On Information Retrieval Models and DB+IR

Slide 1

Thomas Roelleke Queen Mary, University of London Apriorie Ltd

Max Planck Institute Saarbruecken, Oct 2006

Outline

- Motivation and Background
- A general matrix framework for IR notation re-used

- Probabilistic retrieval models and idf
- Parallel derivation of probabilistic retrieval models
- Modelling retrieval with DB+IR technology

Motivations

Implement IR models in high-level abstraction (mathematical and probabilistic logical), to support the engineering of customised information management applications.

Slide 3

To achieve this, understand the depth of IR models; what is common ground? Which general concepts do we need to model IR?

Background

Rijsbergen:CJ:1986: $P(d \rightarrow q)$

Wong/Yao:TOIS:1995: Probabilistic framework to explain IR modes

Fuhr:SIGIR:1996: Probabilistic Datalog (IP&M 2000)

Fuhr/Roelleke:TOIS:1997: PRA

Croft/Lafferty:2003: Language Modelling Book

Lafferty/Zhai:2003: Intro in LM Book

Hiemstra:JDlib:2000: Probabilistic interpretation of tf-idf Roelleke:SIGIR:2003: Probability of being informative Robertson:JDOC:2005: Understanding IDF: On theoretical

arguments

deVries/Roelleke:SIGIR:2005: Relevance feedback: "gain" for idf

Roelleke/etal:TREC:2005: PSQL

Roelleke/etal:IP&M:2006: General matrix framework

Roelleke/Wang:SIGIR:2006: Parallel derivation of IR models

2

A general matrix framework for IR

Spaces: collection c, document d, query q

Content: collection with document and term dimension, document with location and term dimension

 DT_c matrix, LT_d matrix

Structure: collection/document with parent and child dimension

 PC_c matrix, PC_d matrix

Evaluation: query with document and assessor dimension

 DA_q matrix

Roelleke/etal:IPM:2006, more slides in Barcelona seminar talk

Content: The DT_c matrix of collection c

	sailing	boats	east	coast	$n_T(d,c)$
doc1	1	1			2
doc2		1	1		2
doc3	1	1			2
doc4	1				1
doc5	1		1	1	3
$n_D(t,c)$	4	3	2	1	

Slide 6

Slide 5

Note: $n_D(\cdot,c)=D^T\cdot DT_c$: D^T is transpose of D, $D=(1,1,\ldots).$

Notation - Notation - Notation

Motivation: A consistent and dual notation:

$n_D(t,c)$	Number of documents in which term t				
	occurs in collection c				
$N_D(c)$	Number of documents in c				

Slide 7

Replace document $\dim D$ by location $\dim L$

 $n_L(t,c)$ Number of locations at which term t occurs in collection c

 $N_L(c)$ | Number of locations in c

Notation - Notation - Notation

Replace collection space c by document space d				
$n_L(t,d)$	Number of locations at which term t oc-			
	curs in collection d			
$N_L(d)$	Number of locations in d			

More Matrices? Yes!

- Structure matrices PC_c (structure of collection c) and PC_d (structure of each document d)
- ullet Evaluation matrices DA_q (document assessment per query)

Slide 9

$$DD = DT \times DT^{T}, \quad TT = DT^{T} \times DT$$

DD: Number of shared terms: Document similarity: co-containment TT: Number of shared documents: Term similarity: co-occurrence

Eigenvectors:
$$\lambda \vec{x} = A \vec{x}$$
.
Try for $\vec{d'} = TT \cdot \vec{d}$.

$P(\boldsymbol{d},\boldsymbol{q})$ and the trick with the diagonal

Remember $RSV = \vec{d}^T \cdot G \cdot \vec{q}$?

What about $RSV = \vec{d}^T \cdot IDF \cdot \vec{q}$?

 $IDF = diag(\emph{idf}(\cdot))$ is a diagonal matrix of \emph{idf} values.

Slide 10

$$IDF = \begin{bmatrix} \textit{idf}(sailing) & 0 & 0 & 0 \\ 0 & \textit{idf}(boats) & 0 & 0 \\ 0 & 0 & \textit{idf}(east) & 0 \\ 0 & 0 & 0 & \textit{idf}(coast) \end{bmatrix}$$

This is a valuable link to probabilistic models:

$$P(d,q) := \sum_t P(d|t) P(q|t) P(t)$$
, $P(t) \propto \textit{idf}(t)$.

Matrix framework: Conclusion

• Motivated by Wong/Yao:TOIS:1995: Link of vector-space model $\vec{d} \cdot \vec{q}$ and $P(q|d) = \sum_t P(q|t)P(t|d)$. Interpretations of $P(d \to q)$ to describe IR models. Matrix/vector algebra to describe IR concepts.

Slide 11

Slide 12

- Content, structure and evaluation in the same framework; parallel interpretations of co-containment, co-occurrence, co-citation, co-assessment, ...
- Mathematical/formal foundation for IR concepts (not just models)

Probabilistic retrieval models and idf

Hiemstra:JDLib:2000, Robertson:JDOC:2005

$$RSV(d,q) := O(r|d,q) \propto \sum_{t \in d \cap q} \log \frac{P(t|r)P(\bar{t}|\bar{r})}{P(t|\bar{r})P(\bar{t}|r)}$$

$$\log \frac{1}{P(t|\bar{r})} = -\log P(t|\bar{r}) = -\log P(t|c) = idf(t,c)$$

Vries/Roelleke:2005:

$$RSV(d,q) = \sum_{t \in d \cap q} - \textit{idf}(t,r) + \textit{idf}(t,\bar{r})$$

idf(t,r) in relevant reduces basic idf(t,c).

Probability of being informative

$$idf(t,c) := -\log P(t \ occurs | c)$$

Motivation: In a probabilistic reasoning system, we need probabilities proportional to *idf*. Interpretation?

 $e^{-idf(t,c)} = P(t \ occurs | c)$

 $P(t \ \textit{occurs}|c) = \lim_{N \to \infty} \left(1 - \frac{\textit{idf}(t, c)}{N}\right)^{N}$

$$P(t \ \textit{informs}|c) := \frac{\textit{idf}(t,c)}{N}$$

Roelleke: SIGIR: 2003, IR-Theory-Workshop: Glasgow-IR-Festival: 2005

A parallel derivation of probabilistic IR models

Are there IR "quarks" that explain IR models, since origin is P(r|d,q)?

 $RSV_{BIR}(d,q) = \sum_{t \in d \cap q} \log \frac{P(t|r)P(\bar{t}|\bar{r})}{P(t|\bar{r})P(\bar{t}|r)}$

 $RSV_{LM}(d,q) = \sum_{t \in q} \log(\delta P(t|d) + (1-\delta)P(t|c))$

 $RSV_{PM}(d,q) = \sum_{t \in d \cap q} \log \left(\frac{\lambda(t,r)}{\lambda(t,\bar{r})} \right)^{n_L(t,d)}$

Note: We use δ for LM, since we reserve λ for Poisson.

Slide 14

Event spaces and probabilities

BIR	Poisson	LM	
Judgements	Frequencies	Terms	
on Documents	of Terms	at Locations	
$P_{BIR}(t c) :=$	$\lambda(t,c) :=$	$P_{LM}(t c) :=$	
$n_D(J=1,c_t)$	$n_L(T=t,c)$	$n_L(T=t,c)$	
$N_D(c_t)$	$N_D(c)$	$N_L(c)$	
	$P_{PM}(t c) = \frac{\lambda^{n(t)}}{n(t)!}e^{\lambda}$		

Slide 15

Poisson Bridge

$$P_{BIR}(t|c) \cdot ? = ? \cdot P_{LM}(t|c)$$

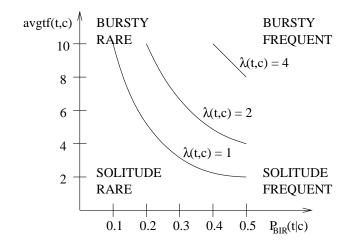
$$\frac{n_D(t,c)}{N_D(c)} \cdot ? = ? \cdot \frac{n_L(t,c)}{N_L(c)}$$

$$\frac{n_D(t,c)}{N_D(c)} \cdot \frac{n_L(t,c)}{n_D(t,c)} = \frac{N_L(c)}{N_D(c)} \cdot \frac{n_L(t,c)}{N_L(c)}$$

$$P_{BIR}(t|c) \cdot \textit{avgtf}(t,c) = \textit{avgdl}(c) \cdot P_{LM}(t|c)$$

$$\lambda(t,c) = \lambda(t,c)$$

Bursty and solitude terms



Slide 17

Slide 18

TF-IDF explanation

Take RSV_{PM} and Poisson bridge and obtain:

$$RSV_{PM}(d,q) = \sum_{t \in d \cap q} n_L(t,d) \cdot -\log \frac{P_{BIR}(t|\bar{r}) \cdot \textit{avgtf}(t,\bar{r})}{P_{BIR}(t|r) \cdot \textit{avgtf}(t,r)}$$

Compare to tf-idf:

$$RSV_{tfidf}(d,q) = \sum_{t} tf(t,d) \cdot -\log P_{BIR}(t|c)$$

Standard tf-idf "drops" relevance, and assumes $\bar{r}=c$.

 RSV_{PM} shows how to incorporate relevance.

Poisson bridge yields dual LM-based formulation.

9

Parallel derivation: Summary

- Probability P(r|d,q) origin of probabilistic models
- BIR, Poisson, and LM based on different event spaces
- Poisson bridge connects BIR and LM
- TF-IDF is close to Poisson model
- Poisson model and idf-based BIR formulation show effect of relevance

DB+IR: Probability Aggregation

Probability aggregation in HySpirit/Apriorie PSQL:

CREATE VIEW retrieve AS
SELECT DISJOINT queryId, documentId
FROM weightedQuery, tf
WHERE weightedQuery.term = tf.term
TOP 10;

PRA basics in Fuhr/Roelleke:TOIS:1997, PSQL in Roelleke/etal:TREC:2005.

Slide 19

DB+IR: Probability Estimation

Probability estimation in HySpirit/Apriorie PSQL:

Slide 21

```
CREATE VIEW idf AS
SELECT term
FROM collection
ASSUMPTION MAX INFORMATIVE
EVIDENCE KEY ();
```

DB+IR Demo

```
Slide 22
```

```
<par>Tweety is a bird<par>
<par>Tweety is not a bird<par>
# POOL
doc_1 [
   par_1 [ 0.6/0.2 bird(tweety) ]
   par_2 [ NOT bird(tweety) ]
]
?- D[ bird(X) ]
?- D [ NOT bird(X) ]
?- bird(X)
```

Summary and Conclusions

- General matrix framework: notation and framework to describe IR concepts such as frequencies, ranking models, authorities, evaluation, etc
- Probabilistic models and idf: BIR and idf related
 Poisson model explains tf-idf, Poisson bridge leads to dual notation either based on BIR or LM parameters
- DB+IR: high-level, abstract implementation of IR concepts to realise customised IR applications at low-costs (Ralf: It was easy with Oracle ...)

What is going on?

- Dalvi/Suciu/etal: semantics in probabilistic databases
- MPI Saarbruecken: top-k
- deVries@cwi: efficient DB technology for IR; matrix framework
- Frommholz@duisburg: annotation logic POLAR
- Heng Zhi Wu, Hany Azzam: Efficient processing of PRA, query optimisation
- Jun Wang: Retrieval models, context-specific idf in structured document retrieval
- Frederik Forst: Summarisation logic POLIS (based on POOL, Kripke structured, description logic)
- Follow-up of SIGIR Sheffield 2004 DB+IR workshop?

Slide 24

Slide 23

12