
CAS	London	CPD	Day	 	 February	20	

Page 1 of 7	

Practical	Sheet:	OOP	Programming	
This	sheet	is	a	set	of	exercises	for	introducing	OOP	in	Python	using	the	turtle	graphics.	
The	notes	assume	knowledge	of	basic	Python	programming.	Also	available:	

• An	overview	presentation	
• Additional	presentations	(not	used)	on	OOP	features	of	Python	
• A	short	summary	of	OOP	in	python	

All	materials	are	at	http://www.eecs.qmul.ac.uk/~william/CAS-London-2018.html	You	
need	to	download	the	zip	file	of	sample	programs.		
Contents	

1	 Exercise	1:	Using	Objects	..	2	
2	 Exercise	2:	Adding	Attributes	..	3	

3	 Exercise	3:	Multiple	Classes	..	4	

4	 Exercise	4:	Inheritance	..	5	
5	 Exercise	5:	A	Family	Class	..	5	

6	 Appendix:	Turtle	Graphics	Function	Reference	..	6	

	
Turtle	Graphics	
The	exercises	use	the	Python	turtle	graphics	package.	Turtle	graphics	is	a	simple	way	to	
draw	pictures	using	an	on-screen	turtle	(or	cursor)	that	is	navigated	(forward,	left,	
right).	The	turtle	holds	a	pen	than	can	be	lifted	up	to	move	without	drawing.	Full	
documentation	is	https://docs.python.org/3.3/library/turtle.html		
There	is	a	short	cheat	sheet	at	the	end	of	these	notes.	

	

	

CAS	London	CPD	Day	 	 February	20	

Page 2 of 7	

1 Exercise 1: Using Objects
In	this	section	we	focus	on	using	a	class	to	create	objects.	The	aim	is	to	create	multiple	
objects	of	the	same	class	to	reinforce	the	distinction	between	a	class	and	objects.	The	
code	provided	has	two	files:	

1. The	file	face.py	contains	a	Face	class,	which	draws	a	face.	
2. The	drawing.py	file	uses	the	Face	class	to	draw	several	faces.	

	

Exercise	1.1:	Run	the	Program	

The	following	program	is	provided	(slightly	simplified):	
from turtle import *
from Face import Face

start of drawing code

f1 = Face(0, 0)
f1.draw()

f2 = Face(-200, 0)
f2.setSize(80)
f2.draw()

Run	the	example	program.	The	code	creates	two	Face	objects	and	draws	the	faces.		
	

Exercise	1.2:	List	the	attributes	and	methods	
The	Face	class	have	several	attributes.	Some	attributes	are	set	in	the	constructor;	some	
can	be	set	using	a	method.	Read	the	code	carefully	and	complete	the	following	table.	

Attribute	 Parameter	of	
constructor?	

Function	to	set?	

pos	 Yes	 No	
size	 	 Yes	
	 	 	

	

Exercise	1.3:	Make	a	More	Complex	Drawing	

Extend	the	drawing	program	to	draw	more	faces.	Try	to	impress	your	neighbours		
	
Summary:	The	Face	class	is	a	template	for	Face	objects.	We	can	create	several	instances	
of	the	Face	class	(i.e.	Face	objects),	changing	their	size	to	and	position	to	make	our	first	
picture.	It’s	exciting	isn’t	it	and	it	helps	to	reinforce	the	different	between	a	class	and	an	
object	(or	instance	of	a	class).	

	

CAS	London	CPD	Day	 	 February	20	

Page 3 of 7	

2 Exercise 2: Adding Attributes
In	this	section,	we	modify	the	Face	class	used	in	Exercise	1.		

• We	add	a	method	to	be	able	to	set	the	noseSize	attribute.	
• We	add	more	attributes.	For	each	attribute	we	should	

o Initialise	the	attribute	in	the	constructor,	deciding	whether	to	use	a	
default	value	or	to	add	a	value	to	the	parameters	of	the	constructor	

o Decide	whether	to	provide	a	method	to	set	(or	get)	the	attribute	value		

	
Exercise	2.1:	Vary	the	Size	of	the	Nose	
An	attribute	exists	to	vary	the	size	of	the	nose.	However,	there	is	no	way	to	set	it1.	We	
need	to	add	a	method	to	set	the	noseSize.	Do	this	and	update	the	drawing	to	call	it.	

Exercise	2.2:	Vary	the	Hair	Colour	

To	vary	the	hair	colour	we	need	to	add	an	attribute	to	the	Face	class.	
1. Add	an	attribute	in	the	constructor	–	give	it	a	default	value	
2. Create	a	method	to	set	the	constructor	and	update	the	value	
3. Modify	the	function	drawing	the	hair	
4. Enhance	the	drawing	to	draw	faces	with	different	hair	

Draw	faces	with	differ	colour	hair.	
Exercise	2.3:	Vary	the	Length	of	the	Hair	
The	length	of	the	hair	can	be	varied.	The	main	change	is	the	number	of	segments	of	each	
strand	of	hair.	As	the	direction	of	the	drawing	get	near	to	‘south’	(i.e.	a	heading	of	270),	
you	may	prefer	to	stop	the	hair	direction	changing	inwards.	
It	is	suggested	that	you	use	a	small	number	of	lengths,	described	by	words:	e.g.	short,	
normal	,	….	

Here	is	a	possible	solution:	

	
Exercise	2.4:	Other	Differences	
Look	around	the	room	and	make	a	list	of	other	possible	difference.	If	this	were	an	
exercise	for	school	pupils	consider:	

• How	easy	would	it	be	to	create	this	difference?	
• What	programming	principle	would	be	illustrated?	

																																																								
1	If	you	know	that	this	statement	is	not	true,	please	do	not	tell	anyone.	We	will	discuss	the	
disadvantages	of	using	Python	to	teach	OOP	at	the	end	of	the	session.	

CAS	London	CPD	Day	 	 February	20	

Page 4 of 7	

• Would	the	pupils	find	it	motivating?	

	

Summary:	A	class	has	attributes	and	methods.	Although	the	class	is	a	template	for	an	
instance.	This	does	not	imply	that	all	instances	of	the	class	are	the	same.	Another	way	to	
think	of	an	object	is	as	a	box	of	data	values:	the	class	different	objects	have	different	
values	
	

3 Exercise 3: Multiple Classes
In	this	section,	we	create	new	classes.	Our	Face	class	has	become	quite	complex	and	we	
want	to	add	more	features,	so	we	think	that	some	decomposition	would	be	useful.	We	
can	separate	more	complex	feature	of	the	face	into	separate	classes.	
Initially,	only	the	code	organisation	will	change.	Its	function	will	stay	the	same.	

	

Exercise	3.1:	The	Hair	Class	
A	new	version	of	the	Face	class	has	been	provided	that	uses	a	separate	Hair	class.		

Check	each	of	the	following	changes	in	the	Face	class:	
1. Rather	than	having	attributes	‘hairLength’	and	‘hairColour’,	a	face	now	has	a	‘hair’	

attribute.	
2. In	the	constructor	for	the	hair	object,	we	show	which	Face	the	hair	is	in.	Look	at	

how	this	is	done.		
3. It	is	still	possible	to	change	the	hair	colour	etc.	but	now	this	is	done	by	asking	the	

hair	to	change	its	colour.	Look	at	how	this	is	implemented.	
4. When	drawing	the	face,	we	ask	the	hair	to	draw	itself.		

In	the	Hair	class,	look	for	the	following:	
1. The	hair	knows	which	face	it	is	part	of.	What	does	it	use	this	for?	
2. Two	functions	are	used	to	draw	the	hair:	what	are	they?		

Exercise	3.2:	The	Eye	Class	
Since	there	are	two	eyes,	we	can	also	create	a	separate	class	for	eyes.	This	uses	the	same	
principles	as	the	Hair	class	but	is	rather	simpler.	
Make	the	following	changes:	

1. Create	the	new	class,	remembering	to	import	the	Turtle	library	
2. Create	a	constructor.	The	eye	needs	to	know:	

a. Which	face	it	is	part	of	(like	the	Hair)	
b. Which	side	of	the	face	it	is	one	(left	or	right)	

3. Create	a	draw	function,	based	on	the	drawEye	function	from	the	Face	class	but	
adapted	to	use	the	attributes.	

4. Modify	the	Face	class	to	use	the	Eye	class	
a. Remember	to	import	it	
b. In	the	Face	constructor,	create	two	new	‘Eye’	instance	(a	left	one	and	a	

right	one)	

CAS	London	CPD	Day	 	 February	20	

Page 5 of 7	

c. Remove	the	drawEye	function:	adapt	the	Face’s	draw	function	to	ask	the	
two	eyes	to	draw	themselves.	

	

Exercise	3.3:	Making	Eye	More	Elaborate	
Now	that	there	is	a	separate	Eye	class,	we	can	make	eyes	more	variable.	For	example,	
you	could	have	a	colour	attribute.		

4 Exercise 4: Inheritance
In	this	section,	we	introduce	inheritance.	We	use	inheritance	to	create	some	specialised	
faces:	

• A	girl’s	face	
• A	boy’s	face	
• A	man’s	face	
• A	woman’s	face	

	
Exercise	4.1:	The	GirlsFace	Class	

The	GirlsFace	class	is	a	subclass	of	Face.	Other	ways	of	saying	the	same	thing	include:	

• A	GirlsFace	is	a	kind	of	Face	
• GirslsFace	inherits	Face	
• Face	is	super	class	of	GirlsFace	
• GirlsFace	is	a	specialisation	of	Face		

A	GirlsFace	class	has	been	implemented.	Points	to	lookout	for:	

• It	has	it’s	own	constructor,	but	it	must	also	call	the	constructor	of	its	superclass.	
• It	can	call	the	method	of	its	superclass	–	look	at	how	this	is	done.		

	
Exercise	4.2:	Adding	Eyebrows	
A	function	to	draw	eyebrows	has	been	provided	but	it’s	not	used.	Add	it	in,	so	that	a	girl	
has	eyebrows.		

	

Exercise	4.3:	Create	Other	Specialised	Faces	
Based	on	the	GirlsFace,	create	other	specialised	classes.		

5 Exercise 5: A Family Class
A	family	contains	is	a	collection	of	people	(or	Faces).		

• Keep	the	people	in	a	list.	
• Have	a	method	to	add	people	to	the	family	
• Have	a	method	to	draw	the	family	portrait.		

Create	a	family	object	using	the	specialised	face	subclasses	to	get	a	nice	portrait.	You	
could	prompt	the	user	for	information	(e.g.	hair	length,	number	of	children)	or	generate	
some	of	it	randomly.	 	

CAS	London	CPD	Day	 	 February	20	

Page 6 of 7	

6 Appendix: Turtle Graphics Function Reference
The	Python	turtle	graphics	package	has	both	

• A	functional	interface	
• An	object-oriented	interface	

We	will	use	the	functional	interface;	a	few	capabilities	are	not	available	as	a	result.	The	
full	documentation	is	found	in	chapter	23	of	the	Python	standard	library.		

Function	 Description	and	Example	
Move	and	Draw	

forward(),	
backward()	

Move	the	turtle	a	distance:	forward(10)	

right(),	left()	 Turn	by	an	angle:	right(90)	
goto()	 Move	to	an	(x,	y)	position:	goto(10, 50)	
home()	 Move	to	the	home	position:	home()	
circle()	 Draw	a	circle	or	arc.	Examples:	

• circle(100)	–	draw	a	circle	of	radius	100	
• circle(50, 90)	–	draw	an	arc	of	radius	50,	angle	90	

dot()	 Draw	a	dot	with	diameter	&	colour:	dot(20, ‘blue’)
Turtle	Position	

setheading()	 Set	the	direction	of	the	turtle:	setheading(90).	In	standard	
mode,	0	is	East,	90	is	North,	180	is	West	and	270	is	South.	

heading()	 Get	the	heading:	angle = heading()	
xcor(),	ycor()	 Get	the	x	or	y	coordinates:	currentX = xcor()	
distance()	 Calculate	the	distance	from	the	current	position	to	some	point:		

dist = distance(50, 75)	
towards()	 Calculate	the	angle	from	the	current	position	to	the	given	co-

ordinates:	towards(100, 100)		
Pen	and	Turtle	

pendown(),	
penup()	

Put	the	pen	down	/	up.	When	the	pen	is	down,	moving	the	turtle	
draws	a	line.	

pensize()	 Set	the	pen	size:	pensize(10)	for	a	thick	pen.		
isdown()	 Returns	true	if	the	pen	is	up.	
showturtle(),	
hideturtle()	

Show	or	hide	the	turtle.	It	is	faster	to	draw	without	the	turtle	
visible.	(Note:	it	is	also	possible	to	switch	off	animation	altogether)		

pencolor()	 Set	the	pen	colour:	pencolor(‘green’)	
	
	 	

CAS	London	CPD	Day	 	 February	20	

Page 7 of 7	

	

Function	 Description	and	Example	
Filling	and	Clearing	

fillcolor()	 Set	the	fill	colour;	colours	most	easily	entered	as	string	though	
other	formats	supported:	fillcolor(‘blue’).		

filling()	 Test	whether	shapes	being	drawn	are	to	be	filled.	
begin_fill(),	
end_fill()	

These	command	bracket	drawing	commands	in	which	shapes	
should	be	filled.	

reset()	 Reset	everything.	
clear()	 Clear	the	picture	but	do	not	reset	the	turtle.	
write()	 Write	a	text	string:	write(“Hello”)	writes	to	the	current	

position	(which	does	not	change)	and	aligns	the	string	so	that	the	
turtle	is	at	the	left	hand	of	the	string.		

Screen	
bgcolor()	 Set	the	background	colour	of	the	screen:	bgcolor(‘pink’)	
bgpic()	 Set	a	picture	as	the	background,	using	a	file	name.	
screensize()	 Set	the	screen	size	to	e.g.	500	width	and	300	high:	

screensize(500, 300)	
textinput	 Input	text	using	a	dialog:	textinput(“Title”, “Prompt”)	
numinput	 Input	a	number	
window_height,	
window_width	

Get	the	window	height	or	width	

	

	

	

