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Harmony Assumptions: Extending Probability Theory

Introduction

TF-IDF and Probability Theory

Probability Theory: Independence Assumption

P(sailing,boats, sailing) = P(sailing)2 · P(boats)

Applied in AI, DB and IR
and “Big Data” and “Data Science” and ...

TF-IDF

the best known ranking formulae?
known in IR, DB and AI and other disciplines?
TF-IDF and probability theory?

log (P(sailing,boats, sailing)) = 2 · log (P(sailing)) + ...

TF-IDF and LM (language modelling)?
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Harmony Assumptions: Extending Probability Theory

Introduction

Why Research on Foundations!?

Research on foundations required for ...

Abstraction: DB+IR+KM+ML: probabilistic logical programming

1 # Probabilistic facts and rules are great, BUT ...
2 # one needs more expressiveness.

4 # For example:
5 # P(t |d) = tf d /doclen
6 p t d SUM(T,D) :− term doc(T,D)|(D);

extended probability theory→ DB+IR+KM+ML on the road
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Introduction

The wider picture: Penrose “Shadows of the mind”

- a search for the missing science of consciousness

Preface: dad and daughter enter a cave:
-“Dad, that boulder at the entrance, if it comes down, we are locked
in.”
-“Well, it stood there the last 10,000 years, so it won’t fall down just
now.”
-“Dad, will it fall down one day?”
-“Yes.”
-“So it is more likely to fall down with every day it did not fall down?”

Taxi: on average, 1/6 taxis are free
busy busy ... after 7 busy taxis, keep waiting or give up?
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TF-IDF

Hardcore

TF-IDF

RSVTF-IDF(d ,q) :=
∑

t

TF(t ,d) · TF(t ,q) · IDF(t)

How can someone spend 10 years looking at the equation?
Maybe because of what Norbert Fuhr said:

We know why TF-IDF works; we have no idea
why LM (language modelling) works.

RSVLM(d ,q)
!!!∝ P(q|d)

P(q)
RSVTF-IDF(d ,q)

???∝ P(d |q)

P(d)
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Harmony Assumptions: Extending Probability Theory

TF-IDF

Example: Naive TF-IDF

% A document:
d1[sailing boats are sailing with other sailing boats in greece ...]

wTF-IDF(sailing, d1) = TF(sailing, d1) · IDF(sailing) = 3 · log
1000

10
= 3 · 2 = 6

wTF-IDF(boats, d1) = TF(boats, d1) · IDF(boats) = 2 · log
1000

1
= 2 · 3 = 6

NOTE:
wTF-IDF(sailing, d1) = wTF-IDF(boats, d1)

Both terms have the same impact on the score of d1!

The rare term should have MORE impact than the frequent one!
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TF Quantifications

Theoretical Justifications!?!?

TF(t ,d) :=


tfd total TF: independence!
1 + log(tfd ) log TF: dependence?
log(tfd + 1) another log TF
tfd/(tfd + Kd ) BM25 TF: dependence?

Kd : pivoted document length: Kd > 1 for long documents ...

Experimental results:
log-TF much better than total TF (ltc, [Lewis, 1998])
BM25-TF better than log-TF

Theoretical results?
Why? Wieso - Weshalb - Warum?
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TF Quantifications

BM25-TF
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TF Quantifications

Example: BM25-TF

Remember Naive TF-IDF? Now, try BM25-TF-IDF:

wBM25-TF-IDF(sailing,d1) =
3

3 + 1
· log

1000
10

=
3
4
· 2 = 1.5

wBM25-TF-IDF(boats,d1) =
2

2 + 1
· log

1000
1

=
2
3
· 3 = 2

IMPORTANT:

wBM25-TF-IDF(sailing,d1) < wBM25-TF-IDF(boats,d1)
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TF Quantifications

Series-based explanations

Series-based explanations of the TF quantifications:

TFtotal tfd = 1 + 1 + ...+ 1

TFlog 1 + log (tfd ) ≈ 1 + 1
2 + . . .+ 1

tfd

TFBM25
tfd

tfd+1 = 1
2 ·

[
1 + 1

1+2 + . . .+ 1
1+2+...+tfd

]
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Harmony Assumptions

FORGET Information Retrieval
...
BACK TO Probability Theory
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Harmony Assumptions

P(

k︷ ︸︸ ︷
sailing, ...) =

1
Ω
· P(sailing)k =

1
Ω
· P(sailing)1+1+...+1

Pα(

k︷ ︸︸ ︷
sailing, ...) =

1
Ω
· P(sailing)1+ 1

2α+...+ 1
kα

independent: α = 0
square-root-harmonic: α = 0.5
naturally harmonic: α = 1
square-harmonic: α = 2
...

Ω: Later
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Harmony Assumptions

The Main Harmony Assumptions

assumption name assumption function af(n) description / comment
zero harmony 1 + 1

20 + . . .+ 1
n0 independence: 1+1+1+...+1

natural harmony 1 + 1
2 + . . .+ 1

n harmonic sum

alpha-harmony 1 + 1
2α + . . .+ 1

nα generalised harmonic sum

sqrt harmony 1 + 1
21/2 + . . .+ 1

n1/2 α = 1/2; divergent

square harmony 1 + 1
22 + . . .+ 1

n2 α = 2; convergent: π2

6 ≈ 1.645

Gaussian harmony 2 · n
n+1 = 1 + 1

1+2 + . . .+ 1
1+...+n explains the BM25-TF tfd

tfd+pivdl
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Harmony Assumptions

Illustration

0.25 0.306 0.353 0.42

independent: α = 0 sqrt-harmonic: α = 1/2 naturally harmonic: α= 1 square-harmonic: α = 2
0.5 · 0.5 = 0.25 0.5 · 0.51/

√
2 ≈ 0.306 0.5 · 0.51/2 ≈ 0.353 0.5 · 0.51/22

≈ 0.42

The area of each circle corresponds to the single event probability: p = 0.5.
The overlap becomes larger for growing α (harmony).
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Experimental Study: IR and Social Networks

Data & Test

Africa in TREC-3
742, 611 = 734, 078 + 8, 533

k 0 1 2 3 4 5 6 7 8 9 10
Pobs 0.9885 0.0062 0.0019 0.0011 0.0007 0.0005 0.0004 0.0002 0.0002 0.0001 0.0001
documents 734, 078 4, 584 1, 462 809 550 345 271 182 137 105 88 8, 533
Pbinomial 0.9738 0.0258 0.0003 0 0 0 0 0 0 0 0
Palpha-harmonic,α=0.41 0.9787 0.018 0.0023 0.0005 0.0002 0.0001 0 0 0 0 0

Binomial assumes independence:
Pbinomial(1) > Pobs(1)!
Pbinomial(2) < Pobs(2)!
Pbinomial(3) = 0!
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Experimental Study: IR and Social Networks

Distribution of α’s
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Distribution of alpha’s: for many terms, 0.3 ≤ α ≤ 0.8.
Sqrt-harmony appears to be a good default assumption.
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Impact

Extended Probability Theory

applicable in DB+IR+KM+ML + other disciplines
where probabilities and ranking are involved.

DB+IR+KM+ML: A new generation

1 w BM25(Term,Doc) :− tf d(Term,Doc) BM25 & piv dl(Doc);
2 # w BM25: a probabilistic variant of the BM25−TF weight.

4 # What to add for modelling ranking algorithms (TF−IDF, BM25, LM, DFR)?

6 # What makes engineers happy???

[Frommholz and Roelleke, 2016]: DB Spektrum
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Summary

The Independence Assumption: easy and scales, BUT ...!!!
Many disciplines rely on probability theory.
Between Disjointness and Subsumption,
there is more than Independence.
For example:

Natural Harmony: log2(k + 1)
Gaussian Harmony: 2 · k/(k + 1)

BM25-TF: 2 · tfd
tfd+1 = 1 + 1

1+2 + . . .+ 1
1+2+...+tfd

Harmony Assumptions: A link between
TF-IDF and Probability Theory
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Summary

Other theories to model dependencies?

Questions?
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Background

[Fagin and Halpern, 1994]: Reasoning about Knowledge and Probabilities
[Church and Gale, 1995a, Church and Gale, 1995b]: IDF ...
[Fuhr and Roelleke, 1997]: PRA (bibdb: Fuhr/Roelleke:94! 3 years!)
[Lewis, 1998]: Naive Bayes at Forty: The Independence Assumption in
Information Retrieval
[Roelleke, 2003]: The Probability of Being Informative ... idf/maxidf
[Robertson, 2004]: On theoretical arguments for IDF
[Robertson, 2005]: Event spaces
[Roelleke and Wang, 2006, Roelleke and Wang, 2008]: ...
[Roelleke et al., 2008]: The Relational Bayes: ...
[Roelleke et al., 2013]: Modelling Ranking Algortihms in PDatalog
[Roelleke, 2013]: IR Models: Foundations & Relationships
[Roelleke et al., 2015]: Harmony Assumptions in IR and Social Networks
[Frommholz and Roelleke, 2016]: Scalable DB+IR Tech: ProbDatalog with
HySpirit

red thread between IR Theory and abstraction for DB+IR
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