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Experiments & Theory

TREC-2 TREC-3 TREC-8 WT2G Blog06
MAP P@10 MAP P@10 MAP P@10 MAP P@10 MAP P@10

LMDir,µ=2000 18.02 41.20 22.87 48.20 21.48 40.00 29.85 46.2 29.21 60.80
LMJM,λ=0.7 14.70 32.4 20.80 40.20 21.81 39.4 23.11 33.80 21.04 45.60
TFb=0.25,k1=1.2 ·IDF 18.90 42.2 25.0 50.0 22.39 40.60 31.76 48.2 30.46 63.8
TFTF=1 ·IDF 09.19 17.00 11.53 22.00 11.20 09.40 14.00 15.20 05.51 11.80
TFTF=tf_d ·IDF 02.78 06.20 03.98 05.2 04.34 07.80 07.96 13.00 22.37 48.20
BM25b=0.25,k1=1.2 18.90 42.80 25.05 50.20 22.3 40.2 31.41 49.20 30.27 63.40

See also: http://barcelona.research.yahoo.net/dokuwiki/doku.php?id=baselines

TREC3 TREC8A TREC8B WT2G
MAP MAP MAP MAP

BM25 20.64 24.39 32.33 32.33
Tfidf 26.15
LM-JM 24.96
LM-Dir 30.87

Credits to Hany Azzam

What is our IR-driven mathematical framework (tool box) to
investigate theoretically — to fully understand — why which
model is better when?
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The world according to Binomial/Poisson Prob and Independent Events

Definition (Binomial Probability)

PBinomial,N,pt (nt ) :=
(

N
nt

)
·pnt

t · (1−pt )(N−nt ) (1)

P(4 sunny days in a week (n=7) ≈ 0.2734 for psunny = 45/90
P(4 “sunny" in d (dl=500) ≈ 0.00157 for psunny = 1,000/1,000,000

Definition (Poisson Probability)

PPoisson,λt
(nt ) :=

λ
nt
t

nt !
·e−λt (2)

Definition (Independent Events)

P(e1, . . . ,en|h) = ∏
ei

P(ei |h) (3)
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The world according to Binomial/Poisson Prob and Independent Events
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The world according to TF-IDF

TF-IDF

RSVTF-IDF(d ,q,c) := ∑
t

TF(t,d) ·TF(t,q) · IDF(t,c) (4)

TF “normalisation"

TF(t,d) :=
tfd

tfd +k1 ·
(

b · dl
avgdl +(1−b)

) Semantics? (5)

IDF “normalisation"

pidf(t,c) :=
idf(t,c)
maxidf

0 ≤ pidf ≤ 1 Semantics? (6)
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TF Variants

TF(t,d) :=



tfd total tf count

tfd
dl Psum(t|d)

tfd
maxtfd

Pmax(t|d)

tfd
tfd +K parameter K ∝ pivdl

tfd
tfd +k1·(b· dl

avgdl +(1−b)) K set in BM25-like way

b +(1−b) · tfd
dl lifted tf; e.g. b=0.5

tfd
K “pivoted" tf
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TF Variants: Graphical Illustration
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IDF Variants

IDF(t,c) =



− log df(t,c)
ND

is − logPD(t|c)

− log df(t,c)+0.5
ND+1 Laplace-like correction

− log df(t,c)
ND−df(t,c) BIR/BM25

− log df(t,c)+1
ND−df(t,c)+0.5 RSJ/BM25
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TF-IDF and LM and Probability/Information Theory

P(q|d)

P(q|d ,c) = ∏
t

P(t|d ,c)TF(t,q)

logP(q|d ,c) = ∑
t

TF(t,q) · log(λ ·P(t|d)+(1−λ ) ·P(t|c))

TF-IDF and LM

P(q|d): semantics of LM.
P(d |q): ??? Semantics of TF-IDF???
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Motivation

Before we engage with math to assign semantics to TF and IDF, the question is:

Why should we care?
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Motivation continued

What people say (common beliefs):

I “We used STANDARD TF-IDF ..."

I “LM is P(q|d) - good. TF-IDF is HEURISTIC - bad."

I “LM and BM25 are the main baselines; TF-IDF is out ..."

I “It’s clear why TF-IDF works; not clear why LM works."

What we would like to know (research challenges):

1 Can we improve (the retrieval quality of) existing models, or have we
reached a ceiling?

2 Are there other models out there? One model per decade?

VSM/TF-IDF mid 60s, probabilistic retrieval (BIR/RSJ weight) mid 70s, LSI
and BM25 80s/90s, LM late 90s, FooBar 2010+ ???
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Penrose: Shadows of the Mind

Roger Penrose describes in the opening of his book “Shadows of the Mind" a
scene where dad and daughter enter a cave.
- “Dad, that boulder at the entrance, if it comes down, we are locked in."
- “Well, it stood there the last 10,000 years, so it won’t fall down just now."
- “Dad, will it fall down one day?"
- “Yes."
- “So it is more likely to fall down with every day it did not fall down?"

P(boulder falls) ? =? n(boulder fell)/N

P(boulder falls) ? =? 1−n(boulder stood)/N

P(x) ? =? n(x)/N
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Independent and Dependent Events

independent events

P(information∧ theory∧ theory) = P(information) ·P(theory)2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . how about . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

multiple occurrence of same term: dependent events

P(information∧ theory∧ theory) = P(information) ·P(theory)(2· 2
2+1 )

At roulette, you observe 1 × black followed by 17 × red.
Where do you place your tokens?
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Math: Pythagorean triplets and Fermat’s last theorem: What can IR-ler learn from it?

Pythagorean (a,b,c) triplets

(3, 4, 5), (5, 12, 13), (7, 24, 25), ...

a2 +b2 = c2 9+16 = 25

Fermat’s last theorem

There are no three positive integers

an +bn = cn for n > 2

How long did it take to prove the theorem?

math4physics: Physics inspired math, math inspired physics.
math4IR: ???
Do we IR-ler have the “away-time" to engage with math4IR?
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TF-IDF: Back to the Basics

Definition

TF-IDF retrieval status value RSVTF-IDF:

RSVTF-IDF(d ,q,c) := ∑
t

wTF-IDF(t,d ,q,c) (7)

Inserting the TF-IDF term weight yields the decomposed form:

RSVTF-IDF(d ,q,c) = ∑
t

TF(t,d) ·TF(t,q) · IDF(t,c) (8)
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TF: What is the probabilistic semantics of BM25 TF?

What is the probabilistic semantics of

Definition

BM25 TF

TFBM25(t,d) :=
tfd

tfd +Kd
(9)

Kd := k1 ·
(

b · dl
avgdl

+(1−b)
)

(10)

pivdl := dl/avgdl.
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Semi-subsumed Events: Prob Semantics for BM25 TF

independent semi-subsumed subsumed
Credits to Hengzhi Wu

Example

For the two events e1 and e2, the combined probabilities are:

0.32 = 0.09 independent

0.3(2· 2
2+1 ) ≈ 0.2008 semi-subsumed

0.31 subsumed
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Independence-Subsumption Triangle

independent semi-subsumed subsumed

1 1
2/2

2 2
1

2
3/2

2
2

3 3
1

3
4/2

3
3

4 4
1

4
2

4
5/2

4
3

4
4

5 5
1

5
2

5
6/2

5
4

5
5

... ... ... ...

n n
1

n
2

n
3

n
(n+1)/2

n
n−2

n
n−1

n
n

Note: Gaussian sum 1+2+ ...+n = n · (n +1)/2.

The story: Gauss as a school kid faced “time-spending" task by his teacher: add the numbers 1 to 100. Gauss answered within a

minute: 5050. The famous formula: (1+100) + (2+99) + ... + (50+51) = 50 x 101.
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Independence-Subsumption Triangle

Independence-Subsumption Triangle: embeds the BM25 TF into probability theory.

P(theory∧ theory) = P(theory)(2·TFBM25) = P(theory)(2· 2
2+1 ) = P(theory)(1.33)

ind semi-sub sub
prob 2 1.33 1
0.001 0.000001 0.0001 0.001
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IDF: What is the probabilistic semantics of IDF?

What is the probabilistic semantics of

Definition

Probability of being informative (probabilistic idf):

maxidf(c) :=− log
1

ND(c)
= logND(c) (11)

P(t informs|c) := pidf(t,c) :=
idf(t,c)

maxidf(c)
(12)
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Understanding IDF: On Theoretical Arguments

Definition

BIR term weight wBIR:

wBIR(t, r , r̄) := log
P(t|r)
P(t|r̄)

· P(t̄|r̄)
P(t̄|r)

(13)

A simplified form considers term presence only:

wBIR,F1(t, r , r̄) := log
P(t|r)
P(t|r̄)

(14)

logwBIR(t, r , r̄) = log
P(t|r)

1−P(t|r)
− log

P(t|r̄)
1−P(t|r̄)

≈− log
nt

N−nt
≈ IDF(t,c)

Here, the log is a mathematical transformation; no information-theoretic or
probabilistic meaning associated to IDF.

See also: [Croft and Harper, 1979], “prob models without relevance
information"
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PIDF: Proof via Euler’s number/convergence

Proof: Probability of Being Informative

Euler’s number/convergence:

lim
N→∞

(
1− λ

N

)N

= e−λ (15)

λ := idf(t,c), N := maxidf(c).

Theorem

Occurrence-Informativeness-Theorem: The probability that a term t occurs is equal to
the probability that the term is not informative in maxidf trials.

P(t occurs|c) = (1−P(t informs|c))maxidf(c) (16)

Moreover, for the probability to be not informative:

1−P(t informs|c) =
lognD(t,c)
logND(c)

(17)

Does this help to estimate P(boulder falls)?
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Event Spaces & Poisson Bridge: Definition & Example

Definition

Poisson Bridge: Let x be a set of documents (e.g. the collection, set of relevant
documents, set of retrieved documents).

avgtf(t,x) ·PD(t|x) = λ (t,x) = avgdl(x) ·PL(t|x) (18)

Example

Poisson bridge: For a collection, let a term t (“sailing") occur in nL(t, toy)=2,000
of NL(toy)=109 Locations, and nD(t, toy)=1,000 of ND(toy)=106 Documents.
The Poisson bridge is:

2,000
1,000

· 1,000
106 =

2,000
106 =

109

106 ·
2,000
109

Note: Which averages are “useful"?

Credits to Theodora Tsikrika and Gabriella Kazai, “Notation in General Matrix Framework"
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TF-IDF and LM: P(q|d) and P(d |q): Conjunctive

LM semantics: conventional

P(q|d ,c) = ∏
t

P(t|d ,c) Semantics for LM (19)

Conventional mixture:
P(t|d ,c) = λ ·P(t|d)+(1−λ ) ·P(t)

TF-IDF semantics: non-conventional

P(d |q,c) = ∏
t

P(t|q,c) Semantics for TF-IDF (20)

“Extreme" mixture:
t ∈ q : P(t|q,c) = P(t|q), otherwise, P(t|q,c) = P(t|c).
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TF-IDF and LM: P(q|d) and P(d |q): Disjunctive

Total Probability

P(q|d) = ∑
t

P(q|t) ·P(t|d) (21)

P(d ,q) = ∑
t

P(d |t) ·P(q|t) ·P(t) (22)

P(d ,q)
P(d) ·P(q)

= ∑
t

P(t|d) ·P(t|q) · 1
P(t)

(23)

Relationship between total prob and TF-IDF??? And LM???
Option PIN’s (probabilistic inference networks, [Turtle and Croft, 1990]):

∑
t

P(q|t)
∑t ′ P(q|t ′)

·P(t|d) ∝ ∑
t

IDF(t)
∑t ′ IDF(t ′)

·TF(t,d) (24)
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Integral-based Interpretation of TF-IDF

Indefinite and Definite Integral ∫
1
x

dx = logx (25)∫ 1

P(t)

1
x

dx = log1− logP(t) =− logP(t) (26)
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Credits to Jun Wang
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Summary

I TF

I BM25 TF corresponds to semi-subsumed events
I this relationship opens up pathways to new — IR-driven — probability

theory, applicable in contexts beyond IR

I IDF

I Poisson bridge: relates PD(t|c) (IDF) and PL(t|c) (LM): pathways to
relate IDF/BIR to LM

I normalisation pidf = idf(t)/maxidf: is sound

I P(q|d)/P(q) and P(d |q)/P(d): conjunctive

I symmetric relationship between LM and TF-IDF
I positions IR models; clarifies the P(q|d) vs P(r |d ,q) issue

I P(q|d)/P(q) and P(d |q)/P(d): disjunctive

I
∫ 1

x dx : relationship between total prob and TF-IDF

I TF-IDF uncovered — TF-IDF is not heuristic anymore.
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Outlook

I A unifying framework to derive all models from?

I A formal framework to prove ranking equivalences/differences?

I A “new" model?

I “New" math (probability theory) inspired by IR results but applicable in
other domains?
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Background: References

I IDF: deviation from Poisson, [Church and Gale, 1995]

I Information-theoretic explanation of TF-IDF, [Aizawa, 2003]

I Understanding IDF, [Robertson, 2004]

I Event Spaces, [Robertson, 2005]

I On Event Spaces and Rank Equivalences, [Luk, 2008]

I A Probabilistic Justification for TF-IDF, [Hiemstra, 2000]

I Understanding Relationships between Models, [Aly and Demeester, 2011]

I DFR, [Amati and van Rijsbergen, 2002]

I TF-IDF Uncovered, [Roelleke and Wang, 2008]

I Semi-subsumed Events: A Probabilistic Semantics of BM25 TF,
[Wu and Roelleke, 2009]

I Probability of Being Informative, [Roelleke, 2003]

I Axiomatic Approach to IR Models, [Fang and Zhai, 2005]

I Bayesian extension to the language model for ad hoc information retrieval,
[Zaragoza et al., 2003], ‘integral over model parameters"
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Concepts beyond TF and IDF

Binomial Prob: → Poisson Prob → 2-Poisson Prob

I 2-Poisson is motivation for BM25 TF:
[Robertson and Walker, 1994]

Event Spaces:

I {0,1}: BIR (and TF-IDF?)
I {0,1,2, ...}: Poisson (and TF-IDF?)
I {t1, t2, ...}: LM (and TF-IDF?)

Document-Query-(In)dependence: DQI = P(d ,q)
P(d)·P(q)

Burstinesss (avgtf): Given avgdl = 100. Given d .

I t1: occurs in 1,000 locations, 500 docs. avgtf = 2. tfd = 2.
Term is “average".

I t2: occurs in 1,000 locations, 999 docs. avgtf ≈ 1. tfd = 2.
Term is “good"; however: IDF(t2) < IDF(t1).
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tflifted : b = 0.5
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tfpivoted : b = 0.7, avgdl = 200
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BM25 TF: Pivoted

TF pivoted (in SIGIR BM25 tutorial by Hugo/Stephen, tf′d )

Definition

TF pivoted

TFpiv(t,d) :=
tfd
Kd

(27)

Move from BM25 TF to semi-subsumed in probability theory

2 ·TFBM25 = 2 · TFpiv

TFpiv +1

P(theory∧ theory) = P(theory)(2·TFBM25)
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