
A Level Computer Science

Introduction to Functional
Programming

William Marsh
School of Electronic Engineering and Computer Science

Queen Mary University of London

Aims and Claims
•  Flavour of Functional Programming
•  …. how it differs from Imperative Programming

(e.g. Python)

•  Claim that:
•  It is possible to program using functions
•  It is useful!

•  Better understanding of programming

I hope this is
convincing

Only simple examples

How This Session Works
1.  Talk
2.  Do
3.  Reflect
4.  Repeat
5.  …
6.  Stop when times up

Outline
FP Topics
•  A first functions
•  Composing function
•  Lists
•  If time (probably not)
•  Recursion
•  Map, Filter and Fold

Reflections
•  Expressions, statements

and variables
•  Sequence versus

composition
•  How functions work
•  The best language

Challenge problems

Functional Languages?
•  Many programming languages now have

functional features

1958

First Function

bigger a b = if a > b then a else b

Function
name

A Simple Function
•  This function gives the larger of two numbers

Argument

Is defined as …

Layout
•  Like Python, Haskell is layout sensitive
•  The following all work

bigger a b =
 if a > b then a else b

bigger a b =
 if a > b
 then a
 else b

Getting Started with WinGHCi
•  WinGHCi is a shell
•  Use functions interactively

•  Use a text editor to edit the program
•  Notepad++ is better than notepad if you have it

Practical break

Refection 1: Expressions,
Statements and Variables

Expressions and Statement
•  Expression à value
•  Statement à command

•  Python: statements and expressions
•  Haskell: only expressions

The Assignment Statement
•  The most important statement:

•  Update the memory location ‘x’ with its current
value plus 1
•  ‘x’ is a variable

x = x + 1 # This is python

Haskell has no statements
• No assignment
• No variables

Is it possible to program
without variables?

Python program is a sequence
of assignments
• Function may assign, so …
• Expressions are not just

values

No Variables?
•  My Haskell program seems to have variables

•  ‘a’ and ‘b’ a names for values
•  Not memory locations

bigger a b =
 if a > b then a else b

Functions

Maths (and Haskell)
•  Result of a function

depends only on its
arguments

•  Calling a function does
not change anything

•  Calling a function with
the same arguments
always gives the same
result

Python
•  Result of a function may

depend on other variables

•  Calling a function may
change variables

•  Calling a function a
second time with the
same arguments may give
a different result

Function Composition

Composing Functions
•  One way to write bigger3

bigger3 a b c = bigger (bigger a b) c

Pass results to …

Composing Functions
•  Given a functions

•  Predict the results of

double a = 2 * a
square a = a * a

> double (double 5)
> double (square 3)
> square (double 3)

Composing Functions – Example
•  Surface area of a cylinder

circleArea r = pi * r * r
circleCircum r = 2 * pi * r
rectArea l h = l * h

cylinderArea r h =
 2 * circleArea r +
 rectArea (circleCircum r) h

Practical break

Refection 2: Sequence versus
Composition

Python’s Invisible Statement
•  Sequence of assignments

•  Next statements on a new line
•  Many languages: S1 ; S2

x = x + 1 # This is python
y = x * 2
x = 12

… then

… then

Haskell’s Invisible Operator
•  Function application

circleArea r = pi * r * r
circleCircum r = 2 * pi * r
rectArea l h = l * h

cylinderArea r h =
 2 * circleArea r +
 rectArea (circleCircum r) h

apply

apply apply

apply
apply

apply

Decomposition

Python
•  Sequence of statements
•  … with names (functions)
•  Order of memory updates

Haskell
•  Expressions
•  … with names (functions)
•  Argument and results

Functional composition ≠ sequencing of statements

Python’s Other Invisible Operator
•  Function call (application)

def circleArea(r): return math.pi * r * r
def circleCircum(r): return 2 * math.pi * r
def rectArea(l, h): return l * h

def cylinderArea(r, h):
 return 2 * circleArea(r) + \
 rectArea(circleCircum(r), h)

call

call call

call

call

Recursion

Recursion
• Can the definition of a function use the

function being defined.
•  This is known as recursion

•  It can if
•  There is a non-recursive base case
•  Each recursive call is nearer the base case

Recursion – Example
•  A triangle number

counts the number of
dots in an equilateral
triangle (see picture)
•  We can define by:

trigNum 1 = 1
trigNum n = n + trigNum (n-1)

Base case

Recursive; smaller n

Patterns
•  The argument can match a pattern

•  Equivalent to:

trigNum 1 = 1
trigNum n = n + trigNum (n-1)

trigNum n
 | n == 1 = 1
 | otherwise = n + trigNum (n-1)

Pattern

Practical break

Refection 3: How
Functions Work
Comparison with dry running a Python
program

Example Python Program
•  Variables are:
•  mark
•  total
•  min
•  average
•  grade

Enter two marks!
Save minimum!
mark = int(input("Mark 1 > "))!
total = mark!
min = mark!
!
mark = int(input("Mark 2 > "))!
if mark < min:!
 min = mark!
total = total + mark!
!
Calculate average!
average = total / 2!
!
Calculate grade!
if min < 30 or average < 50:!
 grade = "fail"!
else:!
 grade = "pass"!

Dry Running a Program
•  Table has column for each variable
•  Row for each step

Step
Variable

mark total min average grade
1 35
2 35
3 35
4 45
5 80
6 40
7 fail

Memory

Sequence

Rewriting (Reduction)
•  Replace each call to a function by its definition
•  Replace arguments by expressions

trigNum 1 = 1
trigNum n = n + trigNum (n-1)

trigNum 3
 = 3 + trigNum 2
 = 3 + 2 + trigNum 1
 = 3 + 2 + 1
 = 6

Lists

Lists in Haskell
•  Haskell has lists … similar to Python
•  LISP
•  First functional language
•  ‘List processing’

•  Example: [1, 2, 3]
•  Equivalent to:

1 : 2 : 3 : []

Cons Empty list

Useful List Functions
Function Description Example
elem Member of list Main> elem 4 [1,2,3,4,5]

True
Main> elem 4 [1,3,5]
False

head First element of list Main> head [2,4,6,8]
2

tail List without first
element

Main> tail [3,5,7,9]
[5,7,9]

++ Concatenate two
lists

Main> [1,2,3] ++ [7,9]
[1,2,3,7,9]

Ranges
•  Similar to Python

[1 .. 10]

First Last

List Recursion
•  Many functions on lists are defined recursively
•  Base case: empty list
•  Recursive case: apply to tail of list

-- length of a list
len [] = 0
len (x:xs) = 1 + len xs Recursive call

Base case

Pattern
- empty Pattern – not empty

Practical break

Map, Filter and Fold

•  Functions that abstract common ways of
processing a list

•  Called ‘recursive functions’

Two Similar Functions
•  Two functions that create a new list from an old one
•  The new list is the same length
•  Each new element is derived from the corresponding old

element

-- Add 1 to each entry is a list
addOne [] = []
addOne (x:xs) = x+1:addOne xs

-- Square each entry in a list
square [] = []
square (x:xs) = x*x:square xs

Using Map
•  A function to apply a function to each element in

a list

inc x = x + 1

-- Add 1 to each entry is a list
addOne ls = map inc ls

square x = x * x

-- Square each entry in a list
squares xs = map square xs

Filter
•  Select items from a list

moreThan a b = b > a

Main> filter (moreThan 3) [3,2,5,1,7,8]
[5,7,8]

Predicate

How is Map Defined?
•  Recursive definition of map

map f [] = []
map f x:xs = f x : map f xs

map inc [1,2,3]
 =

Fold – Reducing a list
•  Combine the elements of a list

-- length of a list
len [] = 0
len (x:xs) = 1 + len xs

-- sum of a list
addUp [] = 0
addUp (x:xs) = x + addUp xs

Using Fold – Reducing a list
•  Combine the elements of a list

count x y = y + 1

-- length of a list
len xs = foldr count 0 xs

add x y = x + y

-- sum of a list
addUp xs = foldr add 0 xs

How is Foldr Defined?
•  Recursive definition of foldr

foldr f a [] = a
foldr f a x:xs = f x (foldr f a xs)

foldr add 0 [1,2,3]
 = add 1 (foldr add 0 [2,3])
 = add 1 (add 2 (foldr add 0 [3]))
 = add 1 (add 2 (add 3 (foldr add 0 [])))
 = add 1 (add 2 (add 3 0))
 = add 1 (add 2 3)
 = add 1 5
 = 6

Map, Foldr, Filter – Summary

•  These are called recursive function
•  foldr is more general – it can be used to define

the other two

Function Description
map Apply function to each list element
filter Select elements satisfying a

predicate
foldr Combine elements using a function

Google Map Reduce
• Very large datasets can be processed using

the Map Reduce framework
•  Divide the list of input
•  Map function to each list (separate computers)
•  Reduce list of results (from the separate

computers)

Refection 4: The Best
Language?

Programming Language
•  Between machine and users

•  More abstract
•  Haskell is ‘declarative’
•  Performance

Machine User C Java Haskell

Functional Programming in Practice

•  Functional languages
•  LISP – the original one
•  Haskell
•  Scala – compiles to JVM
•  F♯ – compiles to .NET

•  Influences
•  Java, Python, C♯
•  Python has versions of map and fold

Further Haskell Topics
•  Map, folder, filter
•  List comprehension
•  Anonymous functions – lambda
•  Types
•  Polymorphism
•  Input and output

Summary – Functional Programming
•  Programming with expressions
•  No statements
•  No assignment à no variables
•  No sequence à no loops

•  Composition of functions
•  Possible and practical
•  Programs can be shorter

