University of London

CAS London Conference: February 2017

Practical Sheet: Functional Programming

This sheet is a set of exercises for introducing functional programming using Haskell.
An extended version and answers are available from
http://www.eecs.qmul.ac.uk/~william/CAS-London-2017.html

Notes on using WinGHCi

- Use a text editor (such as notepad) to create a file.
- The file should have extension .hs
- Start WinGHCi and load the file
- Add to your program using the editor; reload it in WinGHCi

1 Simple Functions

In this section, you lean to define some simple functions.

Exercise 1.1: Enter a Simple Function

Enter the following function and test it using WinGHCi

```
-- Find the larger of two numbers
bigger a b = if a > b then a else b
```

Here is an example of running the problem:

```
*Main> bigger 10 20
20
*Main> bigger 12 6
12
*Main>
```


Exercise 1.2: Bigger of Three

Create a second function that finds the largest of three arguments. It starts like this:

```
True -- Find the largest of three numbers
bigger3 a b c = add text here
```


Exercise 1.3: More functions

Practice defining more functions (see the operators on the next page). Here are some suggestions:

- Square a number
- Test whether a number is odd
- The area of a circle (or cylinder) from the radius (using constant pi)

Some operators in Haskell:

Operators	Notes	(Interactive) Example	
+ * / -	Arithmetic	$\begin{aligned} & \hline \text { *Main> 3^27 } \\ & 7625597484987 \end{aligned}$	
== / =	Equals; not equals	*Main> 3 /= 5 True	
\&\& \|	not	Logic	```*Main> not (3 == 4) True *Main> (3 == 1 + 2) && (3 /= 5) True```
\ll= \gg $=$	Comparison	$\text { *Main> }(3>=6)\|\mid(-1<-2)$ False	
mod` `div`	Modulo	```*Main> 27 `mod` 7 6 *Main> 27 `div` 7 3```	

Additional Exercise 1.4: Is it a triangle?

Three lengths can form a triangle provided that none of them exceeds the sum of the other two. Define a function to check that three lengths make a triangle. Here are some examples of the function being used:

```
*Main> isTriangle 10 10 10
True
*Main> isTriangle 10 10 100
False
*Main> isTriangle 10 40 10
False
```


2 Function Composition

This section introduces combining ('composing') functions. This is the way that complex programs are made from simple ones.
Exercise 2.1: Given the following function definition (add them to your file):

```
-- Simple functions
double a = 2 * a
square a = a * a
inc a = a + 1
```

Predict the result of the following (and then check your answers):

```
> double (double 5)
> double (square 3)
> square (double 3)
> square (square 3)
> double (double (double 6)))
> square (inc (inc 3))
```


Additional Exercise 2.2: Heron's Formula

Heron's Formula for the area of a triangle from the lengths of the sides (a, b, c) is:

$$
\text { Area }=\sqrt{p(p-a)(p-b)(p-c)}
$$

where p is half the perimeter: $p=\frac{a+b+c}{2}$
Define a function to compute the area. Note however, that the formula assumes a, b and c do define a triangle; use the function 'isTriangle' to check this, returning -1 if the lengths are not a triangle.
An outline of the program is given below, using a new form of syntax:

```
halfP a b c = add texthere
area a b c =
    if isTriangle a b c
    then
        let p = halfP a b c in sqrt (add texthere)
    else -1
```

The new syntax is a Let expression. We can avoid repeating an expression multiple times by giving it a name and using the name. Here ' p ' has been used to stand for the value of the half perimeter. The function could be defined without using 'let' by 'halfP $a \mathrm{~b}$ c^{\prime} in place of ' p '.

3 Recursions

Function definitions can be recursive. Using recursion to define a function is a key technique in Functional Programming.

Exercise 3.1: Enter and try the trigNum function. All the forms below are equivalent try them all out.

```
-- Definition using a pattern to distinguish the two cases
trigNum 1 = 1
trigNum n = n + trigNum (n-1)
-- Definition using guard conditions instead of a pattern
trigNum1 n | n == 1 = 1
    | otherwise = n + trigNum1 (n-1)
-- Definition using if expression
trigNum2 n = if n == 1
    then 1
    else n + trigNum2 (n-1)
```

Note that only one definition of a function is allowed so we have used different names for each definition.

Exercise 3.2: What happens if the trigNum function is called with an argument of zero or less?

Additional Exercise 3.3: The familiar factorial function can be defined in a similar way to trigNum. In mathematical notation, the factorial is defined by:

$$
\text { factorial } n=n \times n-1 \times \cdots \times 2 \times 1
$$

Define a Haskell function fact. Note that the base case is shown below:

```
-- factorial
fact 0 = 1
fact }\textrm{n}=\mathrm{ add text here
```


4 Lists

Like Python, Haskell has lists (but with the important difference that elements cannot be updated). Lists are often processed recursively:

- The base case is the empty list
- The recursive call is applied to the tail of the list.

Some useful functions on lists

Function	Description	Example
:	'Cons' an element to a list	```Main> 42:[4,3,2,1,0] [42,4,3,2,1,0] Main> 1:2:[] [1,2]```
elem	Member of a list	```Main> elem 4 [1,2,3,4,5] True Main> elem 4 [1,3,5] False```
head	First element of a list	$\begin{aligned} & \text { Main> head }[2,4,6,8] \\ & 2 \end{aligned}$
tail	List without the first element	$\begin{aligned} & \text { Main> tail }[3,5,7,9] \\ & {[5,7,9]} \end{aligned}$
last	Last element of a list	$\begin{aligned} & \text { Main> last }[3,5,7,9] \\ & 9 \end{aligned}$
init	List without the last element	$\begin{aligned} & \text { Main> init }[2,4,6,8] \\ & {[2,4,6]} \end{aligned}$
++	Concatenate two lists	$\begin{aligned} & \text { Main> }[1,2,3]++[7,9] \\ & {[1,2,3,7,9]} \end{aligned}$
null	Test if a list is empty	```Main> null [] True Main> null [1] False```
length	Length of a list	```Main> length [1,3,5] 3```
reverse	Reverse a list	$\begin{aligned} & \text { Main> reverse }[2,7,5] \\ & {[5,7,2]} \end{aligned}$

Exercise 4.1: Head and tail of a list. Predict the result of the following expressions. Check your answers.

```
Main> head [1,2,3,4]
Main> tail [4,3,2,1]
Main> head (tail [2,4,6,8])
```

Exercise 4.2: Ranges. Predict the result of the following expressions. Check your answers.

```
Main> [1..5]
Main> [7,11 .. 27]
Main> [7,6 .. 1]
Main> reverse [7,9 .. 21]
Main> length [0 .. 100]
```

Exercise 4.3: Sum of a list.
A function to sum the numbers in a list can be defined recursively. The key ideas are:

- The sum of the elements of an empty list is 0
- The sum of the elements of a non-empty list is the head of the list added to the sum of the tail.

Here is an outline of the function. Complete the definition and try it out. Note: the function is called 'addUp' as there is already a function 'sum' defined.

```
-- Add up a list of numbers
addUp [] = 0
addUp (x:xs) = add text here
```

Additional Exercise 4.4: Redefining trigNum and fact. You may have noticed that

- trigNum n is the sum of the numbers from 1 to n
- fact n is the product of the numbers from 1 to n

Using this, trigNum can be redefined as follows

```
-- Alternative trigNum
trigNumAlt n = sum [1..n]
```

Enter this new definition and test it out. Make a similar redefinition of fact. (Hint: you need a function product. This function is already defined.)

5 Map, Filter and Fold

The functions map, filter and (various forms of) fold capture some common forms of recursive operation on lists. Many recursive definitions can be written using these functions rather than explicit recursion.
Exercise 5.1: Map: applying a function to each item in a list.
Given the following functions

```
inc n = n + 1
double n = n * 2
square n = n * n
```

Predict the result of the following.

```
Main> map inc [2,4 .. 8]
Main> map double [2,4 .. 8]
Main> map square [1 .. 4]
Main> map double (map inc [1 .. 4])
Main> map double (map square [1 .. 4])
Main> map square (map double [1 .. 4])
```

Exercise 5.2: Filter: picking out a subset of a list.
Given the following function

```
even n = n `mod` 2 == 0
```

Predict the result of the following.

```
Main> filter even [1,2,3,4]
Main> sum (filter even [1..10])
```

Exercise 5.3: Using Foldr
The sum function can be defined using foldr.

```
sum xs = foldr (+) 0 xs
```

Enter this function and try using it.
Exercise 5.4: Using foldr to define product
The product function can be defined using foldr, in a similar way to sum.
Additional Exercise 5.5: Any and All. The functions 'and' and 'or' are used to combine a list of Boolean values. Here are some examples of their use:

```
Main> and [True, True, True]
True
Main> and [True, True, False]
False
Main> or [True, True, False]
True
```

- Explain whether these functions are defined using map or foldl.
- Give a definition of the functions using map or foldl.

6 Challenge Problems

These problems are selected from https://projecteuler.net See if you can solve any using Haskell.

6.1 Problem 1: Multiples of 3 and 5

If we list all the natural numbers below 10 that are multiples of 3 or 5 , we get $3,5,6$ and 9. The sum of these multiples is 23 .

Find the sum of all the multiples of 3 or 5 below 1000

Outline

- Define a function that test whether a number is divisible by 3 or by 5
- Use the function to filter a list of numbers
- Find the sum of the filtered numbers

6.2 Problem 6: Sum square difference

The sum of the squares of the first ten natural numbers is,
$1^{2}+2^{2}+\ldots+10^{2}=385$
The square of the sum of the first ten natural numbers is,
$(1+2+\ldots+10)^{2}=55^{2}=3025$
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is $3025-385=2640$.
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

6.3 Problem 4: Largest palindrome product

A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is $9009=91 \times 99$.

Find the largest palindrome made from the product of two 3-digit numbers.

Outline

- Define a function that gives the digits of a number as a list. For example 'digits 1815' give [5, 1, 8, 1].
- A palindrome is a number whose list of digits is the same when reversed. For example, 91719 is a palindrome. Define a function to test for palindromes.
- You need to make a list of products of all pairs of number from a pair of lists. This can be done using the makeProd function shown below.
- Filter the list of products using the palindrome tester and use the function maximum to find the largest number in the list of palindromes.

The makeProd function can be defined like this:

```
makeProd as bs = [a*b | a<-as, b<-bs]
```

Here is an example of its use:

```
Main> makeProd [1..5] [1..5]
[1,2,3,4,5,2,4,6,8,10,3,6,9,12,15,4,8,12,16,20,5,10,15,20,25]
```


7 Further Reading

You can try any of the following to find out more about Haskell:

- https://tryhaskell.org/ An outline tutorial. Simple Haskell expressions can be tried in a browser interface.
- An introductory book that can b read online: http://learnyouahaskell.com/
- Download the most popular Haskell system: https://www.haskell.org/platform/
- Haskell language home page: https://www.haskell.org/
- A list of companies (claimed to be) using Haskell: https://wiki.haskell.org/Haskell_in_industry

