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Introduction & Motivation

A retrieval model is an application of a mathematical
framework/model to measure

the distance between document d and query q
the relevance of document d wrt query q

There are so-called heuristic and so-called probabilistic
retrieval models
This seminar is about the theoretical foundations of IR
models
Most models presented here have good and stable
performance
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Time-line of Retrieval Models: 1960 - 1990
[Maron and Kuhns, 1960]: On Relevance, Probabilistic Indexing, and IR

[Salton, 1971, Salton et al., 1975]: VSM, TF-IDF

[Rocchio, 1971]: Relevance feedback

[Robertson and Sparck Jones, 1976]: BIR

[Croft and Harper, 1979]: BIR without relevance

[Bookstein, 1980, Salton et al., 1983]: Fuzzy, extended Boolean

[van Rijsbergen, 1986, van Rijsbergen, 1989]: P(d → q)

[Cooper, 1988, Cooper, 1991, Cooper, 1994]: Beyond Boole, ...

[Dumais et al., 1988, Deerwester et al., 1990]: Latent semantic indexing
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Time-line of Retrieval Models: 1990 - ...

[Turtle and Croft, 1990, Turtle and Croft, 1991a]: PIN
[Fuhr, 1992]: Prob Models in IR
[Margulis, 1992, Church and Gale, 1995]: Poisson
[Robertson and Walker, 1994, Robertson et al., 1995]: 2-Poisson, BM25
[Wong and Yao, 1995]: P(d → q)
[Brin and Page, 1998, Kleinberg, 1999]: Pagerank and Hits
[Ponte and Croft, 1998, Lavrenko and Croft, 2001]: LM, Relevance-based LM

[Hiemstra, 2000]: TF-IDF and LM
[Amati and van Rijsbergen, 2002, He and Ounis, 2005]: DFR
[Croft and Lafferty, 2003, Lafferty and Zhai, 2003]: LM book
[Zaragoza et al., 2003]: Bayesian LM
[Fang and Zhai, 2005]: Axiomatic approach
[Roelleke and Wang, 2006]: Parallel derivation
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[Rijsbergen, 1979]: online

[Baeza-Yates and Ribeiro-Neto, 1999]: New version 2010 just
out

[Grossman and Frieder, 1998, Grossman and Frieder, 2004]:
text retrieval and VSM in SQL

[Belew, 2000]: information and noise

[Manning et al., 2008]: Introduction to Information Retrieval
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Running Example: Toy collection with 10 documents
term20

Term DocId

sailing doc1
boats doc1
sailing doc2
boats doc2
sailing doc2
east doc3
coast doc3
sailing doc3
sailing doc4
boats doc5
sailing doc6
boats doc6
east doc6
coast doc6
sailing doc6
boats doc6
boats doc7
coast doc8
coast doc9
sailing doc10

The construction plan of this toy collection is as follows:
index “term20” contains 20 entries (tuples) and 10 doc-
uments; for relevance feedback (BIR model), 4 out of
the 10 documents will be viewed as relevant, and the
other 6 will be viewed as non-relevant.

Among the first 10 tuples of term20, there is one re-
occurring tuple, namely (sailing,doc2); this tuple is to
demonstrate the effect of the within-document term fre-
quency tf(t , d).

The second half of term20 starts with document
“doc6”, and and this is a long document to demonstrate
the effect of document length normalisation.
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Notation
Book’s Comment Traditional
notation notation
c Collection c
Dc Set of Documents in collection d : Dc = {d1, . . . , dm}
Tc Set of Terms in collection c: Tc = {t1, . . . , tn}
Lc Set of Locations: Lc = {(ti , dj ), ...}, where (t, d) are term-document pairs,

and each pair corresponds to a location
nLc function that tells for each term-document pair the number of times it occurs:

nLc : Tc × Dc → {0, 1, . . . , n}
nL(t, d) number of locations at which term t occurs in document d tf
NL(d) number of locations in document d (document length) dl
nL(t, q) number of locations at which term t occurs in query q qtf
NL(q) number of locations in query q (query length) ql
nL(t, c) number of locations at which term t occurs in collection c TF
NL(c) number of locations in collection c
nL(t, r) number of locations at which term t occurs in set r (relevant documents)
NL(r) number of locations in set r (relevant documents)
nD(t, c) number of documents in which term t occurs in collection c nt
ND(c) number of documents in set c (collection) N
nD(t, r) number of documents in which term t occurs in collection c rt
ND(r) number of documents in set r (relevant documents) R
nT (d, c) number of Terms in document d in collection c
NT (c) number of Terms in set c (collection)
nT (d, r) number of Terms in document d in collection c
NT (r) number of Terms in set r (relevant documents)

avgdl(c) average document length: avgdl(c) :=
NL(c)

ND (c)
avgdl

pivdl(d, c) pivoted document length: pivdl(d, c) :=
NL(d)

avgdl(c)

avgtf coll(t, c) average term frequency in documents of the collection: avgtf coll(t, c) :=
nL(t,c)

ND (c)

avgtf elite(t, c) average term frequency in documents of the elite set: avgtf elite(t, c) :=
nL(t,c)

nD (t,c)

avgtl(c) average term occurrence (“length”): avgtl(c) :=
NL(c)

NT (c)

pivtl(d, c) pivoted term occurrence (“length”): pivtl(d, c) :=
NL(t)

avgtl(c)
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Notation

Probability Comment

PL(t|d) :=
nL(t,d)

NL(d)
location-based within-document term probability

PL(t|q) :=
nL(t,q)

NL(q)
location-based within-query term probability

PL(t|c) :=
nL(t,c)

NL(c)
location-based collection-wide term probability

PL(t|r) :=
nL(t,r)
NL(r) location-based within-relevance term probability

PD(t|c) :=
nD (t,c)

ND (c)
document-based collection-wide term probability

PD(t|r) :=
nD (t,r)
ND (r) document-based within-relevance term probability: probability that term t occurs in a

relevant document
PD(t|c) := 1

nD (t,c)
document-based term probability: probability that term t is bursty: 1

nD (t,c)
=

avgtf elite(t,c)
nL(t,c)

; PD(t|c) = 1 if all occurrences of term t are in one document
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Notation: Example

NL(c) 20
ND(c) 10 N
avgdl(c) 20/10=2

t sailing boats
nL(t , c) 8 6 TF
nD(t , c) 6 5 nt

PL(t |c) 8/20 6/20
PD(t |c) 6/10 5/10 df(t)
avgtf elite(t , c) 8/6 6/5 λ
avgtf coll(t , c) 8/10 6/10 λ
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TF-IDF Model(s)

1 TF-IDF term weight wTF-IDF

2 TF-IDF RSVTF-IDF

3 TF Variants
4 IDF Variants
5 Example
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TF-IDF term weight

Definition (TF-IDF term weight wTF-IDF:)

The TF-IDF term weight combines the within-document TF, the
within-query TF, and the IDF.

wTF−IDF(t , d , q, c) := TF(t , d) · TF(t , q) · IDF(t , c) (1)
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TF-IDF RSV

Definition (TF-IDF retrieval status value RSVTF-IDF:)

RSVTF-IDF(d , q, c) :=
∑

t

wTF−IDF(t , d , q, c) (2)

Inserting the TF-IDF term weight yields:

RSVTF-IDF(d , q, c) =
∑

t

TF(t , d) · TF(t , q) · IDF(t , c) (3)
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TF-IDF: TF variants

Definition (TF-IDF term weight)

tftotal(t , d) := nL(t , d) (4)

tfsum(t , d) :=
nL(t , d)

NL(d)
(5)

tfmax(t , d) :=
nL(t , d)

nL(tmax, d)
(6)

tfpiv(t , d) :=
nL(t , d)

nL(t , d) + K
(7)

K ? KBM25 = b · dl
avgdl + (1 − b).
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TF-IDF Example: TF variants

tf sum
P(t|d) Term DocId

0.500 sailing doc1
0.500 boats doc1
0.667 sailing doc2
0.333 boats doc2
0.333 east doc3
0.333 coast doc3
0.333 sailing doc3
1.000 sailing doc4
1.000 boats doc5
0.333 sailing doc6
0.333 boats doc6
0.167 east doc6
0.167 coast doc6
1.000 boats doc7
1.000 coast doc8
1.000 coast doc9
1.000 sailing doc10

tf max
P(t|d) Term DocId

1.000 sailing doc1
1.000 boats doc1
1.000 sailing doc2
0.500 boats doc2
1.000 east doc3
1.000 coast doc3
1.000 sailing doc3
1.000 sailing doc4
1.000 boats doc5
1.000 sailing doc6
1.000 boats doc6
0.500 east doc6
0.500 coast doc6
1.000 boats doc7
1.000 coast doc8
1.000 coast doc9
1.000 sailing doc10

tf piv
P(t|d) Term DocId

0.500 sailing doc1
0.500 boats doc1
0.571 sailing doc2
0.400 boats doc2
0.400 east doc3
0.400 coast doc3
0.400 sailing doc3
0.667 sailing doc4
0.667 boats doc5
0.400 sailing doc6
0.400 boats doc6
0.250 east doc6
0.250 coast doc6
0.667 boats doc7
0.667 coast doc8
0.667 coast doc9
0.667 sailing doc10
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TF-IDF: linear TF curves
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TF-IDF: BM25 piv TF curves
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Semi-subsumed Events: Probabilistic Semantics
BM25 TF

P(L1 = t ∧ L2 = t) = P(t)2 (8)

P(L1 = t ∧ L2 = t) = P(t)(2· 2
2+1) (9)
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Probability of Being Informative

Definition (Probability of being informative (probabilistic idf):)

maxidf(c) := − log
1

ND(c)
= log ND(c) (10)

P(t informs|c) := pidf(t , c) :=
idf(t , c)

maxidf(c)
(11)
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Occurrence-Informativeness-Theorem

Theorem
Occurrence-Informativeness-Theorem: The probability that a
term t occurs is equal to the probability that the term is not
informative in log ND(c) trials, where ND(c) is the number of
documents in collection c.

P(t occurs|c) = (1 − P(t informs|c))maxidf(c) (12)

Moreover, for the probability to be not informative:

1 − P(t informs|c) =
log nD(t , c)

log ND(c)
(13)
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TF-IDF: DF and IDF

Definition (TF-IDF term weight)

df(t , c) :=
nD(t , c)

ND(c)
(14)

idf(t , c) := − log df(t , c) (15)

wTF−IDF(t , d , q, c) := tf(t , d) · tf(t , q) · idf(t , c) (16)
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TF-IDF: IDF curve
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TF-IDF Example: DF and IDF

df
P(t occurs|c) Term

0.600 sailing
0.500 boats
0.200 east
0.400 coast

idf
idf(t , c) Term

0.511 sailing
0.693 boats
1.609 east
0.916 coast

pidf
P(t informs|c) Term

0.317 sailing
0.431 boats
1.000 east
0.569 coast

pidf(t , c) := P(t informs|c) = idf(t , c)/maxidf(c) (17)
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TF-IDF Example: Query term weighting

qterm pidf
P(t informs|c) Term QueryId

0.317 sailing q1
0.431 boats q1
qterm norm pidf

P(t informs|c) Term QueryId
0.424 sailing q1
0.576 boats q1
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TF-IDF Example: Retrieval result

tf sum idf retrieve
RSV DocId QueryId

0.693 doc7 q1
0.693 doc5 q1
0.602 doc1 q1
0.572 doc2 q1
0.511 doc10 q1
0.511 doc4 q1
0.401 doc6 q1
0.170 doc3 q1

tf max idf retrieve
RSV DocId QueryId

1.204 doc6 q1
1.204 doc1 q1
0.857 doc2 q1
0.693 doc7 q1
0.693 doc5 q1
0.511 doc10 q1
0.511 doc4 q1
0.511 doc3 q1

tf piv idf retrieve
RSV DocId QueryId

0.602 doc1 q1
0.569 doc2 q1
0.482 doc6 q1
0.462 doc7 q1
0.462 doc5 q1
0.341 doc10 q1
0.341 doc4 q1
0.204 doc3 q1
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TF-PIDF Example: Retrieval result

tf sum pidf retrieve
RSV DocId QueryId

0.431 doc7 q1
0.431 doc5 q1
0.374 doc1 q1
0.355 doc2 q1
0.317 doc10 q1
0.317 doc4 q1
0.249 doc6 q1
0.106 doc3 q1

tf max pidf retrieve
RSV DocId QueryId

1.000 doc6 q1
1.000 doc1 q1
0.712 doc2 q1
0.576 doc7 q1
0.576 doc5 q1
0.424 doc10 q1
0.424 doc4 q1
0.424 doc3 q1

tf piv pidf retrieve
RSV DocId QueryId

0.500 doc1 q1
0.473 doc2 q1
0.400 doc6 q1
0.384 doc7 q1
0.384 doc5 q1
0.283 doc10 q1
0.283 doc4 q1
0.170 doc3 q1
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TF-IDF Example: RSV computation

RSVTF sum−IDF(doc7) = 0.431 = 1.0 · 0.431
RSVTF sum−IDF(doc1) = 0.374 = 0.5 · 0.317 + 0.5 · 0.431

RSVTF piv−IDF(doc1) = 0.5 =
1

1 + 2/2
· 0.424 +

1
1 + 2/2

· 0.576

RSVTF piv−IDF(doc6) = 0.4 =
2

2 + 6/2
· 0.424 +

2
2 + 6/2

· 0.576

RSVTF piv−IDF(doc7) = 0.384 =
1

1 + 1/2
· 0.576
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PRF

1 Background
2 BIR Model
3 RSJ Weight
4 BM25 Model
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PRF: Background

[Robertson and Sparck Jones, 1976]

Derivation: Start from probabilistic odds:

O(r |d , q) :=
P(r |d , q)

P(r̄ |d , q)
(18)

The application of Bayes theorem, a term independence
assumption, and a non-query term assumption lead to the BIR
term weight and BIR RSV.
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BIR Model

1 BIR term weight wBIR

2 BIR RSV RSVBIR

3 Example
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BIR term weight

Definition (BIR term weight wBIR:)

The BIR term weight is:

wBIR(t , r , r̄) :=
P(t |r)
P(t |r̄)

· P (̄t |r̄)
P (̄t |r)

(19)

The simplified form considers term presence only:

wBIR, F1(t , r , r̄) :=
P(t |r)
P(t |r̄)

(20)

33 / 144



Introduction & Motivation
Retrieval Models

More Models
Relationships between Retrieval Models

Probabilistic Logical Modelling Retrieval Models
Summary

Index

TF-IDF Model(s)
Probability of Relevance Framework (PRF)
Binary Independence Retrieval (BIR) Model
RSJ Weight
Poisson Model
BM25 Model
Language Modelling (LM)

BIR RSV

Definition (BIR retrieval status value RSVBIR:)

RSVBIR(d , q, r , r̄) :=
∑

t∈d∩q

log wBIR(t , d , q, r , r̄) (21)

34 / 144



Introduction & Motivation
Retrieval Models

More Models
Relationships between Retrieval Models

Probabilistic Logical Modelling Retrieval Models
Summary

Index

TF-IDF Model(s)
Probability of Relevance Framework (PRF)
Binary Independence Retrieval (BIR) Model
RSJ Weight
Poisson Model
BM25 Model
Language Modelling (LM)

BIR: Term presence and absence

Definition (Variants of the BIR term weight: estimation of r̄ :)

r̄ = c r̄ = c \ r
Presence
only

rt/R
nt/N

rt/R
(nt−rt )/(N−R)

Presence
and
absence

rt/(R−rt )
nt/(N−nt )

rt/(R−rt )
(nt−rt )/(N−R−(nt−rt ))
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RSJ Weight

BIR: P(t |r) = rt/R; P(t |c) = n/N

RSJ: P(t |r) = (r + 0.5)/(R + 1); P(t |c) = (n + 1)/(N + 2)

Definition (Variants of the BIR term weight: virtual documents:)

r̄ = c r̄ = c \ r
Presence
only

(rt+0.5)/(R+1)
(nt+1)/(N+2)

(rt+0.5)/(R+1)
(nt−rt+0.5)/(N−R+1)

Presence
and
absence

(rt+0.5)/(R−rt+0.5)
(nt+1)/(N−nt+1)

(rt+0.5)/(R−rt+0.5)
(nt−rt+0.5)/(N−R−(nt−rt )+0.5)
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BIR Example

qterm
Term DocId
sailing q1
boats q1

relevant
QueryId DocId
q1 doc2
q1 doc4
q1 doc6
q1 doc8

non relevant
QueryId DocId
q1 doc1
q1 doc3
q1 doc5
q1 doc7
q1 doc9
q1 doc10
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BIR Example: index of relevant and non-relevant
documents

relColl
Term DocId QueryId
sailing doc2 q1
boats doc2 q1
sailing doc2 q1
sailing doc4 q1
sailing doc6 q1
boats doc6 q1
east doc6 q1
coast doc6 q1
sailing doc6 q1
boats doc6 q1
coast doc8 q1

non relColl
Term DocId QueryId
sailing doc1 q1
boats doc1 q1
sailing doc3 q1
east doc3 q1
coast doc3 q1
boats doc5 q1
boats doc7 q1
coast doc9 q1
sailing doc10 q1
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BIR Example: The trick with the virtual doc

relColl virtual
Term DocId QueryId

sailing doc2 q1
boats doc2 q1
sailing doc2 q1
sailing doc4 q1
sailing doc6 q1
boats doc6 q1
east doc6 q1
coast doc6 q1
sailing doc6 q1
boats doc6 q1
coast doc8 q1
sailing virtualDoc q1
boats virtualDoc q1

non relColl virtual
Term DocId QueryId

sailing doc1 q1
boats doc1 q1
sailing doc3 q1
east doc3 q1
coast doc3 q1
boats doc5 q1
boats doc7 q1
coast doc9 q1
sailing doc10 q1
sailing virtualDoc q1
boats virtualDoc q1

The trick: add the query to the set of relevant and non-relevant documents

Guarantees P(t |r) > 0 and P(t |r̄) > 0
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BIR Example: Term probabilities

term r
P(t|r) Term QueryId

0.800 sailing q1
0.600 boats q1
0.200 east q1
0.400 coast q1

term not r
P(t|r̄) Term QueryId

0.571 sailing q1
0.571 boats q1
0.143 east q1
0.286 coast q1

term c
P(t|c) Term

0.600 sailing
0.500 boats
0.200 east
0.400 coast

bir term weight
Term QueryId

1.400 sailing q1
1.050 boats q1
1.400 east q1
1.400 coast q1

bir c term weight
Term QueryId

1.333 sailing q1
1.200 boats q1
1.000 east q1
1.000 coast q1
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BIR Example: Term weight computation

wBIR(sailing, q) = 1.40 =
0.8

0.571

wBIR(boats, q) = 1.05 =
0.6

0.571

wBIRc(sailing, q) = 1.333 =
0.8
0.6

wBIRc(boats, q) = 1.20 =
0.6
0.5
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BIR Example: Retrieval results

bir retrieve
RSVBIR DocId QueryId

1.470 doc6 q1
1.470 doc2 q1
1.470 doc1 q1
1.400 doc10 q1
1.400 doc4 q1
1.400 doc3 q1
1.050 doc7 q1
1.050 doc5 q1

bir c retrieve
RSVBIR DocId QueryId

1.600 doc6 q1
1.600 doc2 q1
1.600 doc1 q1
1.333 doc10 q1
1.333 doc4 q1
1.333 doc3 q1
1.200 doc7 q1
1.200 doc5 q1
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BIR Example: RSV computation

RSVBIR(doc1, q, r , r̄) = 1.470 = 1.40 · 1.05
RSVBIR(doc1, q, r , c) = 1.600 = 1.333 · 1.20
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Poisson Model

1 Background
2 Binomial probability
3 Poisson probability (approximation of Binomial prob)
4 Analogy between P(n sunny days) and

P(nL(t , d) locations)

5 Poisson term weight and Poison RSV
6 Example
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Poisson Background

[Margulis, 1992]: N-dimensional Poisson

[Church and Gale, 1995]: idf is deviation from Poisson

[Robertson and Walker, 1994]: 2-Poisson model

45 / 144



Introduction & Motivation
Retrieval Models

More Models
Relationships between Retrieval Models

Probabilistic Logical Modelling Retrieval Models
Summary

Index

TF-IDF Model(s)
Probability of Relevance Framework (PRF)
Binary Independence Retrieval (BIR) Model
RSJ Weight
Poisson Model
BM25 Model
Language Modelling (LM)

Binomial probability

Definition (Binomial probability)

PBinomial(kt |c) :=

(
N
kt

)
· pkt

t · (1 − pt)
(N−kt ) (22)

For example, the probability that kt = 4 sunny days occur in
N = 7 days; the single event probability is pt = 180

360 = 0.5.

PBinomial(kt = 4|c) =

(
7
4

)
· 0.54 · (1 − 0.5)7−4 ≈ 0.2734 (23)
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Poisson probability

Definition (Poisson probability)

PPoisson(kt |c) :=
(λ(t , c))kt

kt !
· e−λ(t ,c) (24)

For example, the probability that kt = 4 sunny days occur in a
week; the average is 180/360 ∗ 7 = 3.5 sunny days per week.

PPoisson(kt = 4|c) =
(3.5)4

4!
· e−3.5 ≈ 0.1888 (25)
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Analogy of Days/Holiday and Locations/Document

Event space Days Locations
kt sunny days term locations
trial sequence holiday h document d

sequence of days sequence of loca-
tions

background model year y collection c
N: number of
trials, i.e. length
of sequence

days in holiday:
NDays(h)

locations in docu-
ment: NLocations(d)

single event
probability

PDays(sunny|y) :=
nDays(sunny,y)

NDays(y)

PLocations(t |c) :=
nLocations(t ,c)
NLocations(c)
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Poisson term weight

Definition (Poisson term weight wPoisson:)

The Poisson term weight is:

wPoisson(t , d , r , r̄) :=

(
λ(t , r)
λ(t , r̄)

)nL(t ,d)

(26)
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Poisson RSV

Definition (Poisson retrieval status value RSVPoisson:)

RSVPoisson(d , q, r , r̄) :=
∑

t∈d∩q

log wPoisson(t , d , r , r̄) (27)

RSVPoisson(d , q, r , r̄) =
∑

t∈d∩q

nL(t , d) · log
λ(t , r)
λ(t , r̄)
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2-Poisson Model

[Robertson and Walker, 1994]

...
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BM25 Model

[Robertson et al., 1995]: Okapi/BM25

BM25 tutorials SIGIR 2007 and 2008: Hugo Zaragoza, Stephen
Robertson
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BM25 term weight

Definition (BM25 term weight wBM25:)

wBM25(t , d , q, r , r̄) :=
tfd

tfd + Kd
· wRSJ(t , r , r̄) ·

tfq

tfq + k3
(28)

Kd := k1 · (b · dl
avgdl

+ (1 − b)) (29)

tf′d :=
tfd

Kd
(30)
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BM25 term RSV

Definition (BM25 retrieval status value RSVBM25:)

RSVBM25(d , q) :=

 ∑
t∈d∩q

wBM25(t , d , q, r , r̄)

 + k2 · ql · avgdl − dl
avgdl + dl

(31)
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BM25 notation

tf nL(t , d) within-document term frequency
K K (d , c) parameter to adjust impact of tfd : K (d , c) = b ·

pivdl + (1 − b),
tf′ tf

K : normalised within-document term frequency
qtf nL(t , q) within-query term frequency
b b parameter to adjust impact of pivoted document

length
k1 k1 parameter to adjust impact of tf
ql NL(q) query length: locations in query q
dl NL(d) document length: locations in document d
avgdl avgdl(c) average document length; also NL(davg)

w (1)
t wBIR(t , r , r̄) BIR term weight, or the so-called RSJ term weight

k2 k2 parameter to adjust impact of document length
k3 k3 parameter to adjust impact of qtf
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Language Modelling (LM)

1 Background
2 LM1 term weight wLM1

3 LM1 RSVLM1

4 LM term weight wLM
5 LM RSVLM

6 Example

56 / 144



Introduction & Motivation
Retrieval Models

More Models
Relationships between Retrieval Models

Probabilistic Logical Modelling Retrieval Models
Summary

Index

TF-IDF Model(s)
Probability of Relevance Framework (PRF)
Binary Independence Retrieval (BIR) Model
RSJ Weight
Poisson Model
BM25 Model
Language Modelling (LM)

LM Background

[Ponte and Croft, 1998, Lavrenko and Croft, 2001]: LM,
Relevance-based LM

[Hiemstra, 2000]: A probabilistic justification for using tf.idf term
weighting in information retrieval

[Croft and Lafferty, 2003]: Language Modelling for Information
Retrieval

Victor Lavrenko LM tutorial SIGIR 2003

[Zaragoza et al., 2003]: Bayesian extension to the LM for
ad-hoc IR
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LM1 term weight

Definition (LM1 term weight wLM1:)

P(t |d) is the within-document term probability, also referred to
as the foreground probability. P(t |c) is the within-collection
term probability, also referred to as the background probability.
The parameter δ is the mixture parameter.

wLM1(t , d , c) := P(t |d , c) := δ · P(t |d) + (1 − δ) · P(t |c) (32)
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LM1 RSV

Definition (LM1 retrieval status value RSVLM1:)

For the sequence-based decomposition, the RSV is:

RSVLM1(d , q, c) := log P(q|d , c) =
∑

t IN q

log P(t |d , c) (33)

In the set-based decomposition, TF(t , q) reflects the multiple
occurrences of t in q:

RSVLM1(d , q, c) =
∑
t∈q

TF(t , q) · log P(t |d , c) (34)
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Normalised LM term weight

Definition (LM term weight wLM:)

wLM(t , d , c, δ) := 1 +
δ

1 − δ
· P(t |d)

P(t |c)
(35)

For α := 1−δ
δ .

wLM(t , d , c, α) = 1 +
P(t |d)

α · P(t |c)
(36)
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Normalised LM RSV

Definition (LM retrieval status value RSVLM:)

RSVLM(d , q, c) :=
∑

t∈d∩q

TF(t , q) · log wLM(t , d , c, δ) (37)

RSVLM(d , q, c) = TF(t , q) · log
(

1 +
δ

1 − δ
· P(t |d)

P(t |c)

)
(38)
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Relationship between normalised LM and LM1

P(q|d , c)

P(q|c) ·
∏

t IN q(1 − δ)

Applying the log function yields:

log P(q|d , c)− log

P(q|c) ·
∏

t IN q

(1 − δ)


Therefore:

RSVLM(d , q, c) =

= RSVLM1(d , q, c)−
∑
t∈q

TF(t , q) · log ((1 − δ) · P(t |c))
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LM Example: document and collection/background
model

docModel
P(t|d) Term DocId

0.500 sailing doc1
0.500 boats doc1
0.667 sailing doc2
0.333 boats doc2
0.333 east doc3
0.333 coast doc3
0.333 sailing doc3
1.000 sailing doc4
1.000 boats doc5
0.333 sailing doc6
0.333 boats doc6
0.167 east doc6
0.167 coast doc6
1.000 boats doc7
1.000 coast doc8
1.000 coast doc9
1.000 sailing doc10

collModel
P(t|c) Term

0.400 sailing
0.300 boats
0.100 east
0.200 coast
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LM Example: Term weights/probabilities
lm1 term weight:20

P(t|d, c) Term DocId

0.480 sailing doc1
0.460 boats doc1
0.613 sailing doc2
0.327 boats doc2
0.287 east doc3
0.307 coast doc3
0.347 sailing doc3
0.880 sailing doc4
0.860 boats doc5
0.347 sailing doc6
0.327 boats doc6
0.153 east doc6
0.173 coast doc6
0.860 boats doc7
0.800 coast doc8
0.800 coast doc9
0.880 sailing doc10
0.080 sailing doc5
0.080 sailing doc7
0.060 boats doc3

... see shell for more tuples

The following table illustrates for some term-document tuples in rela-
tion “lm1 term weight” the computation of the mixed probabilities (mix-
ture parameter δ = 0.8).

lm1 term weight
P(t|d, c) Term DocId

0.48 = 0.8 · 0.5 + 0.2 · 0.4 sailing doc1
0.46 = 0.8 · 0.5 + 0.2 · 0.3 boats doc1

0.61333 = 0.8 · 0.667 + 0.2 · 0.4 sailing doc2
0.32667 = 0.8 · 0.333 + 0.2 · 0.3 boats doc2

... ... ...
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LM Example: Retrieval results

lm1 term retrieve
P(q|d, c) DocId QueryId

0.221 doc1 q1
0.200 doc2 q1
0.113 doc6 q1
0.069 doc7 q1
0.069 doc5 q1
0.053 doc10 q1
0.053 doc4 q1
0.021 doc3 q1

For example, the computation of the probabili-
ties of “doc1” and “doc2” is as follows:

P(q|doc1, c) =

= P(sailing|doc1, c) · P(boats|doc1, c)

= 0.48 · 0.46 = 0.2208

P(q|doc2, c) =

= P(sailing|doc2, c) · P(boats|doc2, c)

= 0.6133 · 0.3266 = 0.2003
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More Models

1 Probabilistic Inference Network (PIN) Model
2 Divergence from Randomness (DFR) Model
3 Link-based Models (TF boosting, page-rank)
4 Classification-oriented Models (Bayesian, KNN,

Support-vector machine (SVM))
5 Relevance feedback models (Rocchio, ...)
6 More “models”
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Probabilistic Inference Network (PIN) Model

1 Background
2 PIN term weight and PIN RSV
3 Example
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Background

[Turtle and Croft, 1990, Turtle and Croft, 1991a,
Turtle and Croft, 1991b]: PIN for Document Retrieval, Efficient
Prob Inference for Text Retrieval, Evaluation of an PIN-based
Retrieval Model (evolution: document, text, model)

[Croft and Turtle, 1992]: Retrieval of complex objects (EDBT)

[Turtle and Croft, 1992]: A comparison of text retrieval models
(CJ)

[Metzler and Croft, 2004]: Combining LM and PIN (IP&M)
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PIN’s: Document retrieval and “Find Mr. X”

t1 t2

d1 d2

t4t3

q

Football fanUnderground user

Mr. X

London Dortmund
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Link Matrix

P(q|d) =
∑

x

P(q|x) · P(x |d) (39)

(
P(q|d)
P(q̄|d)

)
= L ·

 P(x1|d)
...
P(xn|d)

 (40)
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Link Matrices Lor and Land

Lor =

[
1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 1

]
(41)

Land =

[
1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1

]
(42)
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Link Matrix for Closed Form with O(n)

L =

 1 w1+w2
w0

w1+w3
w0

w1
w0

w2+w3
w0

w2
w0

w3
w0

0

0 w3
w0

w2
w0

w2+w3
w0

w1
w0

w1+w3
w0

w1+w2
w0

1

(43)

w0 =
∑

i wi

w1

w0
· P(t1|d) +

w2

w0
· P(t2|d) +

w3

w0
· P(t3|d) (44)
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PIN term weight

Definition (PIN term weight)

wPIN(t , d , q) :=
P(q|t) · P(t |d)∑

t P(q|t)
(45)

Probabilistic (PIN) interpretation of TF-IDF?
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PIN RSV

Definition (RSVPIN)

RSVPIN(d , q) :=
∑

t

wPIN(t , d , q) (46)

=
1∑

t P(q|t)
·
∑

t

P(q|t) · P(t |d) (47)
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DFR: Divergence from Randomness

“The more the divergence of the within-document term
frequency from its frequency within the collection, the more
divergent from randomness the term is, meaning the more the
information carried by the term in the document.”

[Amati and Rijsbergen, 2002, Amati and van Rijsbergen, 2002]:
Pareto (ECIR), measuring the DFR (TOIS)
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Link-based Models

1 TF-boosting
2 Page-rank
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TF-boosting

TF boosting is a method/process that pushes anchor terms to
the destination document.

We can distinguish between two versions of TF boosting: total
and probabilistic boosting.

[Craswell et al., 2001]: Effective site finding using link anchor
information
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TF-boosting

Total TF boosting:

nL,boosted(t , d) := nL(t , d) + nL(t , A(d)) (48)

where

nL(t , d) occurrence of term t in document d
part of(a, d) anchor a is in document d
A(d) set of anchors that point to d
nL(t , A(d)) occurrence of term t in anchor set A(d)
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TF-boosting

Probabilistic TF boosting:

PL,boosted(t |d) := λ · PL(t |d) + (1 − λ) · PL(t |A(d)) (49)
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Example: TF-Boosting

link
Src Anchor Dest
d1 ”d1/anchor[1]” d33
d2 ”d2/anchor[1]” d33

boost
Term Dest Src Anchor
bbc d33 d1 ”d1/anchor[1]”
weather d33 d1 ”d1/anchor[1]”
bbc d33 d2 ”d2/anchor[1]”
weather d33 d2 ”d2/anchor[1]”
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Example: TF-Boosting
tf

Prob Term DocId

0.200 sailing d1
0.200 at d1
0.200 the d1
0.200 east d1
0.200 coast d1
0.500 bbc ”d1/anchor[1]”
0.500 weather ”d1/anchor[1]”
0.200 sailing d2
0.200 at d2
0.200 the d2
0.200 south d2
0.200 coast d2
0.500 bbc ”d2/anchor[1]”
0.500 weather ”d2/anchor[1]”
0.167 this d33
0.167 is d33
0.167 the d33
0.167 bbc d33
0.167 weather d33
0.167 page d33

aug tf
Prob Term DocId

0.200 sailing d1
0.200 at d1
0.200 the d1
0.200 east d1
0.200 coast d1
0.500 bbc ”d1/anchor[1]”
0.500 weather ”d1/anchor[1]”
0.200 sailing d2
0.200 at d2
0.200 the d2
0.200 south d2
0.200 coast d2
0.500 bbc ”d2/anchor[1]”
0.500 weather ”d2/anchor[1]”
0.100 this d33
0.100 is d33
0.100 the d33
0.300 bbc d33
0.300 weather d33
0.100 page d33
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Page-rank

page-rank(y) := d + (1 − d) ·
∑

x

link(x , y) · page-rank(x)
N(x)

(50)

[Brin and Page, 1998]

[Kleinberg, 1999]: HITS: Hyperlink-Induced Topic Search (hubs
and authorities)
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Example: Authority-based Ranking

link
Src Dest
doc1 doc2
doc1 doc3
doc1 doc4
doc2 doc3
doc2 doc4
doc3 doc4
doc4 doc5
doc4 doc1
doc6 doc7

selectivity
Prob Doc

0.333 doc1
0.500 doc2
1.000 doc3
0.500 doc4
1.000 doc6

authority0
Prob Doc

0.500 doc1
0.500 doc2
0.500 doc3
0.500 doc4
0.500 doc5
0.500 doc6
0.500 doc7
0.500 doc8
0.500 doc9
0.500 doc10
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Example: Authority-based Ranking

authorityGain
Prob Doc

0.167 doc2
0.417 doc3
0.917 doc4
0.250 doc5
0.250 doc1
0.500 doc7

authority1
Prob Doc

0.750 doc4
0.500 doc7
0.450 doc3
0.350 doc1
0.350 doc5
0.300 doc2
0.200 doc10
0.200 doc9
0.200 doc8
0.200 doc6

authority2
Prob Doc

0.730 doc4
0.365 doc1
0.365 doc5
0.340 doc3
0.320 doc7
0.190 doc2
0.080 doc6
0.080 doc8
0.080 doc9
0.080 doc10
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Example: Authority-based Ranking

authorityGain(doc3) = authority(doc1)/3 + authority(doc1)/2

=
0.5
3

+
0.5
2

= 0.167 + 0.25 = 0.417
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Classification-oriented Models

1 Bayesian classifier
2 KNN classifier (K-nearest-neighbours)
3 Support-vector machine (SVM) classifier

[Joachims, 2000, Klinkenberg and Joachims, 2000]:
Generalisation performance, Concept Drift with SVM

[Sebastiani, 2002]: Machine-learning in automated text
categorisation
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Classification: Bayesian Classifier

Definition (Bayesian Classifier:)

A Bayesian classifier is a method that assigns documents to
classes, and the selection (ranking) of classes is based on
Bayes’ theorem to estimate class, document and feature
probabilities.
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Bayesian Classifier

P(class|doc) := P(class|~x) =
P(~x |class) · P(class)

P(~x)
(51)
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Bayesian Classifier: Independence Assumption

P(~x |class) =
∏

i

P(xi |class) (52)
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Bayesian Classifier: Example

The task: “where is Mr. X?”. We know that Mr. X is a commuter
and a scientist. Thus, the feature vector is:

~x = (commuter, scientist)

Moreover, we know single event likelihoods:

P(commuter|london) = 0.80
P(scientist|london) = 0.01
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Bayesian Classifier: Example cont’d

The likelihood of combined events may be based on the
independence assumption:

P(commuter, scientist|london) = 0.80 · 0.01
P(commuter, NOT scientist|london) = 0.80 · 0.99
P(NOT commuter, scientist|london) = 0.20 · 0.99

P(NOT commuter, NOT scientist|london) = 0.20 · 0.99
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Bayesian Classifier: Example cont’d

For the combined likelihoods to be greater than zero, each
single event likelihood must be greater than zero. This can be
guaranteed by either applying a Laplace-like correction
(e.g.add each feature to the feature space of each class), or by
a probability mixture (background model), or by assuming a
minimal feature probability.
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Classification: KNN Classifier

Definition (KNN Classifier:)

A KNN classifier is a method that retrieves documents for the
document to be classified. The retrieved documents are
associated with classes (usually from training data). For the
KNN (k-nearest-neighbour) documents, the KNN classifier
exploits the document retrieval scores and class associations,
and this evidence is aggregated into a score for each of the
classes.

93 / 144



Introduction & Motivation
Retrieval Models

More Models
Relationships between Retrieval Models

Probabilistic Logical Modelling Retrieval Models
Summary

Index

PIN
DFR
Link-based Models
Classification-oriented Models
More “Models”

Classification: SVM Classifier

Definition (SVM Classifier:)

A SVM classifier is a method from system analysis applied to
assign documents to classes.
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SVM Classifier: y=Ax

~y = A · ~x + ~b (53)

A is the so-called system matrix
~x is the input vector (document feature vector)
~y is the output vector (class vector)
~b is the starting vector
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SVM Classifier: err(A)

The matrix A is learned from training data; the data is a set of
pairs “~xk , ~yk ”. The learning can be based on minimising the
following error function:

err(A) :=
∑

k

(
A · ~xk + ~b − ~yk

)2
(54)
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SVM Classifier: Example
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More “models”

Boolean model
Extended Boolean model
Fuzzy model
Vector-space “model” (VSM)
Logical retrieval “model”: P(d → q)

Relevance feedback models
Latent semantic indexing
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Relevance Feedback

A classic: [Rocchio, 1966, Rocchio, 1971]:

~qrevised = α · ~qinitial + β · 1
|R|

∑
d∈R

~d − γ · 1
|NR|

∑
d∈NR

~d (55)

The revised query is derived from the initial query, the centroid
of relevant documents (set R), and the centroid of non-relevant
documents (set NR). The parameters α, β, γ adjust the impact
and normalisation of each component.
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Relevance Feedback

BIR and BM25 (probabilistic odds) consider relevance feedback
data. TF-IDF and LM do not.
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Relationships between Retrieval Models

Vector-space Model (VSM) and Generalised VSM (GVSM)
P(d → q): The probability that d implies q
P(r |d , q): The probability of relevance
A Parallel Derivation of Probabilistic Information Retrieval
Models
TF-IDF Uncovered: A Study of Theories and Probabilities
Semi-subsumed events: A probabilistic semantics of the
BM25 TF
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Vector-space Model (VSM): Background

1 The milestone “model” in the 60/70s (SMART system)
2 Replaced Boolean retrieval; stable and good quality of

ranking results
3 Approach: Apply vector algebra (cosine) to measure the

distance between document and query
4 Estimation of vector components: TF-IDF
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VSM: Cosine-based RSVVSM

cos(∠(~d , ~q)) :=
~d · ~q√

~d2 ·
√

~q2
(56)

Definition (VSM retrieval status value RSVVSM:)

RSVVSM(d , q) := cos(∠(~d , ~q)) ·
√

~q2 =
~d · ~q√

~d2
(57)
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Generalised Vector-space Model (GVSM)

1 VSM only associates same dimensions/terms
2 GVSM associates different dimensions/terms

solve syntactic mismatch problem of semantically related
terms
query for “classification” ... retrieve documents that contain
“categorisation”
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GVSM RSV

Definition
GVSM retrieval status value RSVGVSM:

RSVGVSM(d , q, G) := ~dT · G · ~q (58)

Identity matrix G = I and scalar product ~d · ~q:

~dT · I · ~q = ~d · ~q = wd ,1 · wq,1 + . . . + wd ,n · wq,n (59)
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GVSM: Example

G =

 1 0 0
1 1 0
0 0 1


RSVGSVM(d , q, G) = (wd ,1+wd ,2) · wq,1 + . . . + wd ,n · wq,n (60)

The GVSM is useful for matching semantically related terms. For example,
let t1 = “classification” and t2 = “categorisation” be two dimensions of the
vector-space. Then, for the example matrix G above, a query for
“classification” (wq,1 = 1) retrieves a document containing “categorisation”
(wd,2 = 1), even though wq,2 = 0, i.e. “categorisation” does not occur in the
query, and wd,1 = 0, i.e. “classification” does not occur in the document.
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General Matrix Framework: Content-based Retrieval

DTc : Document-Term matrix of collection c

TDc = transpose(DTc)

TDc Dc

doc1 doc2 doc3 doc4 doc5 nD(t , c) n(t , c)

Tc

sailing 1 2 1 1 0 4 5
boats 1 1 0 0 1 3 3
east 0 0 1 0 0 1 1
coast 0 0 1 0 0 1 1
nT (d , c) 2 2 3 1 1
n(d , c) 2 3 3 1 1
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General Matrix Framework: Content-based Retrieval

Content-based document retrieval:

RSV(~d , ~q) = DTc · ~q (61)
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General Matrix Framework: Structure-based Retrieval

PCc : Parent-Child matrix of collection c

CPc = transpose(PCc)

Child \ Parent doc1 doc2 doc3 doc4 nC(d , c) nL(t , c)

doc1 1 2 2 3
doc2 1 1 1
doc3 0 0
doc4 0 0
nP(d , c) 0 1 1 1
nL(d , c) 0 1 2 1
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document similarity (over terms): DDc = DTc · TDc(62)
term co-occurrence (over documents): TTc = TDc · DTc(63)

RSV(~d , ~q) = DTc · G · ~q (64)
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General Matrix Framework: Structure-based Retrieval

parent similarity (co-reference): PPc = PCc · CPc (65)
child similarity (co-citation): CCc = CPc · PCc (66)

Exploitation of analogies/dualities between

1 content-based and structure-based retrieval
2 collection space (DTc , PCc) and document space (STd ).

[Roelleke et al., 2006]
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Information Theory

Definition
Entropy: Let s be a stream of signals, where a signal is the
occurrence of a token t , and V = {t1, . . . , tn} is the vocabulary.
Then, H(s) is the entropy of stream s.

H(s) :=
∑

t

Ps(t) · − log Ps(t) (67)

A stream is also referred to as a sequence.
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Information Theory

There seems to be a similarity to TF-IDF: if the first P(t) can be
related to TF, while − log P(t) can be related to IDF, then this
would constitute an entropy-based (Shannon-based)
explanation of TF-IDF ([Aizawa, 2003]).
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P(d → q)

View P(d → q) as a measure of relevance
[van Rijsbergen, 1986, van Rijsbergen, 1989, Nie, 1992,
Meghini et al., 1993, Crestani and van Rijsbergen, 1995]:
logical approach good for “semantic” retrieval
Different interpretations of P(d → q) explain traditional IR
models (VSM, coordination-level match)
[Wong and Yao, 1995]: For P(q|d) set P(q|t) and P(t |d)

P(q|d) =
∑

t

P(t |d) · P(q|t) = ~d · ~q
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P(r |d , q): The Probability of Relevance

P(h|e) =
P(h) · P(e|h)

P(e)
(68)

posterior =
prior · likelihood

evidence
(69)

P(r |d , q) =
P(r) · P(d , q|r)

P(d , q)
(70)
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Decomposition of P(d , q, r)

The probability P(d , q|r) can be decomposed in two ways:

P(d , q|r) = P(q|r) · P(d |q, r) (71)
= P(d |r) · P(q|d , r) (72)

In equation 71, d depends on q, whereas in equation 72, q
depends on d . P(d |q) can be viewed as a foundation of
TF-IDF, and P(q|d) is the foundation of LM, hence, it is
interesting to relate LM to P(q|d , r) ([Lafferty and Zhai, 2003])
and TF-IDF to P(d |q, r).
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Term Independence Assumption

P(d |q, r) =
∏
t∈d

P(t |q, r) (73)

P(q|d , r) =
∏
t∈q

P(t |d , r) (74)
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Probabilistic Odds

probabilistic odds: O(r |d , q) =
P(r |d , q)

P(r̄ |d , q)
(75)

For documents that are more likely to be relevant than not
relevant, P(r |d , q) > P(r̄ |d , q), i.e. O(r |d , q) > 1.
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Estimation of Term Probabilities

Document-based (BIR model):

PD(t |c) =
nD(t , c)

ND(c)
(76)

Location-based (LM):

PL(t |c) =
nL(t , c)

NL(c)
(77)

Frequency-based (Poisson):

P(t |x) = PPoisson(kt |x) =
λ(t , x)kt

kt !
· e−λ(t ,x) (78)
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A Parallel Derivation of IR Models
retrieval model BIR Poisson LM

Presence of terms Frequency of terms Terms
in ND(c) Documents Locations/Documents at NL(c) Locations

term statistics nD(t, c) λ = nL(t, c)/nD(t, c) nL(t, c)
event space xt ∈ {0, 1} kt ∈ {0, 1, . . . , n} t ∈ {t1, . . . , tn}
term probability

P(xt |c) = nD(t, c)/ND(c) P(kt |c) = PPoisson,λ(kt ) P(t|c) = nL(t, c)/NL(c)

probability that term t oc-
curs in a document of set
c

probability that term t oc-
curs kt times given aver-
age occurence λ

probability that term t oc-
curs in set c of locations

[Robertson, 2004]: Understanding IDF: On theoretical arguments

[Robertson, 2005]: On Event Spaces

[Luk, 2008]: On Event Spaces and Rank Equivalence

[Roelleke and Wang, 2006]: A Parallel Derivation of IR Models
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Poisson Bridge

Definition
Poisson Bridge: Let x represent a set of documents (e.g. the
collection, the set of relevant documents, set of non-relevant
documents, set of retrieved documents).

avgtf(t , x) · PD(t |x) = λ(t , x) = avgdl(x) · PL(t |x) (79)
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Poisson Bridge: Expanded Form

nL(t , x)

nD(t , x)
· nD(t , x)

ND(x)
=

nL(t , x)

ND(x)
=

NL(x)

ND(x)
· nL(t , x)

NL(x)
(80)

Example for “sailing”:

8
6
· 6

10
=

8
10

=
20
10

· 8
20
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TF-IDF: Theories and Probabilities

P(q|d) is LM. What is P(d |q)?

More precisely, P(q|d)/P(q) is LM. What is P(d |q)/P(d)?

Note:
P(q|d)

P(q)
=

P(d , q)

P(d) · P(q)
=

P(d |q)

P(d)
(81)

[Roelleke and Wang, 2008]
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TF-IDF: Theories and Probabilities

Terms can be assumed to be independent or disjoint.

The case for “independent”:

log
P(q|d)

P(q)
=

∑
t∈d

TF(t , q) · log
P(t |d)

P(t)
(82)

log
P(d |q)

P(d)
=

∑
t∈d

TF(t , d) · log
P(t |q)

P(t)
(83)
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TF-IDF: Theories and Probabilities

TF-IDF follows from P(d |q)/P(d).

Query term probability assumption:

P(t |q, c) =
avgtf(t , c)

avgdl(c)
(84)

(For lighter formulae, skip ’c’)

Use Poisson bridge to get from PL(t) to PD(t).

P(t |q)

P(t)
=

avgtf
avgdl

avgtf
avgdl · PD(t)

(85)
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TF-IDF: Theories and Probabilities

The case for “disjoint”: leads to an interpretation that views
TF-IDF as an integral.

P(q|d) = P(q) ·
∑

t

P(t |d) · P(t |q) · 1
P(t)

(86)

∫
1
x

= log x (87)

∫ 1

PD(t)

1
x

= − log PD(t) (88)
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TF-IDF: Integral of DQI over P(t)
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Semi-subsumed Events: Probabilistic Semantics
BM25 TF

P(L1 = t ∧ L2 = t) = P(t)2 (89)

P(L1 = t ∧ L2 = t) = P(t)(2· 2
2+1) (90)
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Semi-subsumed Events

[Wu and Roelleke, 2009]
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Independence-Subsumption Triangle (IST)

independent occurrences semi-subsumed subsumed occurrences

1 1
1

2 2
1

2
3/2

2
2

3 3
1

3
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3

4 4
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4
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Probabilistic Logical Modelling

[Roelleke et al., 2008]: Modelling Retrieval Models in a PRA
with a new operator: The relational Bayes

1 CREATE VIEW tf sum AS
2 SELECT SUM Term, Doc
3 FROM term doc | DISJOINT(Doc);

5 CREATE VIEW pidf AS
6 SELECT Term
7 FROM term doc
8 ASSUMPTION MAX IDF
9 EVIDENCE KEY ();

11 CREATE VIEW tf sum pidf retrieve AS
12 ...

1 tf sum =
2 Project SUM(Bayes DISJOINT[$2](term doc));

4 pidf =
5 Bayes MAX IDF[](Project[$1](term doc));

7 tf sum pidf retrieve = ...
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1 TF-IDF, PRF (BIR, RSJ, Poisson, BM25), LM
2 More models:

1 PIN, DFR
2 Link-based Models: TF-boosting, Page-rank
3 Classification-oriented Models: Bayesian, SVM

3 Relationships between Retrieval Models
1 VSM and GVSM
2 P(d → q): Probability of “d implies q”
3 P(r |d , q): Probability of relevance
4 A Parallel Derivation of Probabilistic IR Models
5 TF-IDF Uncovered: A Study of Theories and Probabilities
6 Semi-subsumed Events: A Probabilistic Semantics for the

BM25 TF
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