%		

Exposure

- Some scenarios more common
- Distribution of 'stair descents'

Scenario	Maths	Laws	Arts	Total
Daily descents	3000	1500	2000	6500
Proportion	46%	23%	31%	

Exposure

- Some scenarios more common
- Distribution of 'stair descents'

Using the System Model

• Use 1

- Select a scenario
- ... like the parameterised model
- Scaled by total system events

AIS	Accidents per Year					
AIS	Maths	Law	Arts			
1-2	2.722	0.859	1.559			
3-4	0.332	0.096	0.187			
5	0.129	0.037	0.078			
6	0.019	0.004	0.009			

AIS

Using the System Model

• Use 2

- Whole system risk,
- ... weighted by exposure for each scenario

Parameterised Risk Models in Practice

Improving Safety Decision Making

Better Safety Decision Making

- Safety benefits of improvements
 - Existing models only support system-wide improvements
- Detection of local excess risk
 - E.g. poor maintenance in one area
 - Requires risk distribution (not average)
 - ... variations in equipment type and condition
 - ... procedural and staffing variations

Risk Profile: Sector and Network

Investigation found the cause to be:

'the poor condition of points 2182A at the time of the incident, and that this resulted from inappropriate adjustment and from insufficient maintenance'

Summary

- Parameterised ET + FT
 - Using Bayesian Networks
 - Factors made explicit
 - Clearer and more compact
- Reuse of risk model
- Risk profiles
 - Guide changes to reduce risk
 - Challenge of including more causes

Summary

- Parameterised ET + FT
 - Using Bayesian Networks
 - Factors made explicit
 - Clearer and more compact
- Reuse of risk model
- Risk profiles
 - Guide changes to reduce risk
 - Challenge of including more causes

Thank You