On Occurrence and Informativeness Probabilities IR Festival Glasgow 2005

Slide 1

Outline

- Motivation: Basics and Questions3
- idf 4
- $P(r \mid d, q)$ and BIRM 5
- idf-based Formulation of the BIRM 6
Slide 2
- The Probability of Being Informative7
- Poisson-based $i d f \quad 8$
- Context-specific idf 9
- Probability estimation and idf in the relational model / SQL 10
- A GUI for making theory work 11
- Summary, Conclusions and Outlook
$12,13,14$

Motivation: Basics and Questions

- Theoretical explanation for $i d f$?
- idf as a probabilistic estimate?

Slide 3

- Occurrence probability: n / N or other?
- EFFECTIVE DB+IR?
- idf \rightarrow relational model / SQL?
- Scalability?

$$
\begin{gathered}
\text { 嘼f } \\
P(t \mid c):=\frac{n(t, c)}{N(c)} \\
i d f(t, c):=-\log P(t \mid c) \\
\text { A piece of IR granite. }
\end{gathered}
$$

Slide 4

Variations? Alternative distribution for $P(t \mid c)$ (DFR site).
Historical note \qquad
The first publication on the natural \log was in 1614, paper by John Napier, 1550-1618, Scottish mathematician and astrologer.

Inventor of log: Joost Buergi, 1552-1632, swiss clock maker.

The Probability of Relevance and the BIRM

$P(r \mid d, q)$: Foundation for the BIRM and language modelling.

Slide 5

BIRM: After a number of steps, "tricks" and assumptions:

$$
\sum_{t} \log \frac{P(t \mid r) \cdot P(\bar{t} \mid \bar{r})}{P(\bar{t} \mid r) \cdot P(t \mid \bar{r})}
$$

Another piece of IR granite.

idf-based Formulation of the BIRM

Robertson:2004: idf is estimate for BIRM term weight if no relevance information is available.

Slide 6
$\log P(t \mid r)-\log P(t \mid \bar{r})=-i d f(t, r)+i d f(t, \bar{r})$
Joins two pieces of IR.
t occurs in all relevant docs $\Longleftrightarrow i d f(t, r)=0$.

To be found in SIGIR:2005.

The Probability of Being Informative

$$
\begin{aligned}
P(t \text { occurs } \mid c) & :=\frac{n(t, c)}{N(c)} \text { or alternative } \\
P(t \text { informs } \mid c) & :=\text { inverse to occurrence }
\end{aligned}
$$

Slide 7

Occurrence-Informativeness Theorem:
Explains $P(t$ informs $)$.

$$
\begin{array}{r}
P(t \text { informs } \mid c)=\frac{-\log P(t \text { occurs } \mid c)}{M} \Longleftrightarrow \\
P(t \text { occurs } \mid c)=\lim _{M \rightarrow \infty}(1-P(t \text { informs } \mid c))^{M}
\end{array}
$$

$$
\text { Proof: } \quad e^{-\lambda}=\lim _{M \rightarrow \infty}\left(1-\frac{\lambda}{M}\right)^{M}
$$

Slide 8	Poisson-based idf (occurrence) Lift it.		
		Linear estimate	Poisson-based estimate
	Occurrence (Docu- ments)	$P_{D}(t \mid c):=\frac{n_{D}(t, c)}{N_{D}(c)}$	$P_{D}(t \mid c):=\frac{n_{D}(t, c)}{K_{D}(c)+n_{D}(t, c)}$
	Withindocument occurrence (Locations)	$P_{L}(t \mid d):=\frac{n_{L}(t, d)}{n_{L}\left(t_{\max }, d\right)}$	$P_{L}(t \mid d):=\frac{n_{L}(t, d)}{K_{L}(d)+n_{L}(t, d)}$

A GUI for Making Theory Work

Slide 11

Summary

- Robertson:JDOC:2004: BIRM is explanation for idf
- idf-based formulation of BIRM

Slide 12

- $P(t$ informs $)$: Semantics based on semantics of log
- Poisson-based idf: Improves retrieval quality for long queries
- Context-specific idf: Solution for structured document retrieval
- HySpirit/Apriorie: Frequency-based and idf-based probability estimation integral part of Probabilistic Relational Model / SQL

Conclusions

- The $i d f$-granite is hard (http://www.soi.city.ac.uk/ ser/idf.html, see relationship of idf and language modelling, Hiemstra, Nie).
- Lifting the occurrence probability appears to be a good idea (DFR,

Slide 13

Slide 14 $P_{\text {risk }}$ Amati/Rijsbergen)

- Recent experience shows: For increasing the impact of IR research, we need to
- make IR theory applicable $A N D$ available to IR externals
- integrate IR with other systems / research areas (e.g. bio-informatics, law enforcement), not vice versa

Outlook

- Occurrence-informativeness theorem (noise versus informativeness, Belew:2000 book)
- Structured IR: context-specific idf
- Efficiency/Scalability: special, probabilistic, relational indexing structures and relaxed fix-point semantics for ultimate scalability
- Knowledge-based reasoning: log-based negation
- Non-linear (chaotic) behaviour of retrieval functions

