A Level Computer Science

William Marsh
School of Electronic Engineering and Computer Science
Queen Mary University of London

* Flavour of Functional Programming

* how 1t differs from Imperative Programming

(e.g. Python)

e Claim that:

* It 1s possible to program using functions

* Itis useful! | Only simple examples

 Better understanding of programming

I hope this 1s
convincing

e
How This Session Works

Talk
Do
Reflect

Repeat

AN A

Stop when times up

FP Topics Reflections
* A first functions * Expressions, statements
* Composing function and variables
o [ists * Sequence versus
» If time (probably not) composition
. Recursion * How functions work
* Map, Filter and Fold ° The best language

Challenge problems

Functional Languages?

* Many programming languages now have

functional features Lisp (programming language)

* This function gives the larger of two numbers

Function
name / Argument

! 7
bigger a b = 1f a > b then a else Db

Is defined as ...

e
Layout

* Like Python, Haskell 1s layout sensitive
* The following all work

bigger a b =
1f a > b then a else b

bigger a b =
1f a > b
then a
else b

e WinGHC1 1s a shell

* Use functions interactively

* Use a text editor to edit the program
* Notepad++ is better than notepad if you have it

File Edit Actions Tools Help

S ¥00 0NEEENa

/| fpl - Notepad

GHCi, version 8.8.1: http://www.haskell.org/ghc/ :? for help
Prelude> :cd C:\Users\Dad\Documents\haskell

Prelude> :load "fpl.hs"
[1 of 1] Compiling Main
Ok, modules loaded: Main.
*Main> :edit

(fpl.hs, interpreted)

Ok, modules loaded: Main.
*Main>

File Edit Format View Help

bigger a b = if a > b then a else b

Refection 1: Expressions,
statements and Variables

* Expression = value
 Statement > command

* Python: statements and expressions
» Haskell: only expressions

e
The Assignment Statement

* The most important statement:

x = x + 1 # This is python

* Update the memory location x’with its current

value plus 1

e ‘X’ 1s a variable

Python program 1s a sequence
of assignments
* Function may assign, so ...
* Expressions are not just
values

Haskell has no statements
* No assignment
* No variables
Is it possible to program
without variables?

* My Haskell program seems to have variables

bigger a b =
1f a > b then a else b

e ‘g’ and ‘b’ a names for values

* Not memory locations

Maths (and Haskell) Python

* Result of a function * Result of a function may
depends only on its depend on other variables
arguments

* Calling a functior} does e Calling a function may
not change anything change variables

* Calling a function with e Calling a function a
the same.arguments second time with the
always gives the same same arguments may give

result a different result

* One way to write bigger3

bigger3 a b ¢ = bigger (bigger a b) c

_/

Pass results to ...

 (Given a functions

double a
square a

2 * a
a * a

e Predict the results of

> double (double 5)
> double (square 3)
> square (double 3)

* Surface area of a cylinder

cilrcleArea r
clrcleCircum
rectArea 1 h

= 2 * pi * r
1 * h

s

cylinderArea r h = ~—
2 * clrcleArea r +
rectArea (circleCircum r) h

Refection 2: Sequence versus
GComposition

e
Python's Invisible Statement

* Sequence of assignments

...then | ™\

This is python

* +

1
2

—_

| V|
= X X

x| v /i
N

... then

 Next statements on a new line

* Many languages: S1 ; S2

* Function application

clrcleArea r
circleCircum
rectArea 1 h

pL * r * r
= 2 * pi1 * r
1 * h

I |

. i / apply
cylinderArea r h =
apply ~2—=* circleArea +/ apoly

rectA;gg/(circleCirqu/r)\h
_— _— L

apply apply apply

* Sequence of statements * Expressions
... with names (functions) ¢ ... with names (functions)

* Order of memory updates * Argument and results

Functional composition # sequencing of statements

o
Python’s Other Invisihle Operator

* Function call (application)

def circleArea(r): return math.pi * r * r
def circleCircum(r): return 2 * math.pi * r
def rectArea(l, h): return 1 * h
def cvlinderArea (r, h):///////_ call
T~ .
call h 27* circleArea(r) +-\
rectAreq(circleCircum&r), h) call

call call

e Can the definition of a function use the
function being defined.

 This 1s known as recursion

e [t can 1f

 There 1s a non-recursive base case

 Each recursive call 1s nearer the base case

* A triangle number
counts the number of
dots 1n an equilateral
triangle (see picture)

* We can define by:

f Base case

trigNum 1 = 1
trigNum n = n + trigNum (n-1)

Recursive; smaller n

* The argument can match a pattern

f Pattern
|
trigNum 1 = 1
trigNum n = n + trigNum (n-1)

* Equivalent to:

trigNum n
| otherwise = n + trigNum (n-1)

Comparison with dry running a Python
program

e
Exampile Python Program

 Variables are:

mark

total
min

average
grade

Enter two marks

Save minimum

mark = int(input("Mark 1 > "))
total = mark

min = mark

mark = int(input("Mark 2 > "))
if mark < min:

min = mark
total = total + mark

Calculate average
average = total / 2

Calculate grade

if min < 30 or average < 50:
grade = "fail"

else:
grade

llpass n

Dry Running a Program

e Table has column for each variable

* Row for each step

Memory

Sequence

Step Val.‘iable
mark |[total |min |average |grade
1 35
| 2709— | 35
3 35
N4 |45
5 80
6 40
7 fail

* Replace each call to a function by its definition

* Replace arguments by expressions

1
n + trigNum (n-1)

trigNum 1
trigNum n

trigNum 3
= 3 + trigNum 2
= 3 + 2 + trigNum 1
= 3 + 2 + 1
= 0

LiStS In Haskell
* Haskell has lists ... similar to Python
* LISP

 First functional language

e ‘List processing’
 Example: [1, 2, 3]
* Equivalent to:

1 : 2 :: 3 : []

/ L

Cons Empty list

e
Useful List Functions

elem Member of list Main> elem 4 [1,2,3,4,5]
True
Main> elem 4 [1,3,5]
False

head First element of list Main> head [2,4,6, 8]
2

tail List without first Main> tail [3,5,7,9]

element [5,7,9]
4+ Concatenate two Main> [1,2,3] ++ [7,9]

lists [1,2,3,7,9]

* Similar to Python

First Last

List Recursion

* Many functions on lists are defined recursively

* Base case: empty list

* Recursive case: apply to tail of list

len
(X:xX3)

1 + len xs'l]

—— len th of a list
’ 0 o Base case

Recursive call

Pattern
- empty

Y

Pattern — not empty

* Functions that abstract common ways of
processing a list

e (alled ‘recursive functions’

e
Two Similar Functions

 Two functions that create a new list from an old one
* The new list is the same length

* Each new element 1s derived from the corresponding old
clement

-— Add 1 to each entry 1s a list
addOne [] = []

addOne (x:xs) = x+1:addOne xs

—-— Square each entry 1n a list
square [] = []
square (x:xs) = X*X:square XS

* A function to apply a function to each element in
a list

inc X = xXx + 1

—-— Add 1 to each entry 1s a list
addOne 1ls = map 1nc 1s

square X = X * X

—-— Square each entry 1n a list
—_|squares xXs = map sguare XS

e Select items from a list

/ Predicate

moreThan a b = b > a’/

Main> filter (moreThan 3) [3,2,5,1,7,8]
[5,7,8]

* Recursive definition of map

[]

f x : map f xs

map £ []
map f X:Xs

map inc [1,2, 3]

e Combine the elements of a list

-— length of a 1list
len [] 0

len (x:x8) 1 + len xs

—— sum of a list

addUp [] 0
addUp (x:x3) X + addUp xs

e Combine the elements of a list

count x y =y + 1

-— length of a list
len xs = foldr count 0 xs

add x y = x + vy

—— sum of a list
addUp xs = foldr add 0 xs

e Recursive definition of foldr

foldr £ a a
foldr £ a x:xs = £ x (foldr £ a xs)

[

] —

add
add

= add
= add

add
add
0

1
1
1
1
1
1

foldr add O

(

(
(
(a
(a
S

(1,2, 3]
foldr add 0 [2,3])
add 2 (foldr add 0 [3]))
add 2 (add 3 (foldr add O
dd 2 (add 3 0))

dd 2 3)

(1))

e
Man, Foldr, Filter - Summary

map Apply function to each list element

filter Select elements satisfying a
predicate

foldr Combine elements using a function

 These are called recursive function

* foldr 1s more general — it can be used to define
the other two

* Very large datasets can be processed using
the Map Reduce framework

* Divide the list of input
* Map function to each list (separate computers)

* Reduce list of results (from the separate
computers)

Refection 4: The Best
Language?

e
Programming Language

* Between machine and users

e More abstract

e Haskell 1s ‘declarative’

 Performance

* Functional languages
* LISP — the original one
* Haskell
* Scala — compiles to JVM
* F# — compiles to .NET

* Influences
 Java, Python, C#

* Python has versions of map and fold

e
Further Haskell Topics

* Map, folder, filter

 List comprehension

* Anonymous functions — lambda
* Types

* Polymorphism

* Input and output

-
Summary - Functional Programming

* Programming with expressions

* No statements
* No assignment = no variables

* No sequence =2 no loops
* Composition of functions

* Possible and practical

* Programs can be shorter

