On the Generalisation and Logical Implementation of Retrieval Models

Barcelona IR Seminar March 2006 Thomas Roelleke

Motivation

What is an IR model?

Slide 2
Try a mathematical definition: An IR model is a function

$$
R S V: D \times Q \rightarrow R
$$

D : Set of documents
Q : Set of queries
R : Set of real numbers

Outline

Slide 3

- Part 1: General matrix framework and TF-IDF
- Part 2: Probabilistic models

Outline

- What is IR? Just some matrix/vector algebra?
- Notation - Notation - Notation

Slide 4

- TF-IDF
- Binary independent retrieval model
- Language modelling
- Implementation of IR models in probabilistic data models
- Conclusion
Slide 5

What is IR? Just a matrix?						
sailing boats east coast doc1 1 1 doc2 1 1 2 doc3 1 1 doc4 1 2 doc5 1 1 1 $n_{D}(t, c)$ 4 3 2 1						

$D T$ matrix: $N_{D}(c) \times N_{T}(c)$ matrix.
Collection space, content representation, dimensions: D and T.

Notation - Notation - Notation

Motivation: A consistent and dual notation:

$n_{D}(t, c)$	Number of documents in which term t occurs in collection c
$N_{D}(c)$	Number of documents in c

Replace set D by set L

$n_{L}(t, c)$	Number of locations at which term t occurs in collection c
$N_{L}(c)$	Number of locations in c

Notation - Notation - Notation

Replace c by $d:$ document space	
$n_{L}(t, d)$	Number of locations at which term t occurs in collection d
$N_{L}(d)$	Number of locations in d

See "A general matrix framework for IR", IPM 2006
TF-IDF, binary independent retrieval, language modelling, Poisson model, divergence from randomness: we are ready.

TF-IDF

Slide 8
Term frequency TF: $t f(t, d)$: How "representative" is t for d ?
What about:

Ok, we know there is better:

$$
t f(t, d):=\frac{n_{L}(t, d)}{K+n_{L}(t, d)}
$$

K : A constant for all t, might depend on d and c.
Hm , term frequency is actually location (token) frequency.

TF-IDF

Inverse document frequency IDF: Usually this:

$$
i d f(t):=-\log \frac{n_{D}(t, c)}{N_{D}(c)}
$$

Slide 9
There we go:

$$
R S V(d, q):=\sum_{t} t f(t, d) \cdot i d f(t)
$$

Still a competitive baseline, after so many years. Add a document length normalisation, and you are close to the top-performing BM25.

Anchor-text
Add to document, boosts TF.

Incoming links

Who believes in history-biased authorities?

A bit more of matrix framework

Slide 12 Let's multiply each matrix with its transposed matrix.
$D D=D T \times D T^{T} \mathbf{:}$ What is in $D D \boldsymbol{?}$
Number of common/shared terms: Document similarity.
$T T=D T^{T} \times D T$: What is in $T T$?
Number of common/shared documents: Term similarity.

More matrices? Yes.

The starting point for STRUCTURE representation: Parent-Child matrix: $P C$.

Let's play with dualities: Use $P C$ rather than $D T$, and phrase accordingly:
$P P=P C \times P C^{T}$: What is in $P P \boldsymbol{?}$
Number of common children: Parent similarity.
$C C=P C^{T} \times P C$: What is in $C C$?
Number of common parents: Children similarity.

More matrices? Yes!

The starting point for CONTENT representation: Location-Term matrix: $L T$

Slide $14 \quad$ There is a $L T$ for each document. $L T_{d}$
There is a $D T$ for each collection: $D T_{c}$
Dito for Parent-Child matrix: $P C_{c}$
One more: $P C_{d}$
MORE MATRICES? Yes, but let's do TF-IDF next

TF-IDF in matrix framework?

Let's count documents in which a term occurs:
$n_{D}=(4,3,2,1)$

$$
n_{D}=D^{T} \times D T
$$

Let's divide by $N_{D}(c)=5$. Then apply $-\log$.
$i d f=\left(-\log \frac{4}{5}, \ldots,-\log \frac{1}{5}\right)$
Good start. We get term frequency with the same deal:
$n_{L}(\cdot, d)=L_{d}^{T} \times L T_{d}$
Compare to $n_{D}(\cdot, c)=D_{c}^{T} \times D T_{c}$

How to get IDF in?

Slide 16
Remember the vector space model?
$D T \cdot \vec{q}$

- $n_{L}(\cdot, d)$: Term frequencies for each document
- $i d f(\cdot)$: inverse document frequency

Ok, that's coordination level match.
Better use $n_{L}(\cdot, d)$ vectors, the term frequencies:

$$
R S V=\left[\begin{array}{c|cccc}
& \text { sailing } & \text { boats } & \text { east } & \text { coast } \\
\hline d 1 & 2 & 1 & 0 & 0 \\
d 2 & 0 & 3 & 1 & 0
\end{array}\right] \cdot \vec{q}
$$

The trick with the diagonal

Remember?

$$
\begin{array}{r}
R S V=D T \cdot G \cdot \vec{q} \\
R S V=D T \cdot I D F \cdot \vec{q}
\end{array}
$$

What about?
What's IDF? A matrix. A diagonal matrix.

$$
I D F=\operatorname{diag}(i d f)
$$

$$
I D F=\left[\begin{array}{cccc}
\boldsymbol{i d f}(\text { sailing }) & 0 & 0 & 0 \\
0 & \boldsymbol{i d f}(\text { boats }) & 0 & 0 \\
0 & 0 & \boldsymbol{i d f}(\text { east }) & 0 \\
0 & 0 & 0 & \boldsymbol{i d f}(\text { coast })
\end{array}\right]
$$

Slide 18

Pause

TF-IDF done
We used $L_{d}^{T} \times L T_{d}$ vectors for term frequencies
We used $D_{c}^{T} \times D T_{c}$ vector for document frequencies
We formed a diagonal matrix of idf values

Dual operations? Just to mention one: $P_{d}^{T} \times P C_{d}$
Many more: inverse parent frequency, etc.
Eigenvectors of $D D_{c}, T T_{c}, P P_{c}, C C_{c}$: Interesting.
$T T_{c}$ Eigenvector: The document/query reflecting term co-occurrence

More matrices? Yes!!

Document-Assessor matrix $D A_{q}$
$A A_{q}$: Assessor similarity
Express precision/recall in general matrix framework
Eigenvector of $A A_{q}$: ...

Binary independent retrieval model

Slide 20

$$
O(r \mid d, q)=\frac{P(r \mid d, q)}{P(\bar{r} \mid d, q)}
$$

Brings you to

$$
P(r, d, q)=P(d \mid q, r) \cdot P(q, r)
$$

After some arithmetic exercise and assumptions:

$$
R S V(d, q):=\sum_{t \in d \cap q} \log \frac{P(t \mid r) \cdot P(\bar{t} \mid c)}{P(\bar{t} \mid r) \cdot P(t \mid c)}
$$

Binary independent retrieval model

Rewrite:

$$
R S V(d, q):=\sum_{t \in d \cap q}-\boldsymbol{i d f}(t \mid r)-\boldsymbol{i d f}(\bar{t} \mid c)+\boldsymbol{i d f}(\bar{t} \mid r)+\boldsymbol{i d f}(t \mid c)
$$

So what?
Can be expressed in general matrix framework.
$\boldsymbol{i d f}(t, c)-\boldsymbol{i d f}(t, r)$: Relevance information DECREASES the discriminativeness of a term.

For a term that occurs in many relevant docs: $\boldsymbol{i d f}(t, r) \approx 0$.
Vries/Roelleke:SIGIR:2005

Language modelling

Slide 22

$$
P(r, d, q)=P(q \mid d, r) \cdot P(d, r)
$$

After some arithmetics:

$$
R S V(d, q):=\sum_{t \in q} \log (\lambda \cdot P(t \mid c)+(1-\lambda) \cdot P(t \mid d))
$$

Can be expressed in general matrix framework.

Probabilistic Logical Implementation

HySpirit/Apriorie framework: components for describing the required probability estimations.

```
SELECT * FROM ...
ASSUMPTION IDF
EVIDENCE KEY (...)
```

Needs notion of "probability of being informative": SIGIR:2003

Summary and Conclusion

- Supports the application and investigation of dualities
- Supports the aggregation of parameters: content + structure
- Related to the probabilistic logical implementation of IR models
- What for? Make system development more productive

Readings

Rijsbergen:CJ:1986,1989
$P(d \rightarrow q)$ as general framework
Wong/Yao:TOIS:1995
Interpretations of $P(d \rightarrow q)$
Fuhr/Roelleke:TOIS:1997
Probabilistic relational algebra
Roelleke/Tsikrika/Kazai:IP\&M:2006(2004)
General matrix framework
Rijsbergen:2005:
Vector algebra/spaces: That's IR's geometry

