On Occurrence and Informativeness Probabilities

IR Festival Glasgow 2005

Thomas Rölleke

Queen Mary University of London

Department of Computer Science

Outline	
• Motivation: Basics and Questions	3
• <i>idf</i>	4
• $P(r d,q)$ and BIRM	5
• <i>idf</i> -based Formulation of the BIRM	6
• The Probability of Being Informative	7
• Poisson-based <i>idf</i>	8
• Context-specific <i>idf</i>	9
• Probability estimation and <i>idf</i> in the relational model / SQ	QL 10
• A GUI for making theory work	11
• Summary, Conclusions and Outlook	12, 13, 14

Slide 1

Motivation: Basics and Questions

- Theoretical explanation for *idf*?
- *idf* as a probabilistic estimate?
- Slide 3
- Occurrence probability: n/N or other?
- *EFFECTIVE* DB+IR?
 - $idf \rightarrow$ relational model / SQL?
 - Scalability?

Slide 7 $\frac{The \ Probability \ of \ Being \ Informative}{P(t \ occurs|c) \ := \ \frac{n(t,c)}{N(c)} \ or \ alternative}{P(t \ informs|c) \ := \ inverse \ to \ occurrence}$ Slide 7 Occurrence-Informativeness Theorem: $\frac{P(t \ informs|c) \ = \ \frac{-\log P(t \ occurs|c)}{M} \quad \iff \\P(t \ occurs|c) \ = \ \lim_{M \to \infty} (1 - P(t \ informs|c))^{M}$ Proof: $e^{-\lambda} = \lim_{M \to \infty} \left(1 - \frac{\lambda}{M}\right)^{M}$

Conclusions

- The *idf*-granite is hard (http://www.soi.city.ac.uk/ ser/idf.html, see relationship of idf and language modelling, Hiemstra, Nie).
- Lifting the occurrence probability appears to be a good idea (DFR, P_{risk} Amati/Rijsbergen)
- Recent experience shows: For increasing the impact of IR research, we need to
 - make IR theory applicable AND available to IR externals
 - integrate IR with other systems / research areas
 (e.g. bio-informatics, law enforcement), not vice versa

• Occurrence-informativeness theorem (noise versus informativeness, Belew:2000 book)

Slide 14

- Structured IR: context-specific *idf*
- Efficiency/Scalability: special, probabilistic, relational indexing structures and relaxed fix-point semantics for ultimate scalability
- Knowledge-based reasoning: log-based negation
- Non-linear (chaotic) behaviour of retrieval functions